Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,432)

Search Parameters:
Keywords = dynamic water systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2267 KiB  
Article
Effects of Groundwater Depth on Soil Water and Salinity Dynamics in the Hetao Irrigation District: Insights from Laboratory Experiments and HYDRUS-1D Simulations
by Zhuangzhuang Feng, Liping Dai, Qingfeng Miao, José Manuel Gonçalves, Haibin Shi, Yuxin Li and Weiying Feng
Agronomy 2025, 15(9), 2025; https://doi.org/10.3390/agronomy15092025 (registering DOI) - 23 Aug 2025
Abstract
The management of groundwater depth (GWD) in alluvial soils under irrigation in arid climates is critical for soil and water conservation, given its influence on salt dynamics and water availability for crops. GWD is influenced by the interaction of irrigation water supply and [...] Read more.
The management of groundwater depth (GWD) in alluvial soils under irrigation in arid climates is critical for soil and water conservation, given its influence on salt dynamics and water availability for crops. GWD is influenced by the interaction of irrigation water supply and drainage system design and operation. Controlling GWD is a significant issue in the Hetao Irrigation District due to continuous irrigation, arid climate, and high risks of soil salinization, which concerns farmers and water management authorities. To address this issue, a study was conducted based on open-air laboratory experimentation to rigorously assess the effects of GWD on soil salt dynamics and capillary rise contribution to maize cultivation under level basin irrigation. Data collected served as the basis for parameterizing and calibrating the HYDRUS-1D model, facilitating simulation of soil water and salt dynamics to enhance understanding of GWD effects ranging from 1.25 m to 2.25 m. It was concluded that during calibration and validation, the model demonstrated strong performance; SWC simulations achieved R2 > 0.69, RMSE < 0.03 cm3 cm−3, and NSE approaching 1; and EC simulations yielded R2 ≥ 0.74 with RMSE < 0.22 S cm−1. Additionally, the simulated bottom boundary moisture flux closely matched the measured values. The most favorable GWD range should be between 1.75 m and 2.0 m, minimizing the negative impacts of irrigation-induced soil salinity while maximizing water use efficiency and crop productivity. A higher GWD causes crop water stress, while a lower value results in a greater risk of soil salinity. This study anticipates future field application in Hetao to assess drainage system effectiveness and variability in salinity and productivity effects. Full article
(This article belongs to the Section Farming Sustainability)
18 pages, 1835 KiB  
Review
Aquaporin-4 in Stroke and Brain Edema—Friend or Foe?
by Cecilia Alejandra García Ríos and Jose E. Leon-Rojas
Int. J. Mol. Sci. 2025, 26(17), 8178; https://doi.org/10.3390/ijms26178178 (registering DOI) - 23 Aug 2025
Abstract
Stroke is a leading global cause of mortality and long-term disability, with cerebral edema constituting a major contributor to early neurological deterioration and poor outcomes. Aquaporin-4 (AQP4), the predominant water channel in the central nervous system, plays a paradoxical role in stroke-related brain [...] Read more.
Stroke is a leading global cause of mortality and long-term disability, with cerebral edema constituting a major contributor to early neurological deterioration and poor outcomes. Aquaporin-4 (AQP4), the predominant water channel in the central nervous system, plays a paradoxical role in stroke-related brain edema, facilitating both the formation and clearance of excess fluid depending on the pathological context. This review explores the biphasic function of AQP4 across cytotoxic and vasogenic edema, emphasizing its dynamic regulation, subcellular localization, and implications for therapeutic intervention. Evidence from rodent models shows that AQP4 exacerbates cytotoxic edema in acute ischemia by promoting intracellular water influx into astrocytes, whereas in vasogenic edema, it supports fluid reabsorption and glymphatic clearance, thereby alleviating brain swelling. Human studies corroborate AQP4 upregulation in infarcted regions and suggest a potential role for AQP4 polymorphisms and circulating levels as biomarkers of stroke severity and outcome, although larger cohorts and more robust methodological designs are needed. This review also discusses emerging pharmacological strategies to modulate AQP4 activity, including inhibitors, trafficking modulators, and gene-targeted delivery systems, while highlighting challenges in achieving phase-specific modulation. Given its central role in both injury and recovery, AQP4 emerges as a promising yet complex therapeutic target for personalized management of stroke-induced brain edema. Future directions include real-time imaging of AQP4 function, genotype-stratified clinical trials, and integration of AQP4 modulation with current stroke treatment protocols. Full article
(This article belongs to the Special Issue Aquaporins in Brain Disease, 2nd Edition)
Show Figures

