JOTGLNet: A Guided Learning Network with Joint Offset Tracking for Multiscale Deformation Monitoring
Abstract
Highlights
- JOTGLNet integrates pixel offset tracking (OT) with interferometric phase for the first time, enabling comprehensive and accurate ground subsidence monitoring.
- A dual-path-guided learning network uses interferograms as the primary input and OT features as auxiliary information, enhancing robustness across various deformation scenarios.
- The integration of OT and interferometric phase provides a novel approach for precise subsidence monitoring, improving hazard prevention in mining areas.
- The dual-path network’s robustness to diverse deformation cases offers a reliable tool for real-world SAR-based monitoring under challenging conditions.
Abstract
1. Introduction
- Integration of OT and interferometric phase: We combine pixel offset tracking with interferometric phase for the first time in ground subsidence monitoring, enabling more comprehensive and accurate analysis.
- Dual-path-guided learning network: A dual-path network is proposed, where interferograms serve as the primary input and OT features are integrated as auxiliary information, enhancing the robustness to various deformation cases.
- Shape perception loss: A novel loss function is designed, consisting of morphological perception and error learning, which leverages correlation to better capture the geometric similarity between predictions and ground truth.
2. Methodology
2.1. Preliminary Deformation Inversion
2.1.1. Interferometry
2.1.2. Pixel Offset Tracking
2.2. Neural Network Structure
2.2.1. Construction of the Neural Network Structure
2.2.2. Design of Loss Function
2.3. Training Sample Generation
2.3.1. Three Kinds of Deformation
- The deformation has not reached the maximum value. This happens with small mining activities or at the beginning of mining. At this moment the deformation shape can be described with a Gaussian surface [8].
- The deformation reaches the maximum value in only one of the two important directions. This happens under a long and narrow mining condition. In this situation, the deformation is no longer a standard Gaussian surface, but a stretched Gaussian surface with a line at its bottom.
- The deformation reaches the maximum value in two directions. This happens with a mining working face with enough width and length. In this situation, the deformation is a stretched Gaussian surface with a flat bottom.
2.3.2. Three-Dimensional Deformation Projection
2.3.3. Deformation Integration
3. Experiments
3.1. Study Area and Dataset
3.2. Comparative Methods
3.2.1. Traditional Path-Following Methods
- MCF (Minimum Cost Flow): These methods address phase unwrapping as a network flow problem, finding the minimum-cost flow under constraints of phase continuity and smoothness. Variants improve efficiency or weight paths according to amplitude, closure error, or coherence [37].
- MST (Minimum Spanning Tree): These models formulate unwrapping as a minimum spanning tree problem that connects all nodes in a graph with minimal total edge weight [37].
3.2.2. Fusion Method (InSAR + OT)
- Coh.: This coherence-based InSAR-OT fusion method combines phase and OT results according to a coherence threshold [15,20]. Coherence measures the quality of interferograms; if it is below the threshold, the OT result is used; otherwise, the InSAR result is applied. In previous studies, the threshold was set to 0.5 and 0.3; in this study, we used an average value of 0.4. The coherence was estimated with a window using the method in [38]:
3.2.3. Neural Network Methods
- PUNet: This method treats phase unwrapping as a dense classification problem, predicting the wrap count at each pixel using a U-Net structure. Synthetic data with arbitrary shapes and Gaussian noise are used for training [8].
- PhaseNet 2.0: PhaseNet 2.0 is a similar solution to PUNet, only with a different network and loss function; that is, a fully convolutional DenseNet-based neural network and a new loss function that integrates residues and L1 loss [7].
- UNet: In this method, the phase unwrapping is transferred into a multiclass classification problem, and the convolutional segmentation network, i.e., UNet, is introduced to identify classes [14].
