Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (221)

Search Parameters:
Keywords = dual-branch learning network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 768 KB  
Article
ECG Waveform Segmentation via Dual-Stream Network with Selective Context Fusion
by Yongpeng Niu, Nan Lin, Yuchen Tian, Kaipeng Tang and Baoxiang Liu
Electronics 2025, 14(19), 3925; https://doi.org/10.3390/electronics14193925 - 2 Oct 2025
Abstract
Electrocardiogram (ECG) waveform delineation is fundamental to cardiac disease diagnosis. This task requires precise localization of key fiducial points, specifically the onset, peak, and offset positions of P-waves, QRS complexes, and T-waves. Current methods exhibit significant performance degradation in noisy clinical environments (baseline [...] Read more.
Electrocardiogram (ECG) waveform delineation is fundamental to cardiac disease diagnosis. This task requires precise localization of key fiducial points, specifically the onset, peak, and offset positions of P-waves, QRS complexes, and T-waves. Current methods exhibit significant performance degradation in noisy clinical environments (baseline drift, electromyographic interference, powerline interference, etc.), compromising diagnostic reliability. To address this limitation, we introduce ECG-SCFNet: a novel dual-stream architecture employing selective context fusion. Our framework is further enhanced by a consistency training paradigm, enabling it to maintain robust waveform delineation accuracy under challenging noise conditions.The network employs a dual-stream architecture: (1) A temporal stream captures dynamic rhythmic features through sequential multi-branch convolution and temporal attention mechanisms; (2) A morphology stream combines parallel multi-scale convolution with feature pyramid integration to extract multi-scale waveform structural features through morphological attention; (3) The Selective Context Fusion (SCF) module adaptively integrates features from the temporal and morphology streams using a dual attention mechanism, which operates across both channel and spatial dimensions to selectively emphasize informative features from each stream, thereby enhancing the representation learning for accurate ECG segmentation. On the LUDB and QT datasets, ECG-SCFNet achieves high performance, with F1-scores of 97.83% and 97.80%, respectively. Crucially, it maintains robust performance under challenging noise conditions on these datasets, with 88.49% and 86.25% F1-scores, showing significantly improved noise robustness compared to other methods and demonstrating exceptional robustness and precise boundary localization for clinical ECG analysis. Full article
Show Figures

Figure 1

25 pages, 26694 KB  
Article
Research on Wind Field Correction Method Integrating Position Information and Proxy Divergence
by Jianhong Gan, Mengjia Zhang, Cen Gao, Peiyang Wei, Zhibin Li and Chunjiang Wu
Biomimetics 2025, 10(10), 651; https://doi.org/10.3390/biomimetics10100651 - 1 Oct 2025
Abstract
The accuracy of numerical model outputs strongly depends on the quality of the initial wind field, yet ground observation data are typically sparse and provide incomplete spatial coverage. More importantly, many current mainstream correction models rely on reanalysis grid datasets like ERA5 as [...] Read more.
The accuracy of numerical model outputs strongly depends on the quality of the initial wind field, yet ground observation data are typically sparse and provide incomplete spatial coverage. More importantly, many current mainstream correction models rely on reanalysis grid datasets like ERA5 as the true value, which relies on interpolation calculation, which directly affects the accuracy of the correction results. To address these issues, we propose a new deep learning model, PPWNet. The model directly uses sparse and discretely distributed observation data as the true value, which integrates observation point positions and a physical consistency term to achieve a high-precision corrected wind field. The model design is inspired by biological intelligence. First, observation point positions are encoded as input and observation values are included in the loss function. Second, a parallel dual-branch DenseInception network is employed to extract multi-scale grid features, simulating the hierarchical processing of the biological visual system. Meanwhile, PPWNet references the PointNet architecture and introduces an attention mechanism to efficiently extract features from sparse and irregular observation positions. This mechanism reflects the selective focus of cognitive functions. Furthermore, this paper incorporates physical knowledge into the model optimization process by adding a learned physical consistency term to the loss function, ensuring that the corrected results not only approximate the observations but also adhere to physical laws. Finally, hyperparameters are automatically tuned using the Bayesian TPE algorithm. Experiments demonstrate that PPWNet outperforms both traditional and existing deep learning methods. It reduces the MAE by 38.65% and the RMSE by 28.93%. The corrected wind field shows better agreement with observations in both wind speed and direction, confirming the effectiveness of incorporating position information and a physics-informed approach into deep learning-based wind field correction. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