Figure 1

25 pages, 8170 KiB  
Article
Energy Migration and Groundwater Response to Irregular Wave Forcing in Coastal Aquifers: A Spectral and Wavelet Analysis
by Weilun Chen, Jun Kong, Saihua Huang, Huawei Xie, Jun Wang and Chao Gao
Water 2025, 17(17), 2513; https://doi.org/10.3390/w17172513 - 22 Aug 2025
Abstract
In recent years, the irregular wave characteristics of ocean dynamics have often been overlooked in the study of the driving mechanism of groundwater movement in coastal aquifers. To clarify the propagation mechanisms of groundwater fluctuations driven by irregular waves in beach aquifers, we [...] Read more.
In recent years, the irregular wave characteristics of ocean dynamics have often been overlooked in the study of the driving mechanism of groundwater movement in coastal aquifers. To clarify the propagation mechanisms of groundwater fluctuations driven by irregular waves in beach aquifers, we employed spectral analysis based on numerical simulations to examine the energy migration processes and evolution characteristics of wave signals at different frequencies. It elucidates the response mechanism of groundwater movement characteristics (head, velocity) to irregular waves in the sea. The energy density in the low-frequency region is enhanced compared to the incident wave and continuously increases in the direction away from the sea within the aquifer. The wavelet power corresponding to the 1/2 spectral peak frequency is significantly enhanced. The energy density in the high-frequency region is generally weaker than that of the incident waves, and the wavelet power corresponding to double spectral peak frequency is enhanced. The correlation between incident waves and groundwater fluctuations is highest near the spectral peak period. This study addresses some problems in modeling surface water–groundwater interactions under irregular wave conditions and provides a theoretical reference for investigating the impacts of extreme climate events (such as typhoon waves and low-frequency offshore oscillations generated by storm surges) on seawater intrusion into coastal groundwater systems. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