3.3. Ablation Experiment Results
3.4. Comparative Experiment Results
3.4.1. Predicted Results
3.4.2. Visualized Analysis of Prediction Results with One Large/Small Deformation Sample
3.5. Test Results in Daliuta
3.5.1. Data Description
3.5.2. Analysis of the Predicted Subsidence Curve
3.5.3. Evaluation of Prediction Performance
3.6. Efficiency and Parameter Analysis of Neural Networks
4. Discussion
4.1. Complementary Roles of Interferometric Phase and Offset Tracking
4.2. Deformation Gradients and Geohazard Interpretation
4.3. Role of Shape Perception Loss in Regional Adaptability
4.4. Practicality of Synthetic Sample Generation
4.5. Potential Extensions to Complex Geological Hazards
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-Series Algorithms, Applications, and Challenges. Geodesy Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Nagler, T.; Libert, L.; Wuite, J.; Hetzenecker, M.; Keuris, L.; Rott, H. Comprehensive ICE Sheet Wide Velocity Mapping Combining SAR Interferometry and Offset Tracking. In Proceedings of the IGARSS 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3888–3891. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent Advances in SAR Interferometry Time Series Analysis for Measuring Crustal Deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Zhu, X.X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Bamler, R. Deep Learning Meets SAR: Concepts, Models, Pitfalls, and Perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 143–172. [Google Scholar] [CrossRef]
- Zhong, H.; Tang, J.; Zhang, S. Phase Quality Map Based on Local Multi-Unwrapped Results for Two-Dimensional Phase Unwrapping. Appl. Opt. 2015, 54, 739–745. [Google Scholar] [CrossRef]
- Yin, Q.; Lin, Z.; Hu, W.; López-Martínez, C.; Ni, J.; Zhang, F. Crop Classification of Multitemporal PolSAR Based on 3-D Attention Module with ViT. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Spoorthi, G.E.; Gorthi, R.K.S.S.; Gorthi, S. PhaseNet 2.0: Phase Unwrapping of Noisy Data Based on Deep Learning Approach. IEEE Trans. Image Process. 2020, 29, 4862–4872. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, T.; Wang, Y.; Wang, R.; Ge, D. Deep Learning for the Detection and Phase Unwrapping of Mining-Induced Deformation in Large-Scale Interferograms. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Yin, W.; Chen, Q.; Feng, S.; Tao, T.; Huang, L.; Trusiak, M.; Asundi, A.; Zuo, C. Temporal Phase Unwrapping Using Deep Learning. Sci. Rep. 2019, 9, 20175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, L.; Wang, T.; Wang, X.; Du, X.; Hao, R.; Liu, J.; Liu, Y.; Zhang, J. VDE-Net: A Two-Stage Deep Learning Method for Phase Unwrapping. Opt. Express 2022, 30, 39794–39815. [Google Scholar] [CrossRef]
- Murdaca, G.; Rucci, A.; Prati, C. Deep Learning for InSAR Phase Filtering: An Optimized Framework for Phase Unwrapping. Remote Sens. 2022, 14, 4956. [Google Scholar] [CrossRef]