25 pages, 7878 KB  
Article
JOTGLNet: A Guided Learning Network with Joint Offset Tracking for Multiscale Deformation Monitoring
by Jun Ni, Siyuan Bao, Xichao Liu, Sen Du, Dapeng Tao and Yibing Zhan
Remote Sens. 2025, 17(19), 3340; https://doi.org/10.3390/rs17193340 - 30 Sep 2025
Abstract
Ground deformation monitoring in mining areas is essential for hazard prevention and environmental protection. Although interferometric synthetic aperture radar (InSAR) provides detailed phase information for accurate deformation measurement, its performance is often compromised in regions experiencing rapid subsidence and strong noise, where phase [...] Read more.
Ground deformation monitoring in mining areas is essential for hazard prevention and environmental protection. Although interferometric synthetic aperture radar (InSAR) provides detailed phase information for accurate deformation measurement, its performance is often compromised in regions experiencing rapid subsidence and strong noise, where phase aliasing and coherence loss lead to significant inaccuracies. To overcome these limitations, this paper proposes JOTGLNet, a guided learning network with joint offset tracking, for multiscale deformation monitoring. This method integrates pixel offset tracking (OT), which robustly captures large-gradient displacements, with interferometric phase data that offers high sensitivity in coherent regions. A dual-path deep learning architecture was designed where the interferometric phase serves as the primary branch and OT features act as complementary information, enhancing the network’s ability to handle varying deformation rates and coherence conditions. Additionally, a novel shape perception loss combining morphological similarity measurement and error learning was introduced to improve geometric fidelity and reduce unbalanced errors across deformation regions. The model was trained on 4000 simulated samples reflecting diverse real-world scenarios and validated on 1100 test samples with a maximum deformation up to 12.6 m, achieving an average prediction error of less than 0.15 m—outperforming state-of-the-art methods whose errors exceeded 0.19 m. Additionally, experiments on five real monitoring datasets further confirmed the superiority and consistency of the proposed approach. Full article
Show Figures

Graphical abstract

29 pages, 4141 KB  
Article
Integrating Structured Time-Series Modeling and Ensemble Learning for Strategic Performance Forecasting
by Liqing Tang, Shuxin Wang, Jintian Ji, Siyuan Yin, Robail Yasrab and Chao Zhou
Algorithms 2025, 18(10), 611; https://doi.org/10.3390/a18100611 - 29 Sep 2025
Abstract
Forecasting outcomes in high-stakes competitive spectacles like the Olympic Games, World Cups, and professional league championships has grown increasingly vital, directly impacting strategic planning, resource allocation, and performance optimization across a multitude of fields. However, accurate forecasting remains challenging due to complex, nonlinear [...] Read more.
Forecasting outcomes in high-stakes competitive spectacles like the Olympic Games, World Cups, and professional league championships has grown increasingly vital, directly impacting strategic planning, resource allocation, and performance optimization across a multitude of fields. However, accurate forecasting remains challenging due to complex, nonlinear interactions inherent in high-dimensional time-series data, further complicated by socioeconomic indicators, historical influences, and host-country advantages. In this study, we propose a comprehensive forecasting framework integrating structured time-series modeling with ensemble learning. We extract key structural features via two novel indices: the Advantage Index (measuring a competitor’s dominance in specific areas) and the Herfindahl Index (quantifying performance outcome concentration). We also evaluate host-country advantage using a Difference-in-Differences (DiD) approach. Leveraging these insights, we develop a dual-branch predictive model combining an Attention-augmented Long Short-Term Memory (Attention-LSTM) network and a Random Forest classifier. Attention-LSTM captures long-term dependencies and dynamic patterns in structured temporal data, while Random Forest handles predictions for unrecognized contenders, addressing zero-inflation issues. Extensive stability and comparative analyses demonstrate that our model outperforms traditional and state-of-the-art methods, exhibiting strong resilience to input perturbations, consistent performance across multiple runs, and appropriate sensitivity to key features. Our key contributions include the development of a novel integrated forecasting framework, the introduction of two innovative structural indices for competitive dynamics analysis, and the demonstration of robust predictive performance that bridges technical innovation with practical strategic application. Finally, we transform our modeling insights into actionable strategic insights. This translation is powered by interpretable feature importance rankings and stability analysis that rigorously validate the robustness of key predictors. These insights apply across multiple dimensions—encompassing advantage assessment, resource distribution, strategic simulation, and breakthrough potential identification—providing comprehensive decision support for strategic planners and policymakers navigating competitive environments. Full article
(This article belongs to the Topic Applications of NLP, AI, and ML in Software Engineering)
Show Figures