26 pages, 4436 KiB  
Article
Study on Pressure Fluctuation Characteristics and Chaos Dynamic Characteristics of Two-Way Channel Irrigation Pumping Station Under the Ultra-Low Head Based on Wavelet Analysis
by Weixuan Jiao, Xiaoyuan Xi, Haotian Fan, Yang Chen, Jiantao Shen, Jinling Dou and Xuanwen Jia
AgriEngineering 2025, 7(9), 270; https://doi.org/10.3390/agriengineering7090270 - 22 Aug 2025
Abstract
Two-way channel irrigation pumping stations are widely used along rivers for irrigation and drainage. Due to fluctuating internal and external water levels, these stations often operate under ultra-low or near-zero head conditions, leading to poor hydraulic performance. This study employs computational fluid dynamics [...] Read more.
Two-way channel irrigation pumping stations are widely used along rivers for irrigation and drainage. Due to fluctuating internal and external water levels, these stations often operate under ultra-low or near-zero head conditions, leading to poor hydraulic performance. This study employs computational fluid dynamics (CFD) to investigate such systems’ pressure fluctuation and chaotic dynamic characteristics. A validated 3D model was developed, and the wavelet transform was used to perform time–frequency analysis of pressure signals. Phase space reconstruction and the Grassberger–Procaccia (G–P) algorithm were applied to evaluate chaotic behavior using the maximum Lyapunov exponent and correlation dimension. Results show that low frequencies dominate pressure fluctuations at the impeller inlet and guide vane outlet, while high-frequency components increase significantly at the intake bell mouth and outlet channel. The maximum Lyapunov exponent in the impeller and guide vane regions reaches 0.0078, indicating strong chaotic behavior, while negative values in the intake and outlet regions suggest weak or no chaos. This integrated method provides quantitative insights into the unsteady flow mechanisms, supporting improved stability and efficiency in ultra-low-head pumping systems. Full article
17 pages, 6197 KiB  
Article
Carbon, Climate, and Collapse: Coupling Climate Feedbacks and Resource Dynamics to Predict Societal Collapse
by Greta Savitsky, Grace Burnett and Brian Beckage
Systems 2025, 13(9), 727; https://doi.org/10.3390/systems13090727 - 22 Aug 2025
Abstract
Anthropogenic climate change threatens production of essential natural resources, such as food, fiber, fresh water, and provisioning of ecosystem services such as carbon sequestration, increasing the risk of societal collapse. The Human and Nature Dynamics (HANDY) model simulates the effect of resource overexploitation [...] Read more.
Anthropogenic climate change threatens production of essential natural resources, such as food, fiber, fresh water, and provisioning of ecosystem services such as carbon sequestration, increasing the risk of societal collapse. The Human and Nature Dynamics (HANDY) model simulates the effect of resource overexploitation on societal collapse but lacks representation of feedbacks between climate change and resource regeneration in ecological systems. We extend the HANDY model by integrating models of climate change and ecological function to examine the risk of societal collapse. We conducted a sensitivity analysis of our expanded model by systematically varying key parameters to examine the range of plausible socio-ecological conditions and evaluate model uncertainty. We find that lowered greenhouse gas emissions and resilient ecosystems can delay societal collapse by up to approximately 500 years, but that any scenario with greater than net-zero greenhouse gas emissions ultimately leads to societal collapse driven by climate-induced loss of ecosystem function. Reductions in greenhouse gas emissions are the most effective intervention to delay or prevent societal collapse, followed by the conservation and management of resilient ecological systems to sequester atmospheric carbon. Full article
Show Figures

Figure 1

18 pages, 4673 KiB  
Article
Effect of Iron–Carbon–Zeolite Substrate Configuration on Cadmium Removal in Vertical-Flow Constructed Wetlands
by Mengyi Li, Shiyu Chen, Jundan Chen, Naifu Zhou and Guanlong Yu
Separations 2025, 12(8), 223; https://doi.org/10.3390/separations12080223 - 21 Aug 2025
Abstract
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland [...] Read more.
The excessive emission of cadmium (Cd2+) poses a serious threat to the aquatic environment due to its high toxicity and bioaccumulation potential. This study constructed three types of vertical-subsurface-flow constructed wetlands configured with iron–carbon–zeolite composite substrates, including an iron–carbon–zeolite constructed wetland (TF-CW), a zeolite–iron–carbon constructed wetland (FT-CW), and an iron–carbon–zeolite mixed constructed wetland (H-CW), to investigate the purification performance and mechanisms of constructed wetlands for cadmium-containing wastewater (0~6 mg/L). The results demonstrated that iron–carbon–zeolite composite substrates significantly enhanced Cd2+ removal efficiency (>99%) through synergistic redox-adsorption mechanisms, where the iron–carbon substrate layer dominated Fe-Cd co-precipitation, while the zeolite layer achieved short-term cadmium retention through ion-exchange adsorption. FT-CW exhibited superior NH4+-N removal efficiency (77.66%~92.23%) compared with TF-CW (71.45%~88.05%), while iron–carbon micro-electrolysis effectively inhibited NO3-N accumulation (<0.1 mg/L). Under cadmium stress, Typha primarily accumulated cadmium through its root systems (>85%) and alleviated oxidative damage by dynamically regulating antioxidative enzyme activity, with the superoxide dismutase (SOD) peak occurring at 3 mg/L Cd2+ treatment. Microbial community analysis revealed that iron–carbon substrates promoted the relative abundance of Bacteroidota and Patescibacteria as well as the enrichment of Saccharimonadales, Thauera, and Rhodocyclaceae (genera), enhancing system stability. This study confirms that iron–carbon–zeolite CWs provide an efficient and sustainable technological pathway for heavy metal-contaminated water remediation through multidimensional mechanisms of “chemical immobilization–plant enrichment–microbial metabolism”. Full article
Show Figures