- Zhu, S.; Zang, Z.; Wang, X.; Wang, Y.; Wang, X.; Liu, D. Phase Unwrapping in ICF Target Interferometric Measurement via Deep Learning. Appl. Opt. 2021, 60, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, H.; Tang, Y.; Wang, C.; Gu, F. InSAR Phase Unwrapping by Deep Learning Based on Gradient Information Fusion. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, X.; Shao, J.; Luo, H.; Liang, R. Phase Unwrapping in Optical Metrology via Denoised and Convolutional Segmentation Networks. Opt. Express 2019, 27, 14903–14912. [Google Scholar] [CrossRef]
- Ma, J.; Yang, J.; Zhu, Z.; Cao, H.; Li, S.; Du, X. Decision-Making Fusion of InSAR Technology and Offset Tracking to Study the Deformation of Large Gradients in Mining Areas—Xuemiaotan Mine as an Example. Front. Earth Sci. 2022, 10, 962362. [Google Scholar] [CrossRef]
- Chen, Y.; Bruzzone, L. Self-Supervised SAR-Optical Data Fusion and Land-Cover Mapping Using Sentinel-1/-2 Images. arXiv 2021, arXiv:2103.05543. [Google Scholar] [CrossRef]
- Wang, J.; Fan, X.; Zhang, Z.; Zhang, X.; Nie, W.; Qi, Y.; Zhang, N. Spatiotemporal Mechanism-Based Spacetimeformer Network for InSAR Deformation Prediction and Identification of Retrogressive Thaw Slumps in the Chumar River Basin. Remote Sens. 2024, 16, 1891. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Gao, F. Time Series Land Subsidence Monitoring and Prediction Based on SBAS-InSAR and GeoTemporal Transformer Model. Earth Sci. Inform. 2024, 17, 5899–5911. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier Motion Estimation Using SAR Offset-Tracking Procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Chen, B.; Deng, K.; Fan, H.; Yu, Y. Combining SAR Interferometric Phase and Intensity Information for Monitoring of Large Gradient Deformation in Coal Mining Area. Eur. J. Remote Sens. 2015, 48, 701–717. [Google Scholar] [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 694–711. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic Aperture Radar Interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.; Ding, X.; Zhu, J.; Zhang, L.; Sun, Q. Pixel Offset Tracking for Large Scale Landslide Monitoring: Case Study of Baige Landslide. Remote Sens. 2014, 6, 11635–11652. [Google Scholar]
- Zheng, M.; Zhang, H.; Deng, K.; Du, S.; Wang, L. Analysis of Pre- and Post-Mine Closure Surface Deformations in Western Xuzhou Coalfield from 2006 to 2018. IEEE Access 2019, 7, 124158–124172. [Google Scholar] [CrossRef]
- Du, S.; Mallorqui, J.J.; Zhao, F. ACE-OT: Polarimetric SAR Data-Based Amplitude Contrast Enhancement Algorithm for Offset Tracking Applications. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L.; Dong, J.; Wang, C.; Liao, M. Polarimetric SAR Pixel Offset Tracking for Large-Gradient Landslide Displacement Mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102867. [Google Scholar] [CrossRef]
- Du, S.; Mallorqui, J.J.; Zhao, F. Patch-Like Reduction (PLR): A SAR Offset Tracking Amplitude Filter for Deformation Monitoring. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102976. [Google Scholar] [CrossRef]
- Huang, J.; Bai, Y.; Lei, S.; Deng, K. Time-Series SBAS Pixel Offset Tracking Method for Monitoring Three-Dimensional Deformation in a Mining Area. IEEE Access 2020, 8, 118787–118798. [Google Scholar] [CrossRef]