Figure 1

25 pages, 2110 KB  
Article
A Robust Semi-Supervised Brain Tumor MRI Classification Network for Data-Constrained Clinical Environments
by Subhash Chand Gupta, Vandana Bhattacharjee, Shripal Vijayvargiya, Partha Sarathi Bishnu, Raushan Oraon and Rajendra Majhi
Diagnostics 2025, 15(19), 2485; https://doi.org/10.3390/diagnostics15192485 - 28 Sep 2025
Abstract
Background: The accurate classification of brain tumor subtypes from MRI scans is critical for timely diagnosis, yet the manual annotation of large datasets remains prohibitively labor-intensive. Method: We present SSPLNet (Semi-Supervised Pseudo-Labeling Network), a dual-branch deep learning framework that synergizes confidence-guided iterative pseudo-labelling [...] Read more.
Background: The accurate classification of brain tumor subtypes from MRI scans is critical for timely diagnosis, yet the manual annotation of large datasets remains prohibitively labor-intensive. Method: We present SSPLNet (Semi-Supervised Pseudo-Labeling Network), a dual-branch deep learning framework that synergizes confidence-guided iterative pseudo-labelling with deep feature fusion to enable robust MRI-based tumor classification in data-constrained clinical environments. SSPLNet integrates a custom convolutional neural network (CNN) and a pretrained ResNet50 model, trained semi-supervised using adaptive confidence thresholds (τ = 0.98  0.95  0.90) to iteratively refine pseudo-labels for unlabelled MRI scans. Feature representations from both branches are fused via a dense network, combining localized texture patterns with hierarchical deep features. Results: SSPLNet achieves state-of-the-art accuracy across labelled–unlabelled data splits (90:10 to 10:90), outperforming supervised baselines in extreme low-label regimes (10:90) by up to 5.34% from Custom CNN and 5.58% from ResNet50. The framework reduces annotation dependence and with 40% unlabeled data maintains 98.17% diagnostic accuracy, demonstrating its viability for scalable deployment in resource-limited healthcare settings. Conclusions: Statistical Evaluation and Robustness Analysis of SSPLNet Performance confirms that SSPLNet’s lower error rate is not due to chance. The bootstrap results also confirm that SSPLNet’s reported accuracy falls well within the 95% CI of the sampling distribution. Full article
Show Figures