Figure 1

17 pages, 2566 KiB  
Article
Synergistic Epichlorohydrin-Crosslinked Carboxymethyl Xylan for Enhanced Thermal Stability and Filtration Control in Water-Based Drilling Fluids
by Yutong Li, Fan Zhang, Bo Wang, Jiaming Liu, Yu Wang, Zhengli Shi, Leyao Du, Kaiwen Wang, Wangyuan Zhang, Zonglun Wang and Liangbin Dou
Gels 2025, 11(8), 666; https://doi.org/10.3390/gels11080666 - 20 Aug 2025
Viewed by 90
Abstract
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design [...] Read more.
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design and synthesis of epichlorohydrin-crosslinked carboxymethyl xylan (ECX), developed through a synergistic strategy combining covalent crosslinking with hydrophilic functionalization. When incorporated into water-based drilling fluid base slurries, ECX facilitates the formation of a robust gel suspension. Comprehensive structural analyses (FT-IR, XRD, TGA/DSC) reveal that dual carboxymethylation and ether crosslinking impart a 10 °C increase in glass transition temperature and a 15% boost in crystallinity, forming a rigid–flexible three-dimensional network. ECX-modified drilling fluids demonstrate excellent colloidal stability, as evidenced by an enhancement in zeta potential from −25 mV to −52 mV, which significantly improves dispersion and interparticle electrostatic repulsion. In practical formulation (1.0 wt%), ECX achieves a 620% rise in yield point and a 71.6% reduction in fluid loss at room temperature, maintaining 70% of rheological performance and 57.5% of filtration control following dynamic aging at 150 °C. Tribological tests show friction reduction up to 68.2%, efficiently retained after thermal treatment. SEM analysis further confirms the formation of dense and uniform polymer–clay composite filter cakes, elucidating the mechanism behind its high-temperature resilience and effective sealing performance. Furthermore, ECX demonstrates high biodegradability (BOD5/COD = 21.3%) and low aquatic toxicity (EC50 = 14 mg/L), aligning with sustainable development goals. This work elucidates the correlation between molecular engineering, gel microstructure, and macroscopic function, underscoring the great potential of eco-friendly polysaccharide-based crosslinked polymers for industrial gel-based fluid design in harsh environments. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

33 pages, 25046 KiB  
Article
Urban Stadiums as Multi-Scale Cool-Island Anchors: A Remote Sensing-Based Thermal Regulation Analysis in Shanghai
by Yusheng Yang and Shuoning Tang
Remote Sens. 2025, 17(16), 2896; https://doi.org/10.3390/rs17162896 - 20 Aug 2025
Viewed by 196
Abstract
The intensification of urban heat in high-density cities has raised growing concerns for public health, infrastructural resilience, and environmental sustainability. As large-scale, multi-functional open spaces, sports stadiums play an underexplored role in shaping urban thermal patterns. This study investigates the spatial and temporal [...] Read more.
The intensification of urban heat in high-density cities has raised growing concerns for public health, infrastructural resilience, and environmental sustainability. As large-scale, multi-functional open spaces, sports stadiums play an underexplored role in shaping urban thermal patterns. This study investigates the spatial and temporal thermal characteristics of eight representative stadiums in central Shanghai and the Pudong New Area from 2018 to 2023. A dual-framework approach is proposed: the Stadium-based Urban Island Regulation (SUIR) model conceptualizes stadiums as active cooling agents across micro to macro spatial scales, while the Multi-source Thermal Cognition System (MTCS) integrates multi-sensor satellite data—Landsat, MODIS, Sentinel-1/2—with anthropogenic and ecological indicators to diagnose surface temperature dynamics. Remote sensing fusion and machine learning analyses reveal clear intra-stadium thermal heterogeneity: track zones consistently recorded the highest land surface temperatures (up to 37.5 °C), while grass fields exhibited strong cooling effects (as low as 29.8 °C). Buffer analysis shows that cooling effects were most pronounced within 300–500 m, varying with local morphology. A spatial diffusion model further demonstrates that stadiums with large, vegetated buffers or proximity to water bodies exert a broader regional cooling influence. Correlation and Random Forest regression analyses identify the building volume (r = 0.81), NDVI (r = −0.53), nighttime light intensity, and traffic density as key thermal drivers. These findings offer new insight into the role of stadiums in urban heat mitigation and provide practical implications for scale-sensitive, climate-adaptive urban planning strategies. Full article
Show Figures