- Ni, J.; Xiang, D.; Lin, Z.; López-Martínez, C.; Hu, W.; Zhang, F. DNN-Based PolSAR Image Classification on Noisy Labels. IEEE J. Sel. Top. Appl. Earth Obs. 2022, 15, 3697–3713. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Hu, J.; Wang, Y.J.; Chen, G.L. InSAR-Based Model Parameter Estimation of Probability Integral Method and Its Application for Predicting Mining-Induced Horizontal and Vertical Displacements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4818–4832. [Google Scholar] [CrossRef]
- Fan, H.; Gao, X.; Yang, J.; Deng, K.; Yu, Y. Monitoring Mining Subsidence Using a Combination of Phase-Stacking and Offset-Tracking Methods. Remote Sens. 2015, 7, 9166–9183. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The Complete (3-D) Surface Displacement Field in the Epicentral Area of the 1999 Mw7.1 Hector Mine Earthquake, California, from Space Geodetic Observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, F.; Ma, F.; Yin, Q.; Xiang, D. Random Region Matting for the High-Resolution PolSAR Image Semantic Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. 2021, 14, 3040–3051. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Gens, R. Phase Unwrapping. In Proceedings of the GEOS 639 InSAR and Its Applications, Fairbanks, AK, USA, Fall 2006; University of Alaska Fairbanks: Fairbanks, AK, USA, 2006. [Google Scholar]
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence Estimation for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef]
- Amitrano, D.; Costantini, M.; Dell’Aglio, D.; Iodice, A.; Malvarosa, F.; Minati, F.; Riccio, D.; Ruello, G. Landslide Monitoring Using SAR Sub-Pixel Offset Tracking. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
Layer Name | Type | Filters | Kernel | Stride | Notes |
---|---|---|---|---|---|
input1 | Input | - | - | - | Interferogram input (H × W × 1) |
input2 | Input | - | - | - | OT_ML input (H × W × 1) |
conv_x1 | Conv2D | 64 | 5 × 5 | 1 | ReLU, same padding |
combineBlock | Conv2D+Add+BN+ReLU | 64 | 3 × 3 | 1 | Residual block |
branch1 | Conv2D (dilated) | 64 | 3 × 3 | 1 | Dilation = 6 (d) |
branch2 | Conv2D (dilated) | 64 | 3 × 3 | 1 | Dilation = 12 (2d) |
branch3 | Conv2D (dilated) | 64 | 3 × 3 | 1 | Dilation = 18 (3d) |
ASPP projection | Conv2D | 64 | 3 × 3 | 1 | Branch fusion + skip |
Pooling layers | MaxPool2D | - | 2 × 2 | 2 | Names: C1M1, C2M1, C1M2, C2M2 |
Decoder transpose | Conv2DTranspose | 64 | 5 × 5 | 2 | ReLU, name = Trans1 |
Upsample | UpSampling2D | - | - | 2 | Nearest interpolation |
final_conv | Conv2D | 1 | 5 × 5 | 1 | Linear activation, output |
LF | Sensor | Angle | Resolution | Pol. | Mode | Band | Heading |
---|---|---|---|---|---|---|---|
Airport | RS2 | 5.1 m × 4.7 m | HH | Stripmap | C | ||
Mountain | TSX | 0.23 m × 0.59 m | HH | Staring-Spot | X | ||
City | SEN1 | 14.0 m × 2.3 m | VV | IWS. | C | ||
Mine | TSX | 0.86 m × 0.91 m | HH | Spot | X |
Exp. | Channel | Loss | RMSE | |||
---|---|---|---|---|---|---|
Int. | OT | |||||
1 | ✓ | ✓ | 0.3417 | |||
2 | ✓ | ✓ | 0.5872 | |||
3 | ✓ | ✓ | ✓ | 0.2278 | ||
4 | ✓ | ✓ | ✓ | ✓ | 0.1984 | |
5 | ✓ | ✓ | ✓ | ✓ | ✓ | 0.1496 |