Figure 1

23 pages, 3585 KB  
Article
Deep Learning for Underwater Crack Detection: Integrating Physical Models and Uncertainty-Aware Semantic Segmentation
by Wenji Ai, Zongchao Liu, Shuai Teng, Shaodi Wang and Yinghou He
Infrastructures 2025, 10(10), 255; https://doi.org/10.3390/infrastructures10100255 - 23 Sep 2025
Viewed by 97
Abstract
Underwater crack detection is critical for ensuring the safety and longevity of submerged infrastructures, yet it remains challenging due to water-induced image degradation, limited labeled data, and the poor generalization of existing models. This paper proposes a novel deep learning framework that integrates [...] Read more.
Underwater crack detection is critical for ensuring the safety and longevity of submerged infrastructures, yet it remains challenging due to water-induced image degradation, limited labeled data, and the poor generalization of existing models. This paper proposes a novel deep learning framework that integrates physical priors and uncertainty modeling to address these challenges. Our approach introduces a physics-guided enhancement module that leverages underwater light propagation models, and a dual-branch segmentation network that combines semantic and geometry-aware curvature features to precisely delineate irregular crack boundaries. Additionally, an uncertainty-aware Transformer module quantifies prediction confidence, reducing the number of overconfident errors in ambiguous regions. Experiments on a self-collected dataset demonstrate State-of-the-Art performance, achieving 81.2% mIoU and 83.9% Dice scores, with superior robustness in turbid water and uneven lighting. The proposed method introduces a novel synergy of physical priors and uncertainty-aware learning, advancing underwater infrastructure inspection beyond the current data-driven approaches. Our framework offers significant improvements in accuracy, robustness, and interpretability, particularly in challenging conditions like turbid water and non-uniform lighting. Full article
(This article belongs to the Special Issue Advances in Damage Detection for Concrete Structures)
Show Figures

Figure 1

27 pages, 4710 KB  
Article
Compound Jamming Recognition Under Low JNR Setting Based on a Dual-Branch Residual Fusion Network
by Wen Lu, Junbao Li, Feng Xie and Huanyu Liu
Sensors 2025, 25(18), 5881; https://doi.org/10.3390/s25185881 - 19 Sep 2025
Viewed by 241
Abstract
In complex electromagnetic environments, radar systems face increasing challenges from advanced jamming techniques. These challenges mainly stem from the diversity of jamming patterns, the complexity of compound jamming signals, and the difficulty of recognition under low jamming-to-noise ratio conditions. Accurate recognition of such [...] Read more.
In complex electromagnetic environments, radar systems face increasing challenges from advanced jamming techniques. These challenges mainly stem from the diversity of jamming patterns, the complexity of compound jamming signals, and the difficulty of recognition under low jamming-to-noise ratio conditions. Accurate recognition of such signals is critical for enhancing radar anti-jamming capabilities. However, traditional methods often struggle with diverse and evolving jamming patterns. To address this issue, we propose a novel deep learning-based approach for accurate and robust recognition of complex radar jamming signals. Specifically, the proposed network adopts a dual-branch architecture that concurrently processes time-domain and time–frequency-domain features of jamming signals. It further incorporates a multi-branch convolutional structure to strengthen feature extraction and applies an effective feature fusion strategy to capture subtle patterns. Simulation results demonstrate that the proposed method outperforms six representative baseline approaches in recognition accuracy and noise robustness, particularly under low jamming-to-noise ratio conditions. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

24 pages, 9770 KB  
Article
TransMambaCNN: A Spatiotemporal Transformer Network Fusing State-Space Models and CNNs for Short-Term Precipitation Forecasting
by Kai Zhang, Guojing Zhang and Xiaoying Wang
Remote Sens. 2025, 17(18), 3200; https://doi.org/10.3390/rs17183200 - 16 Sep 2025
Viewed by 264
Abstract
Deep learning for precipitation forecasting remains constrained by complex meteorological factors affecting accuracy. To address this issue, this paper proposes TransMambaCNN, which is a spatiotemporal transformer network fusing state-space models and CNNs for short-term precipitation forecasting. The core of the model employs a [...] Read more.
Deep learning for precipitation forecasting remains constrained by complex meteorological factors affecting accuracy. To address this issue, this paper proposes TransMambaCNN, which is a spatiotemporal transformer network fusing state-space models and CNNs for short-term precipitation forecasting. The core of the model employs a Convolutional State-Space Module (C-SSM), which efficiently extracts spatiotemporal features from multi-source meteorological variables by replacing the self-attention mechanism in the Vision Transformer (ViT) with an Attentive State-Space Module (ASSM) and augmenting its feature extraction capacity with integrated depthwise convolution. Its dual-branch architecture consists of a global branch, where C-SSM captures long-range dependencies and global spatiotemporal patterns, and a local branch, which leverages multi-scale convolutions based on SimVP’s Inception structure to extract fine-grained local features. The deep fusion of these dual branches significantly enhances spatiotemporal feature representation.Experiments demonstrate that in southeastern China and adjacent marine areas (period of high precipitation: April–September), TransMambaCNN achieves a 13.38% and 47.67% improvement in Threat Score (TS) over PredRNN at thresholds of ≥25 mm and ≥50 mm, respectively. In the Qinghai Sanjiangyuan region of western China (a precipitation-scarce area), TransMambaCNN’s TS score surpasses SimVP by 11.86 times at the ≥25 mm threshold. Full article
Show Figures

Figure 1

24 pages, 4503 KB  
Article
Single-Phase Ground Fault Detection Method in Three-Phase Four-Wire Distribution Systems Using Optuna-Optimized TabNet
by Xiaohua Wan, Hui Fan, Min Li and Xiaoyuan Wei
Electronics 2025, 14(18), 3659; https://doi.org/10.3390/electronics14183659 - 16 Sep 2025
Viewed by 344
Abstract
Single-phase ground (SPG) faults pose significant challenges in three-phase four-wire distribution systems due to their complex transient characteristics and the presence of multiple influencing factors. To solve the aforementioned issues, a comprehensive fault identification framework is proposed, which uses the TabNet deep learning [...] Read more.
Single-phase ground (SPG) faults pose significant challenges in three-phase four-wire distribution systems due to their complex transient characteristics and the presence of multiple influencing factors. To solve the aforementioned issues, a comprehensive fault identification framework is proposed, which uses the TabNet deep learning architecture with hyperparameters optimized by Optuna. Firstly, a 10 kV simulation model is developed in Simulink to generate a diverse fault dataset. For each simulated fault, voltage and current signals from eight channels (L1–L4 voltage and current) are collected. Secondly, multi-domain features are extracted from each channel across time, frequency, waveform, and wavelet perspectives. Then, an attention-based fusion mechanism is employed to capture cross-channel dependencies, followed by L2-norm-based feature selection to enhance generalization. Finally, the optimized TabNet model effectively classifies 24 fault categories, achieving an accuracy of 97.33%, and outperforms baseline methods including Temporal Convolutional Network (TCN), Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Capsule Network with Sparse Filtering (CNSF), and Dual-Branch CNN in terms of accuracy, macro-F1 score, and kappa coefficient. It also exhibits strong stability and fast convergence during training. These results demonstrate the robustness and interpretability of the proposed method for SPG fault detection. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

17 pages, 6650 KB  
Article
DAGMNet: Dual-Branch Attention-Pruned Graph Neural Network for Multimodal sMRI and fMRI Fusion in Autism Prediction
by Lanlan Wang, Xinyu Li, Jialu Yuan and Yinghao Chen
Biomedicines 2025, 13(9), 2168; https://doi.org/10.3390/biomedicines13092168 - 5 Sep 2025
Viewed by 424
Abstract
Background: Accurate and early diagnosis of autism spectrum disorder (ASD) is essential for timely intervention. Structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) provide complementary insights into brain structure and function. Most deep learning approaches rely on a single [...] Read more.
Background: Accurate and early diagnosis of autism spectrum disorder (ASD) is essential for timely intervention. Structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) provide complementary insights into brain structure and function. Most deep learning approaches rely on a single modality, limiting their ability to capture cross-modal relationships. Methods: We propose DAGMNet, a dual-branch attention-pruned graph neural network for ASD prediction that integrates sMRI, fMRI, and phenotypic data. The framework employs modality-specific feature extraction to preserve unique structural and functional characteristics, an attention-based cross-modal fusion module to model inter-modality complementarity, and a phenotype-pruned dynamic graph learning module with adaptive graph construction for personalized diagnosis. Results: Evaluated on the ABIDE-I dataset, DAGMNet achieves an accuracy of 91.59% and an AUC of 96.80%, outperforming several state-of-the-art baselines. To validate the method’s generalizability, we also validate it on ADNI datasets from other degenerative diseases and achieve good results. Conclusions: By effectively fusing multimodal neuroimaging and phenotypic information, DAGMNet enhances cross-modal representation learning and improves diagnostic accuracy. To further assist clinical decision making, we conduct biomarker detection analysis to provide region-level explanations of our model’s decisions. Full article
(This article belongs to the Special Issue Progress in Neurodevelopmental Disorders Research)
Show Figures

Figure 1

27 pages, 16753 KB  
Article
A 1°-Resolution Global Ionospheric TEC Modeling Method Based on a Dual-Branch Input Convolutional Neural Network
by Nian Liu, Yibin Yao and Liang Zhang
Remote Sens. 2025, 17(17), 3095; https://doi.org/10.3390/rs17173095 - 5 Sep 2025
Viewed by 950
Abstract
Total Electron Content (TEC) is a fundamental parameter characterizing the electron density distribution in the ionosphere. Traditional global TEC modeling approaches predominantly rely on mathematical methods (such as spherical harmonic function fitting), often resulting in models suffering from excessive smoothing and low accuracy. [...] Read more.
Total Electron Content (TEC) is a fundamental parameter characterizing the electron density distribution in the ionosphere. Traditional global TEC modeling approaches predominantly rely on mathematical methods (such as spherical harmonic function fitting), often resulting in models suffering from excessive smoothing and low accuracy. While the 1° high-resolution global TEC model released by MIT offers improved temporal-spatial resolution, it exhibits regions of data gaps. Existing ionospheric image completion methods frequently employ Generative Adversarial Networks (GANs), which suffer from drawbacks such as complex model structures and lengthy training times. We propose a novel high-resolution global ionospheric TEC modeling method based on a Dual-Branch Convolutional Neural Network (DB-CNN) designed for the completion and restoration of incomplete 1°-resolution ionospheric TEC images. The novel model utilizes a dual-branch input structure: the background field, generated using the International Reference Ionosphere (IRI) model TEC maps, and the observation field, consisting of global incomplete TEC maps coupled with their corresponding mask maps. An asymmetric dual-branch parallel encoder, feature fusion, and residual decoder framework enables precise reconstruction of missing regions, ultimately generating a complete global ionospheric TEC map. Experimental results demonstrate that the model achieves Root Mean Square Errors (RMSE) of 0.30 TECU and 1.65 TECU in the observed and unobserved regions, respectively, in simulated data experiments. For measured experiments, the RMSE values are 1.39 TECU and 1.93 TECU in the observed and unobserved regions. Validation results utilizing Jason-3 altimeter-measured VTEC demonstrate that the model achieves stable reconstruction performance across all four seasons and various time periods. In key-day comparisons, its STD and RMSE consistently outperform those of the CODE global ionospheric model (GIM). Furthermore, a long-term evaluation from 2021 to 2024 reveals that, compared to the CODE model, the DB-CNN achieves average reductions of 38.2% in STD and 23.5% in RMSE. This study provides a novel dual-branch input convolutional neural network-based method for constructing 1°-resolution global ionospheric products, offering significant application value for enhancing GNSS positioning accuracy and space weather monitoring capabilities. Full article
Show Figures

Figure 1

22 pages, 4125 KB  
Article
Multi-Scale Electromechanical Impedance-Based Bolt Loosening Identification Using Attention-Enhanced Parallel CNN
by Xingyu Fan, Jiaming Kong, Haoyang Wang, Kexin Huang, Tong Zhao and Lu Li
Appl. Sci. 2025, 15(17), 9715; https://doi.org/10.3390/app15179715 - 4 Sep 2025
Cited by 2 | Viewed by 480
Abstract
Bolted connections are extensively utilized in aerospace, civil, and mechanical systems for structural assembly. However, inevitable structural vibrations can induce bolt loosening, leading to preload reduction and potential structural failure. Early-stage preload degradation, particularly during initial loosening, is often undetectable by conventional monitoring [...] Read more.
Bolted connections are extensively utilized in aerospace, civil, and mechanical systems for structural assembly. However, inevitable structural vibrations can induce bolt loosening, leading to preload reduction and potential structural failure. Early-stage preload degradation, particularly during initial loosening, is often undetectable by conventional monitoring methods due to limited sensitivity and poor noise resilience. To address these limitations, this study proposes an intelligent bolt preload monitoring framework that combines electromechanical impedance (EMI) signal analysis with a parallel deep learning architecture. A multiphysics-coupled model of flange joint connections is developed to reveal the nonlinear relationships between preload degradation and changes in EMI conductance spectra, specifically resonance peak shifts and amplitude attenuation. Based on this insight, a parallel convolutional neural network (P-CNN) is designed, employing dual branches with 1 × 3 and 1 × 7 convolutional kernels to extract local and global spectral features, respectively. The architecture integrates dilated convolution to expand frequency–domain receptive fields and an enhanced SENet-based channel attention mechanism to adaptively highlight informative frequency bands. Experimental validation on a flange-bolt platform demonstrates that the proposed P-CNN achieves 99.86% classification accuracy, outperforming traditional CNNs by 20.65%. Moreover, the model maintains over 95% accuracy with only 25% of the original training samples, confirming its robustness and data efficiency. The results demonstrate the feasibility and scalability of the proposed approach for real-time, small-sample, and noise-resilient structural health monitoring of bolted connections. Full article
Show Figures

Figure 1

23 pages, 5998 KB  
Article
An Enhanced Feature Extraction and Multi-Branch Occlusion Discrimination Network for Road Detection from Satellite Imagery
by Ruixiang Wu, Lun Zhang, Longkai Guan, Xiangrong Ni and Jianxing Gong
Remote Sens. 2025, 17(17), 3037; https://doi.org/10.3390/rs17173037 - 1 Sep 2025
Viewed by 804
Abstract
Extracting road network information from satellite remote sensing images is an effective method of dealing with dynamic changes in road networks. At present, the use of deep learning methods to automatically segment road networks from remote sensing images has become mainstream. However, existing [...] Read more.
Extracting road network information from satellite remote sensing images is an effective method of dealing with dynamic changes in road networks. At present, the use of deep learning methods to automatically segment road networks from remote sensing images has become mainstream. However, existing methods often produce fragmented extraction results. This is usually caused by insufficient feature extraction and occlusion. In order to solve these problems, we propose an enhanced feature extraction and multi-branch occlusion discrimination network (EFMOD-Net) based on an encoder–decoder architecture. Firstly, a multi-directional feature extraction (MFE) module was proposed as the input for the network, which utilizes multi-directional strip convolution for feature extraction to better capture the linear features of the road. Subsequently, an enhanced feature extraction (EFE) module was designed to enhance the performance of the model in the feature extraction stage by using a dual-branch structure. The proposed multi-branch occlusion discrimination (MOD) module combines the attention mechanism and strip convolution to learn the topological relationship between pixels, enhance the network’s detection of occlusion and complex backgrounds, and reduce the generation of road debris. On the public dataset, the proposed method is compared with other SOTA methods. The experimental results show that the network designed in this paper achieves an IoU of 64.73 and 63.58 on the DeepGlobe and CHN6-CUG datasets, respectively, which is 1.66% and 1.84% higher than the IoU of performance-based methods. The proposed method combines multi-directional bar convolution and a multi-branch structure for road extraction, which provides a new idea for linear object segmentation in complex backgrounds that could be applied directly to urban renewal, disaster assessment, and other application scenarios. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

20 pages, 10980 KB  
Article
DBN: A Dual-Branch Network for Detecting Multiple Categories of Mental Disorders
by Longhao Zhang, Hongzhen Cui and Yunfeng Peng
Information 2025, 16(9), 755; https://doi.org/10.3390/info16090755 - 31 Aug 2025
Viewed by 443
Abstract
Mental disorders (MDs) constitute significant risk factors for self-harm and suicide. The incidence of MDs has been increasing annually, primarily due to inadequate diagnosis and intervention. Early identification and timely intervention can effectively slow the progression of MDs and enhance the quality of [...] Read more.
Mental disorders (MDs) constitute significant risk factors for self-harm and suicide. The incidence of MDs has been increasing annually, primarily due to inadequate diagnosis and intervention. Early identification and timely intervention can effectively slow the progression of MDs and enhance the quality of life. However, the high cost and complexity of in-hospital screening exacerbate the psychological burden on patients. Moreover, existing studies primarily focus on the identification of individual subcategories and lack attention to model explainability. These approaches fail to adequately address the complexity of clinical demands. Early screening of MDs using EEG signals and deep learning techniques has demonstrated simplicity and effectiveness. To this end, we constructed a Dual-Branch Network (DBN) leveraging resting-state Quantitative Electroencephalogram (QEEG) features. The DBN is designed to enable the detection of multiple categories of MDs. Firstly, a dual-branch feature extraction strategy was designed to capture multi-dimensional latent features. Further, we propose a Multi-Head Attention Mechanism (MHAM) that integrates dynamic routing. This architecture assigns greater weights to key elements and enhances information transmission efficiency. Finally, the diagnosis is derived from a fully connected layer. In addition, we incorporate SHAP analysis to facilitate feature attribution. This technique elucidates the contribution of significant features to MD detection and improves the transparency of model predictions. Experimental results demonstrate the effectiveness of DBN in detecting various MD categories. The performance of DBN surpasses that of traditional machine learning models. Ablation studies further validate the architectural soundness of DBN. The DBN effectively reduces screening complexity and demonstrates significant potential for clinical applications. Full article
Show Figures

Figure 1

24 pages, 17568 KB  
Article
Super-Resolved Pseudo Reference in Dual-Branch Embedding for Blind Ultra-High-Definition Image Quality Assessment
by Jiacheng Gu, Qingxu Meng, Songnan Zhao, Yifan Wang, Shaode Yu and Qiurui Sun
Electronics 2025, 14(17), 3447; https://doi.org/10.3390/electronics14173447 - 29 Aug 2025
Viewed by 458
Abstract
In the Ultra-High-Definition (UHD) domain, blind image quality assessment remains challenging due to the high dimensionality of UHD images, which exceeds the input capacity of deep learning networks. Motivated by the visual discrepancies observed between high- and low-quality images after down-sampling and Super-Resolution [...] Read more.
In the Ultra-High-Definition (UHD) domain, blind image quality assessment remains challenging due to the high dimensionality of UHD images, which exceeds the input capacity of deep learning networks. Motivated by the visual discrepancies observed between high- and low-quality images after down-sampling and Super-Resolution (SR) reconstruction, we propose a SUper-Resolved Pseudo References In Dual-branch Embedding (SURPRIDE) framework tailored for UHD image quality prediction. SURPRIDE employs one branch to capture intrinsic quality features from the original patch input and the other to encode comparative perceptual cues from the SR-reconstructed pseudo-reference. The fusion of the complementary representation, guided by a novel hybrid loss function, enhances the network’s ability to model both absolute and relational quality cues. Key components of the framework are optimized through extensive ablation studies. Experimental results demonstrate that the SURPRIDE framework achieves competitive performance on two UHD benchmarks (AIM 2024 Challenge, PLCC = 0.7755, SRCC = 0.8133, on the testing set; HRIQ, PLCC = 0.882, SRCC = 0.873). Meanwhile, its effectiveness is verified on high- and standard-definition image datasets across diverse resolutions. Future work may explore positional encoding, advanced representation learning, and adaptive multi-branch fusion to align model predictions with human perceptual judgment in real-world scenarios. Full article
Show Figures

Figure 1

Back to TopTop