Figure 1

21 pages, 2559 KiB  
Article
Calix[4]resorcinarene Amide Derivative: Thermodynamics of Cation Complexation Processes and Its Remarkable Properties for the Removal of Calcium (II) from Water
by Angela F. Danil de Namor, Ahmad Jumaa and Nawal Al Hakawati
Int. J. Mol. Sci. 2025, 26(16), 8043; https://doi.org/10.3390/ijms26168043 - 20 Aug 2025
Viewed by 138
Abstract
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN [...] Read more.
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN and CD3OD showed solvent-dependent conformational changes with a notable downfield chemical shift in the aromatic proton (H-2) in moving from deuterated methanol to acetonitrile, indicating an interaction of the solvent within the ligand cavity as suggested by molecular dynamic simulations. 1H NMR complexation in acetonitrile revealed that L forms relatively strong 1:1 complexes with cations, with selectivity for Ca(II) and, to lesser extent, with Pb(II) over other metal cations. The composition of the complexes is corroborated by conductance measurements. The thermodynamics of these systems indicate that the complexation process is predominantly enthalpy controlled in acetonitrile, while it is entropy controlled in methanol. A remarkable outcome of fundamental studies is found in its application as new material for the removal of Ca(II) from water. The capacity of L to remove Ca(II) from water is 24 mmol/g which exceeds by far the capacity of cation exchange resins. Full article
(This article belongs to the Special Issue Supramolecular Receptors for Cations and Anions)
Show Figures

Figure 1

22 pages, 2865 KiB  
Article
A Three-Dimensional Evaluation Method for the Metabolic Interaction System of Industrial CO2 and Water Pollution
by Yueqing Yang, Liangliang Wu, Xingjie Lin, Xiaosong Yang, Xuegang Gong, Yu Miao, Mengyu Zhai, Yong Niu, Mingke Luo, Xia Jiang and Jia Wang
Water 2025, 17(16), 2473; https://doi.org/10.3390/w17162473 - 20 Aug 2025
Viewed by 161
Abstract
The inherent complexity of modern supply chains obscures significant hidden CO2 and Water Pollution Equivalent (WPE) emissions, presenting mounting challenges for integrated environmental governance. While prior research has largely treated carbon and water pollution metabolic systems in isolation, this study addresses the [...] Read more.
The inherent complexity of modern supply chains obscures significant hidden CO2 and Water Pollution Equivalent (WPE) emissions, presenting mounting challenges for integrated environmental governance. While prior research has largely treated carbon and water pollution metabolic systems in isolation, this study addresses the critical gap in understanding their bidirectional interactions under socioeconomic dynamics. We develop a novel Three-Dimensional Evaluation Method for the Metabolic Interaction System of Industrial CO2 and Water Pollution (TDE-ISCW). This framework integrates Environmental Input–Output Analysis and Ecological Network Analysis to: (1) identify key industrial sectors and utility relationships within individual CO2 and WPE systems; (2) quantify the mutual disturbance responses between the CO2 and WPE metabolic systems through changes in sectoral emissions/output, inter-sectoral relationships, and sector–system linkages; and (3) propose optimized industrial restructuring strategies for synergistic pollution and carbon reduction. Applied to the highly industrialized Yangtze River Economic Belt, key findings reveal: (i) substantial upstream dependency, exemplified by Advanced Equipment Manufacturing’s 95.7% indirect CO2 emissions; (ii) distinct key sectors for CO2 (e.g., MOO, FTO, MNM) and WPE (e.g., MPM, OTH, FTO) reduction based on competitive relationships; and (iii) complex trade-offs, where emission reductions in one system (e.g., CO2 via FTO restructuring) can trigger heterogeneous responses in the other (e.g., altered WPE influence or downstream CO2/economic shifts). The TDE-ISCW framework provides actionable insights for designing coordinated, adaptive emission reduction policies that account for cascading cross-system effects, ultimately supporting regional industrial upgrading and resource efficiency goals. Future research should incorporate temporal dynamics and full industrial–metabolic cycles. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