Max (m) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCF | MST | Coh. | PUNet | PNet | UNet | Our | MCF | MST | Coh. | PUNet | PNet | UNet | Our | |
[0, 0.6) | 0.03 | 0.03 | 0.49 | 0.07 | 0.07 | 0.03 | 0.01 | 0.03 | 0.03 | 0.62 | 0.08 | 0.08 | 0.04 | 0.01 |
[0.6, 1.2) | 0.11 | 0.11 | 0.82 | 0.06 | 0.08 | 0.03 | 0.02 | 0.11 | 0.11 | 1.05 | 0.06 | 0.09 | 0.03 | 0.02 |
[1.2, 1.8) | 0.37 | 0.43 | 0.99 | 0.07 | 0.07 | 0.03 | 0.02 | 0.43 | 0.49 | 1.17 | 0.08 | 0.07 | 0.03 | 0.02 |
[1.8, 2.4) | 0.8 | 0.81 | 1.42 | 0.24 | 0.07 | 0.04 | 0.04 | 0.93 | 0.94 | 1.63 | 0.28 | 0.07 | 0.04 | 0.04 |
[2.4, 3.0) | 1.09 | 1.04 | 1.31 | 0.38 | 0.07 | 0.05 | 0.04 | 1.27 | 1.2 | 1.51 | 0.42 | 0.07 | 0.05 | 0.04 |
[3.0, 3.6) | 1.36 | 1.26 | 1.57 | 0.5 | 0.07 | 0.09 | 0.06 | 1.57 | 1.45 | 1.81 | 0.55 | 0.07 | 0.1 | 0.06 |
[3.6, 4.2) | 1.53 | 1.45 | 1.69 | 0.52 | 0.08 | 0.05 | 0.05 | 1.85 | 1.77 | 1.98 | 0.61 | 0.08 | 0.06 | 0.05 |
[4.2, 4.8) | 1.78 | 1.7 | 1.69 | 0.64 | 0.1 | 0.13 | 0.1 | 2.17 | 2.06 | 2.02 | 0.74 | 0.1 | 0.13 | 0.1 |
[4.8, 5.4) | 2.21 | 2.15 | 1.99 | 0.75 | 0.09 | 0.16 | 0.08 | 2.62 | 2.54 | 2.34 | 0.86 | 0.09 | 0.17 | 0.08 |
[5.4, 6.0) | 2.41 | 2.34 | 2.08 | 0.77 | 0.1 | 0.22 | 0.08 | 2.9 | 2.82 | 2.48 | 0.88 | 0.1 | 0.23 | 0.08 |
[6.0, 6.6) | 2.62 | 2.55 | 2.19 | 0.65 | 0.13 | 0.26 | 0.1 | 3.19 | 3.08 | 2.68 | 0.77 | 0.14 | 0.27 | 0.1 |
[6.6, 7.2) | 2.92 | 2.84 | 2.39 | 0.61 | 0.15 | 0.23 | 0.14 | 3.52 | 3.43 | 2.9 | 0.71 | 0.16 | 0.24 | 0.15 |
[7.2, 7.8) | 3.24 | 3.19 | 2.54 | 0.55 | 0.23 | 0.22 | 0.15 | 3.91 | 3.84 | 3.04 | 0.65 | 0.25 | 0.23 | 0.16 |
[7.8, 8.4) | 3.52 | 3.4 | 2.68 | 0.48 | 0.19 | 0.19 | 0.14 | 4.22 | 4.06 | 3.21 | 0.56 | 0.2 | 0.21 | 0.15 |
[8.4, 9.0) | 4.01 | 3.92 | 3.07 | 0.51 | 0.22 | 0.25 | 0.14 | 4.67 | 4.57 | 3.61 | 0.58 | 0.23 | 0.26 | 0.16 |
[9.0, 9.6) | 4.14 | 4.05 | 3.23 | 0.55 | 0.24 | 0.34 | 0.15 | 4.92 | 4.81 | 3.89 | 0.61 | 0.26 | 0.35 | 0.16 |
[9.6, 10.2) | 4.38 | 4.29 | 3.41 | 0.63 | 0.22 | 0.27 | 0.16 | 5.24 | 5.14 | 4.07 | 0.72 | 0.25 | 0.3 | 0.17 |
[10.2, 10.8) | 4.72 | 4.62 | 3.51 | 0.77 | 0.33 | 0.4 | 0.17 | 5.6 | 5.48 | 4.2 | 0.87 | 0.36 | 0.43 | 0.18 |
[10.8, 11.4) | 4.83 | 4.77 | 3.54 | 0.93 | 0.45 | 0.53 | 0.31 | 5.82 | 5.75 | 4.33 | 1.06 | 0.49 | 0.58 | 0.33 |
[11.4, 12.0) | 4.99 | 4.95 | 3.84 | 1.05 | 0.49 | 0.66 | 0.34 | 6.09 | 6.04 | 4.73 | 1.21 | 0.55 | 0.73 | 0.36 |
[12.0, 12.6) | 5.46 | 5.41 | 4.02 | 1.32 | 0.63 | 0.92 | 0.51 | 6.57 | 6.49 | 4.89 | 1.51 | 0.7 | 1.02 | 0.55 |
AvE | 2.69 | 2.63 | 2.31 | 0.57 | 0.19 | 0.24 | 0.13 | 3.22 | 3.15 | 2.77 | 0.66 | 0.21 | 0.26 | 0.14 |
OaE | 2.98 | 2.92 | 2.4 | 0.6 | 0.21 | 0.27 | 0.15 | 3.57 | 3.49 | 2.88 | 0.69 | 0.23 | 0.3 | 0.16 |
Metric | Data | MCF | MST | Coh. | PNet | PUNet | UNet | Ours |
---|---|---|---|---|---|---|---|---|
RMSE (m) ↓ | Data1 | 0.5066 | 0.5221 | 0.5139 | 0.1085 | 0.1416 | 0.1610 | 0.0745 |
Data2 | 0.9167 | 0.8864 | 0.9162 | 0.2155 | 0.1395 | 0.1272 | 0.1942 | |
Data3 | 1.1739 | 1.2434 | 1.1654 | 0.2963 | 0.8072 | 0.2118 | 0.2536 | |
Data4 | 2.3864 | 2.4315 | 2.3743 | 0.3678 | 0.3756 | 0.4441 | 0.3537 | |
Data5 | 2.4323 | 2.3212 | 2.3961 | 0.3798 | 0.5981 | 0.4286 | 0.3725 | |
Avg. | 1.4832 | 1.4809 | 1.4732 | 0.2736 | 0.4124 | 0.2745 | 0.2497 | |
MAE (m) ↓ | Data1 | 0.1581 | 0.1531 | 0.1491 | 0.0582 | 0.0706 | 0.0744 | 0.0469 |
Data2 | 0.3403 | 0.3704 | 0.3337 | 0.1048 | 0.0698 | 0.0730 | 0.0774 | |
Data3 | 0.4931 | 0.6277 | 0.4764 | 0.1371 | 0.4072 | 0.0942 | 0.1034 | |
Data4 | 1.8703 | 1.9217 | 1.8532 | 0.2537 | 0.2625 | 0.2835 | 0.2392 | |
Data5 | 1.9229 | 1.7999 | 1.8818 | 0.2658 | 0.3980 | 0.2786 | 0.2527 | |
Avg. | 0.9569 | 0.9745 | 0.9388 | 0.1639 | 0.2416 | 0.1608 | 0.1439 | |
Bias (m) | Data1 | 0.1534 | 0.1330 | 0.1457 | −0.0019 | −0.0163 | −0.0163 | 0.0186 |
Data2 | 0.3244 | 0.2272 | 0.3104 | 0.0516 | 0.0261 | 0.0301 | 0.0578 | |
Data3 | 0.4900 | 0.6270 | 0.4603 | 0.0766 | 0.2239 | 0.0658 | 0.0726 | |
Data4 | 1.8696 | 1.9216 | 1.8530 | 0.1380 | −0.0464 | 0.1715 | 0.0836 | |
Data5 | 1.9209 | 1.7909 | 1.8818 | 0.1603 | 0.3472 | 0.1923 | 0.1162 | |
Avg. | 0.9517 | 0.9399 | 0.9302 | 0.0849 | 0.1069 | 0.0887 | 0.0697 | |
CC ↑ | Data1 | 0.3949 | −0.3454 | 0.0568 | 0.9775 | 0.9747 | 0.9712 | 0.9894 |
Data2 | 0.2336 | 0.1635 | 0.0431 | 0.9855 | 0.9876 | 0.9951 | 0.9803 | |
Data3 | 0.3100 | 0.0002 | 0.1974 | 0.9778 | 0.8811 | 0.9876 | 0.9781 | |
Data4 | 0.3268 | −0.0052 | 0.6684 | 0.9747 | 0.9730 | 0.9616 | 0.9730 | |
Data5 | −0.0796 | 0.3654 | 0.6794 | 0.9738 | 0.9477 | 0.9665 | 0.9713 | |
Avg. | 0.2372 | 0.0357 | 0.3290 | 0.9778 | 0.9528 | 0.9764 | 0.9784 | |
MAPE (%) ↓ | Data1 | 102.97 | 115.61 | 72.496 | 120.10 | 97.732 | 91.049 | 74.045 |
Data2 | 131.16 | 445.30 | 118.03 | 179.85 | 114.66 | 122.01 | 96.588 | |
Data3 | 273.06 | 1553.30 | 213.55 | 256.31 | 656.64 | 169.44 | 174.52 | |
Data4 | 100.91 | 122.77 | 92.601 | 33.325 | 37.790 | 31.001 | 32.170 | |
Data5 | 105.93 | 82.627 | 94.198 | 30.404 | 48.403 | 31.065 | 32.863 | |
Avg. | 142.81 | 463.92 | 118.18 | 124.00 | 191.04 | 88.912 | 82.036 |
Method | PUNet | PNet | UNet | Our |
---|---|---|---|---|
Memory (MB) | 25.8 | 332.7 | 340.6 | 58.7 |
Params. | 2,189,697 | 28,979,881 | 29,738,209 | 5,059,841 |
FLOPs (G) | 447.551 | 95.257 | 173.190 | 117.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.; Bao, S.; Liu, X.; Du, S.; Tao, D.; Zhan, Y. JOTGLNet: A Guided Learning Network with Joint Offset Tracking for Multiscale Deformation Monitoring. Remote Sens. 2025, 17, 3340. https://doi.org/10.3390/rs17193340
Ni J, Bao S, Liu X, Du S, Tao D, Zhan Y. JOTGLNet: A Guided Learning Network with Joint Offset Tracking for Multiscale Deformation Monitoring. Remote Sensing. 2025; 17(19):3340. https://doi.org/10.3390/rs17193340
Chicago/Turabian StyleNi, Jun, Siyuan Bao, Xichao Liu, Sen Du, Dapeng Tao, and Yibing Zhan. 2025. "JOTGLNet: A Guided Learning Network with Joint Offset Tracking for Multiscale Deformation Monitoring" Remote Sensing 17, no. 19: 3340. https://doi.org/10.3390/rs17193340
APA StyleNi, J., Bao, S., Liu, X., Du, S., Tao, D., & Zhan, Y. (2025). JOTGLNet: A Guided Learning Network with Joint Offset Tracking for Multiscale Deformation Monitoring. Remote Sensing, 17(19), 3340. https://doi.org/10.3390/rs17193340