21 pages, 8908 KiB  
Article
Spatiotemporal Heterogeneity and Zonal Adaptation Strategies for Agricultural Risks of Compound Dry and Hot Events in China’s Middle Yangtze River Basin
by Yonggang Wang, Jiaxin Wang, Daohong Gong, Mingjun Ding, Wentao Zhong, Muping Deng, Qi Kang, Yibo Ding, Yanyi Liu and Jianhua Zhang
Remote Sens. 2025, 17(16), 2892; https://doi.org/10.3390/rs17162892 - 20 Aug 2025
Viewed by 186
Abstract
Compound dry and hot events or extremes (CDHEs) have emerged as major climatic threats to agricultural production and food security in the middle reaches of the Yangtze River Basin (MRYRB), a critical grain-producing region in China. However, agricultural risks associated with CDHEs, incorporating [...] Read more.
Compound dry and hot events or extremes (CDHEs) have emerged as major climatic threats to agricultural production and food security in the middle reaches of the Yangtze River Basin (MRYRB), a critical grain-producing region in China. However, agricultural risks associated with CDHEs, incorporating both natural and socio-economic factors, remain poorly understood in this area. Using a Hazard-Exposure-Vulnerability (HEV) framework integrated with a weighting quantification method and supported by remote sensing technology and integrated geographic data, we systematically assessed the spatiotemporal dynamics of agricultural CDHE risks and corresponding crop responses in the MRYRB from 2000 to 2019. Results indicated an increasing trend in agricultural risks across the region, particularly in the Poyang Lake Plain (by 21.9%) and Jianghan Plain (by 9.9%), whereas a decreasing trend was observed in the Dongting Lake Plain (by 15.2%). Spatial autocorrelation analysis further demonstrated a significant negative relationship between gross primary production (GPP) and high agricultural risks of CDHEs, with a spatial concordance rate of 52.6%. These findings underscore the importance of incorporating CDHE risk assessments into agricultural management. To mitigate future risks, we suggest targeted adaptation strategies, including strengthening water resource management and developing multi-source irrigation systems in the Poyang Lake Plain, Dongting Lake, and the Jianghan Plain, improving hydraulic infrastructure and water source conservation capacity in northern and southwestern Hunan Province, and prioritizing regional risk-based adaptive planning to reduce agricultural losses. Our findings rectify the longstanding assumption that hydrological abundance inherently confers robust resistance to compound drought and heatwave stresses in lacustrine plains. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Figure 1

21 pages, 21776 KiB  
Article
Seismic Safety Analysis of Nuclear Power Plant Pumping Stations Using the Compact Viscous-Spring Boundary via Maximum Initial Time-Step Method
by Xunqiang Yin, Min Zhao, Weilong Yang, Junkai Zhang and Jianbo Li
Buildings 2025, 15(16), 2951; https://doi.org/10.3390/buildings15162951 - 20 Aug 2025
Viewed by 125
Abstract
Pumping station structures are widely employed to supply circulating cooling water systems in nuclear power plants (NPPs) throughout China. Investigating their seismic performance under complex heterogeneous site conditions and load scenarios is paramount to meeting nuclear safety design requirements. This study proposes and [...] Read more.
Pumping station structures are widely employed to supply circulating cooling water systems in nuclear power plants (NPPs) throughout China. Investigating their seismic performance under complex heterogeneous site conditions and load scenarios is paramount to meeting nuclear safety design requirements. This study proposes and implements a novel, efficient, and accurate viscous-spring boundary methodology within the ANSYS 19.1 finite element software to assess the seismic safety of NPP pumping station structures. The Maximum Initial Time-step (MIT) method, based on Newmark’s integration scheme, is employed for nonlinear analysis under coupled static–dynamic excitation. To account for radiation damping in the infinite foundation, a Compact Viscous-Spring (CVs) element is developed. This element aggregates stiffness and damping contributions to interface nodes defined at the outer border of the soil domain. Implementation leverages of ANSYS User Programmable Features (UPFs), and a comprehensive static–dynamic coupled analysis toolkit is developed using APDL scripting and the GUI. Validation via two examples confirms the method’s accuracy and computational efficiency. Finally, a case study applies the technique to an NPP pumping station under actual complex Chinese site conditions. The results demonstrate the method’s capability to provide objective seismic response and stability indices, enabling a more reliable assessment of seismic safety during a Safety Shutdown Earthquake (SSE). Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 1640 KiB  
Review
Advances in Water and Nitrogen Management for Intercropping Systems: Crop Growth and Soil Environment
by Yan Qiu, Zhenye Wang, Debin Sun, Yuanlan Lei, Zhangyong Li and Yi Zheng
Agronomy 2025, 15(8), 2000; https://doi.org/10.3390/agronomy15082000 - 20 Aug 2025
Viewed by 186
Abstract
Intercropping is an eco-friendly, sustainable agricultural model that significantly improves yield stability, nutrient use efficiency, and soil health through spatiotemporal niche complementarity, increases biodiversity, and improves soil health. Water and nitrogen play crucial roles in limiting and regulating efficient resource utilization and ecological [...] Read more.
Intercropping is an eco-friendly, sustainable agricultural model that significantly improves yield stability, nutrient use efficiency, and soil health through spatiotemporal niche complementarity, increases biodiversity, and improves soil health. Water and nitrogen play crucial roles in limiting and regulating efficient resource utilization and ecological sustainability in intercropping systems. Synchronizing water and nitrogen inputs to match crop demands optimizes the spatiotemporal distribution of these resources, alleviates interspecific competition, and promotes mutualistic interactions, which significantly impacts crop growth, yield, and soil environment. This paper reviews the mechanisms of intercropping and water–nitrogen coupling regulation, aligning water and nitrogen supply with crop growth patterns, spatial configuration parameters, irrigation management techniques, and environmental climate change, and explores the response mechanisms of water–nitrogen coupling on crop growth, yield, and soil environmental adaptation. It can provide some references for researchers, extension agents, and policymakers. Research indicates that water–nitrogen coupling can enhance photosynthetic efficiency, promote root development, optimize nutrient uptake, and improve soil water dynamics, nitrogen cycling, and microbial community structures. Intercropping enhances the climate resilience of agricultural systems by leveraging species complementarity for resource utilization, strengthening ecosystem stability, and improving buffering capacity against climate change impacts such as extreme precipitation and temperature fluctuations. Future studies should further elucidate the differential effect of water–nitrogen coupling across regions and climatic conditions, focusing on multidimensional integrated administration strategies. Combining precision agriculture technologies and climate change predictions facilitates the development of more adaptive water–nitrogen coupling models to provide theoretical support and technical guarantees for sustainable agriculture. Full article
Show Figures

Figure 1

22 pages, 3753 KiB  
Article
Quinolone Resistance and Zoonotic Potential of Corynebacterium ulcerans from Domestic Animals in Brazil
by Fernanda Diniz Prates, Max Roberto Batista Araújo, Jailan da Silva Sousa, Lincoln de Oliveira Sant’Anna, Tayná do Carmo Sant’Anna Cardoso, Amanda Couto Calazans Silva, Siomar de Castro Soares, Bruno Silva Andrade, Louisy Sanches dos Santos and Vasco Ariston de Carvalho Azevedo
Antibiotics 2025, 14(8), 843; https://doi.org/10.3390/antibiotics14080843 - 20 Aug 2025
Viewed by 267
Abstract
Background: Corynebacterium ulcerans is an emerging zoonotic pathogen capable of cau-sing diphtheria-like infections in humans. Objectives: we report, for the first time in Brazil, the detection and phenotypic/genomic characterization of three atoxigenic ST-339 strains isolated from domestic animals, including one with a ciprofloxacin [...] Read more.
Background: Corynebacterium ulcerans is an emerging zoonotic pathogen capable of cau-sing diphtheria-like infections in humans. Objectives: we report, for the first time in Brazil, the detection and phenotypic/genomic characterization of three atoxigenic ST-339 strains isolated from domestic animals, including one with a ciprofloxacin resistance profile linked to double GyrA mutations (S89L, D93G). Methods: species identification was performed by MALDI-TOF MS, followed by in vitro antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatic analyses to predict virulence determinants, antimicrobial resistance genes, CRISPR–Cas systems, mobile genetic elements, and in silico structural analysis as well as phylogenetic reconstruction. Results: whole-genome sequencing confirmed species identity, revealed high genetic similarity, and identified distinct phylogenetic subclades, suggesting potential international dissemination. Genomic analyses showed conserved virulence determinants, such as incomplete pilus clusters, iron acquisition systems, and the pld gene, with the absence of the tox gene. Molecular modeling and dynamics simulations indicated that GyrA mutations disrupt critical ciprofloxacin–magnesium–water interactions, reducing binding stability. Mobile genetic elements, prophages, and CRISPR–Cas systems underscored the genomic plasticity of these isolates. Conclusions: these findings document a little-studied antimicrobial resistance mechanism in zoonotic C. ulcerans, highlighting the need for strengthened surveillance and further research on virulence and resistance, even in ato-xigenic strains. Full article
(This article belongs to the Special Issue Epidemiology and Pathogenomics of the Corynebacterium Genus)
Show Figures

Figure 1

19 pages, 1127 KiB  
Article
Movable Wireless Sensor-Enabled Waterway Surveillance with Enhanced Coverage Using Multi-Layer Perceptron and Reinforced Learning
by Minsoo Kim and Hyunbum Kim
Electronics 2025, 14(16), 3295; https://doi.org/10.3390/electronics14163295 - 19 Aug 2025
Viewed by 152
Abstract
Waterway networking environments present unique challenges due to their dynamic nature, including vessel movement, water flow, and varying water quality. These challenges render traditional static surveillance systems inadequate for effective monitoring. This study proposes a novel wireless sensor-enabled surveillance and monitoring framework tailored [...] Read more.
Waterway networking environments present unique challenges due to their dynamic nature, including vessel movement, water flow, and varying water quality. These challenges render traditional static surveillance systems inadequate for effective monitoring. This study proposes a novel wireless sensor-enabled surveillance and monitoring framework tailored to waterway conditions, integrating a two-phase approach with a Movement Phase and a Deployment Phase. In the Movement Phase, a Multi-Layer Perceptron (MLP) guides sensors efficiently toward a designated target area, minimizing travel time and computational complexity. Subsequently, the Deployment Phase utilizes reinforcement learning (RL) to arrange sensors within the target area, optimizing coverage while minimizing overlap between sensing regions. By addressing the unique requirements of waterways, the proposed framework ensures both efficient sensor mobility and resource utilization. Experimental evaluations demonstrate the framework’s effectiveness in achieving high coverage and minimal overlap, with comparable performance to traditional clustering algorithms such as K-Means. The results confirm that the proposed approach achieves flexible, scalable, and computationally efficient monitoring tailored to waterway environments. Full article
(This article belongs to the Special Issue Wireless Sensor Network: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop