Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (125)

Search Parameters:
Keywords = dry ball milling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 583 KB  
Proceeding Paper
Characterization of Pressureless Sintering of ZTA Ceramic
by Abdul Rafay, Owais ur Rehman Shah and Naseem Ahmad
Eng. Proc. 2025, 111(1), 20; https://doi.org/10.3390/engproc2025111020 - 24 Oct 2025
Viewed by 279
Abstract
Zirconia, also known as zirconium dioxide ZrO2, is well known for its good mechanical properties, like its inertness, good wear resistance, high temperature resistance and good strength. To enhance the mechanical properties of many materials, a technique known as transformation toughening [...] Read more.
Zirconia, also known as zirconium dioxide ZrO2, is well known for its good mechanical properties, like its inertness, good wear resistance, high temperature resistance and good strength. To enhance the mechanical properties of many materials, a technique known as transformation toughening is widely used today. This research focuses on achieving an optimized composition of zirconia and alumina Al2O3 to achieve zirconia-toughened alumina ZTA with a maximum density and other mechanical properties using a cost-effective and time-efficient approach. Doing so will make it possible to make more and more use of this valuable ceramic. The curing of zirconia and alumina samples with 3d—printing resins in silicone dies was performed so that we could obtain the optimum ratio of the resin and ZTA powder that would produce the most desirable results and properties. For 3d printing, ZTA samples with 19% zirconia ZrO2 were used with alumina at two different temperatures (i.e., Sample 1, consisting of three pellets weighing 5–6 g, was sintered at 1500 °C, and Sample 2, also containing three pellets weighing 5 g (approx.), was sintered at 1600 °C). The green-state preparation of these samples (Sample 1 and Sample 2) was performed using milling media of WC balls/ethanol and a milling ratio of 1:3, and a milling time of 4 h 100 rpm was used while drying at 80 °C for 5.5 h. The relative density (70%) and Vickers hardness (14–17 GPa) were obtained for Al2O3/ZrO2/MgO samples. Mechanical properties like hardness and strength strongly depend on the holding time, the rate of the temperature increase while sintering and the sintering temperature itself. Full article
Show Figures

Figure 1

20 pages, 4461 KB  
Article
Mechanosynthesis of SbSI Targets for Pulsed Electron Deposition of Ferro-Photovoltaic Thin Films
by Michele Casappa, Elena Del Canale, Davide Delmonte, Francesco Pattini, Giulia Spaggiari, Anna Moliterni, Cinzia Giannini, Andrea Aroldi, Edgardo Ademar Saucedo Silva, Alejandro Navarro, Davide Calestani, Giovanna Trevisi, Marzio Rancan, Lidia Armelao, Matteo Bronzoni, Edmondo Gilioli and Stefano Rampino
Coatings 2025, 15(10), 1232; https://doi.org/10.3390/coatings15101232 - 21 Oct 2025
Viewed by 498
Abstract
A solvent-free, solid-state mechanochemical method was developed to synthesize the chalcohalide compound SbSI at room temperature. Dry high-energy planetary ball milling of elemental antimony, sulfur, and iodine produced a pure, stoichiometric polycrystalline SbSI powder with an orthorhombic structure. This powder was then sintered [...] Read more.
A solvent-free, solid-state mechanochemical method was developed to synthesize the chalcohalide compound SbSI at room temperature. Dry high-energy planetary ball milling of elemental antimony, sulfur, and iodine produced a pure, stoichiometric polycrystalline SbSI powder with an orthorhombic structure. This powder was then sintered under mild thermal conditions to create dense targets. Amorphous SbSI thin films were subsequently deposited from these targets at room temperature using Pulsed Electron Deposition. The films maintained the correct stoichiometry and exhibited an optical bandgap of 1.89 eV. Post-deposition annealing at 90 °C in air successfully induced crystallization, demonstrating a viable, low-temperature, and eco-friendly route to produce polycrystalline SbSI thin films. This scalable approach has promising potential for optoelectronic and energy-harvesting applications. Full article
Show Figures

Figure 1

24 pages, 4333 KB  
Article
Development of Co-Amorphous Systems for Inhalation Therapy—Part 2: In Silico Guided Co-Amorphous Rifampicin–Moxifloxacin and –Ethambutol Formulations
by Eleonore Fröhlich, Noon Sharafeldin, Valerie Reinisch, Nila Mohsenzada, Stefan Mitsche, Hartmuth Schröttner and Sarah Zellnitz-Neugebauer
Pharmaceutics 2025, 17(10), 1339; https://doi.org/10.3390/pharmaceutics17101339 - 16 Oct 2025
Viewed by 526
Abstract
Background/Objectives: Tuberculosis (TB) remains a global health challenge due to long treatment durations, poor adherence, and growing drug resistance. Inhalable co-amorphous systems (COAMS) offer a promising strategy for targeted pulmonary delivery of fixed-dose combinations, improving efficacy and reducing systemic side effects. Methods: [...] Read more.
Background/Objectives: Tuberculosis (TB) remains a global health challenge due to long treatment durations, poor adherence, and growing drug resistance. Inhalable co-amorphous systems (COAMS) offer a promising strategy for targeted pulmonary delivery of fixed-dose combinations, improving efficacy and reducing systemic side effects. Methods: Our in-house-developed machine learning (ML) tool identified two promising API-API combinations for TB therapy, rifampicin (RIF)–moxifloxacin (MOX) and RIF–ethambutol (ETH). Physiologically based pharmacokinetic (PBPK) modeling was used to estimate therapeutic lung doses of RIF, ETH, and MOX following oral administration. Predicted lung doses were translated into molar ratios, and COAMS of RIF-ETH and RIF-MOX at both model-predicted (1:1) and PBPK-informed ratios were prepared by spray drying and co-milling, followed by comprehensive physicochemical and aerodynamic characterization. Results: RIF-MOX COAMS could be prepared in all molar ratios tested, whereas RIF-ETH failed to result in COAMS for therapeutically relevant molar ratios. Spray drying and ball milling successfully produced stable RIF-MOX formulations, with spray drying showing superior behavior in terms of morphology (narrow particle size distribution; lower Sauter mean diameter), aerosolization performance (fine particle fraction above 74% for RIF and MOX), and dissolution. Conclusions: This study demonstrated that PBPK modeling and ML are useful tools to develop COAMS for pulmonary delivery of active pharmaceutical ingredients (APIs) routinely applied through the oral route. It was also observed that COAMS may be less effective when the therapeutic lung dose ratio significantly deviates from the predicted 1:1 molar ratio. This suggests the need for alternative delivery strategies in such cases. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Graphical abstract

17 pages, 9077 KB  
Article
Microstructure and Wear Resistance of Plasma-Sprayed Al2O3-TiO2-CeO2/YSZ Composite Coatings
by Sijie Li, Junsheng Meng, Baisen Chen, Zhifu Xu, Bei Jiang and Xiaoping Shi
Coatings 2025, 15(10), 1164; https://doi.org/10.3390/coatings15101164 - 5 Oct 2025
Viewed by 654
Abstract
Yttria-stabilized zirconia(YSZ) was introduced into the Al2O3-TiO2-CeO2 coating prepared by plasma spraying to improve the wear resistance of the coating and prolong the service life of the weathering steel. The nano-agglomerated powder was prepared by mechanical [...] Read more.
Yttria-stabilized zirconia(YSZ) was introduced into the Al2O3-TiO2-CeO2 coating prepared by plasma spraying to improve the wear resistance of the coating and prolong the service life of the weathering steel. The nano-agglomerated powder was prepared by mechanical ball milling and spray-drying technology, powder was sprayed on the surface of Q355 steel substrate by atmospheric plasma sparing (APS), the Al2O3-TiO2-CeO2/YSZ composite coating was prepared, and the effects of YSZ on the phase, microstructure, and tribological properties of the composite coating were studied. The results show that nano-agglomerated powders with micron size (average size 55 μm) can be prepared by spray-drying technology, and after high-temperature sintering, the nano-agglomerated powders are denser and form the α-Al2O3 phase. The composite coating prepared by plasma spraying has a bimodal structure, and after adding YSZ, the phases in the coating are mainly α-Al2O3, γ-Al2O3, and t-ZrO2, the grain size is fine, and the porosity is reduced. The specific wear rate is only 4.4 × 10−5 mm3 N−1·m−1, the relative wear resistance is 6.3 times higher than that of the substrate, and the wear mechanism of the coating is mainly slight adhesive wear and abrasive wear, which shows excellent friction and wear properties at room temperature. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

15 pages, 2425 KB  
Article
Promising Pre-Lithiation Agent Li2C2O4@KB for High-Performance NCM622 Cell
by Boqun Xia, Guangwan Zhang, Feng Tao and Meng Huang
Materials 2025, 18(19), 4467; https://doi.org/10.3390/ma18194467 - 25 Sep 2025
Viewed by 678
Abstract
In conventional lithium-ion batteries (LIBs), active lithium loss during solid electrolyte interphase (SEI) formation reduces coulombic efficiency and energy density. Cathode pre-lithiation can effectively compensate for this irreversible lithium consumption. To address limitations of conventional pre-lithiation agents—such as complex synthesis and air instability—a [...] Read more.
In conventional lithium-ion batteries (LIBs), active lithium loss during solid electrolyte interphase (SEI) formation reduces coulombic efficiency and energy density. Cathode pre-lithiation can effectively compensate for this irreversible lithium consumption. To address limitations of conventional pre-lithiation agents—such as complex synthesis and air instability—a Ketjen black-coated lithium oxalate nanocomposite (Li2C2O4@KB) using high-energy ball milling and spray drying was developed. This composite leverages the advantages of Li2C2O4, including a mild decomposition potential (4.26 V vs. Li+/Li), high theoretical lithium compensation capacity (525 mAh·g−1), and environmentally benign decomposition products, and significantly improves electronic conductivity and reduces particle size. When incorporated in NCM622 full cells, the initial capacity is increased by 18.21 mAh·g−1 at 0.3 C, with a 29.22% enhancement in capacity retention after 50 cycles at 0.3 C. At 1 C, the initial capacity is higher by 15.79 mAh·g−1, accompanied with a 7.72% improvement in retention after 100 cycles. The Li2C2O4@KB composite exhibits great promise as a practical and efficient cathode pre-lithiation additive for next-generation high-energy-density LIBs. Full article
Show Figures

Figure 1

18 pages, 6816 KB  
Article
Development of Graphene/Recycled Carbon Fiber-Reinforced PLA Composites for MEX Printing and Dry Machinability Analysis
by Abdullah Yahia AlFaify, Mustafa Saleh, Saqib Anwar, Abdulrahman M. Al-Ahmari and Abd Elaty E. AbdElgawad
Polymers 2025, 17(17), 2372; https://doi.org/10.3390/polym17172372 - 31 Aug 2025
Viewed by 1300
Abstract
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high [...] Read more.
Material extrusion (MEX) is an additive manufacturing process used for 3D printing thermoplastic-based polymers, including single polymers, blends, and reinforced polymer composites (RPCs). RPCs are highly valued in various industries for their exceptional properties. The surface finish of RPC MEX-printed parts is high due to the process-related layering nature and the materials’ properties. This study explores RPC development for MEX printing and the potential of dry milling post-processing to enhance the MEX-printed part’s surface quality. RPC MEX filaments were developed by incorporating graphene nanoplatelets (GNPs) and/or recycled-carbon fibers (rCFs) into a polylactic acid (PLA) matrix. The filaments, including pure PLA and various GNPs-PLA composites, rCF-PLA, and rCF-GNPs-PLA, were developed through ball mill mixing and melt extrusion. Tensile tests were performed to assess the mechanical properties of the developed materials. Dry milling post-processing was carried out to assess the machinability, with the aim of enhancing the MEX-printed part’s surface quality. The results revealed that adding GNPs into PLA showed no considerable enhancements in the tensile properties of the fabricated RPCs, which is contrary to several existing studies. Dry milling showed an enhanced surface quality of MEX-printed parts in terms of surface roughness (Sa and Sz) and the absence of defects such as delamination and layer lines. Adding GNPs into PLA facilitated the dry machining of PLA, resulting in reduced surface asperities compared to pure PLA. Also, there was no observation of pulled-out, realigned, or naked rCFs, which indicates good machinability. Adding GNPs also suppressed the formation of voids around the rCFs during the dry milling. This study provides insights into machining 3D-printed polymer composites to enhance their surface quality. Full article
Show Figures

Figure 1

24 pages, 5982 KB  
Article
Study on Friction and Wear Performance of Bionic Function Surface in High-Speed Ball Milling
by Youzheng Cui, Xinmiao Li, Minli Zheng, Haijing Mu, Chengxin Liu, Dongyang Wang, Bingyang Yan, Qingwei Li, Fengjuan Wang and Qingming Hu
Machines 2025, 13(7), 597; https://doi.org/10.3390/machines13070597 - 10 Jul 2025
Viewed by 878
Abstract
During the service life of automotive panel stamping dies, the surface is often subjected to high loads and repeated friction, resulting in excessive wear. This leads to die failure, reduced machining accuracy, and decreased production efficiency. To enhance the anti-friction and wear-resistant performance [...] Read more.
During the service life of automotive panel stamping dies, the surface is often subjected to high loads and repeated friction, resulting in excessive wear. This leads to die failure, reduced machining accuracy, and decreased production efficiency. To enhance the anti-friction and wear-resistant performance of die steel surfaces, this study introduces the concept of biomimetic engineering in surface science. By mimicking microstructural configurations found in nature with outstanding wear resistance, biomimetic functional surfaces were designed and fabricated. Specifically, quadrilateral dimples inspired by the back of dung beetles, pentagonal scales from armadillo skin, and hexagonal scales from the belly of desert vipers were selected as biological prototypes. These surface textures were fabricated on Cr12MoV die steel using high-speed ball-end milling. Finite element simulations and dry sliding wear tests were conducted to systematically investigate the tribological behavior of surfaces with different dimple geometries. The results showed that the quadrilateral dimple surface derived from the dung beetle exhibited the best performance in reducing friction and wear. Furthermore, the milling parameters for this surface were optimized using response surface methodology. After optimization, the friction coefficient was reduced by 21.3%, and the wear volume decreased by 38.6% compared to a smooth surface. This study confirms the feasibility of fabricating biomimetic functional surfaces via high-speed ball-end milling and establishes an integrated surface engineering approach combining biomimetic design, efficient manufacturing, and parameter optimization. The results provide both theoretical and methodological support for improving the service life and surface performance of large automotive panel dies. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

22 pages, 2047 KB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Cited by 1 | Viewed by 781
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

17 pages, 1668 KB  
Article
Evaluation of 3D-Printed Balls with Photopolymer Resin as Grinding Medium Used to Alternatively Reduce Warmup During Dry Milling
by Bence Borbás, Zsófia Kohod, Nikolett Kállai-Szabó, Bálint Basa, Miléna Lengyel, Romána Zelkó and István Antal
Polymers 2025, 17(13), 1795; https://doi.org/10.3390/polym17131795 - 27 Jun 2025
Cited by 1 | Viewed by 637
Abstract
This study investigates the applicability and advantages of using additive manufacturing to moderate heat generation in dry milling. Grinding medium balls of different sizes were designed and fabricated using computer-aided design (CAD) and a stereolithographic 3D printer. Milling processes with particle size distribution [...] Read more.
This study investigates the applicability and advantages of using additive manufacturing to moderate heat generation in dry milling. Grinding medium balls of different sizes were designed and fabricated using computer-aided design (CAD) and a stereolithographic 3D printer. Milling processes with particle size distribution and warmup measurements were employed with the printed medium balls. The results were compared with the measurements executed with conventional stainless-steel balls. Differential scanning calorimetry (DSC) was employed to evaluate the effect of the warmup of the system during the milling process. A two-variable, three-level experimental design was used for the measurements. We selected two grinding parameters considered critical: speed and time. The effect of these two independent variables on heating was examined. The results show that if printed balls are applied with the same total mass as that of metal balls, the particle size reduction is increased. The greater the number of balls used, the greater the particle size reduction. In this process, where additively manufactured milling bodies were used, the temperature of the system increased by less than when stainless-steel balls were used. The use of 3D-printed medium balls demonstrated beneficial warmup behavior. Full article
(This article belongs to the Special Issue Applications of 3D Printing for Polymers, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 2518 KB  
Article
Evaluation of the Physical and Mechanical Properties of Handmade Paints with Inorganic Pigments from Cusco According to American Society for Testing and Materials’ Standards for Architectural Applications
by Carlos Guillermo Vargas Febres, Ana Torres Barchino, Juan Serra Lluch and Edwin Roberto Gudiel Rodríguez
Architecture 2025, 5(2), 35; https://doi.org/10.3390/architecture5020035 - 29 May 2025
Cited by 1 | Viewed by 1337
Abstract
The artisanal production of paints using inorganic pigments from the Cusco Valley is considered a sustainable alternative to the use of synthetic industrial paints. This approach not only helps reduce the environmental footprint associated with the use of volatile organic compounds (VOCs) but [...] Read more.
The artisanal production of paints using inorganic pigments from the Cusco Valley is considered a sustainable alternative to the use of synthetic industrial paints. This approach not only helps reduce the environmental footprint associated with the use of volatile organic compounds (VOCs) but also utilizes local materials. The present study evaluates the physical and mechanical properties of paints obtained from natural pigments through standardized tests based on the American ASTM standards, focusing on adhesion (ASTM D-3359), drying time (ASTM D-1640), surface hardness (ASTM D-3363), and the performance of the paints when exposed to the environmental factors of Cusco (under real conditions). In this regard, the pigments were extracted from traditional quarries and processed through the sedimentation method (MS) and ball milling (MG). The produced paints were formulated with the addition of polyvinyl acetate (PVA) as a binder and water as a solvent and were applied to standardized panels. The results show that all samples meet the requirements of the technical parameters, demonstrating good adhesion, appropriate drying times, and acceptable hardness for architectural coatings, Chromatic variations (ΔE*) were recorded depending on the processing method and the level of environmental exposure, with paints containing ground pigments (MG) being more resistant to fading. This study concludes that these artisanal formulations represent a technically viable and culturally relevant alternative to industrial coatings, especially in contexts of heritage restoration or sustainable architecture. Full article
Show Figures

Figure 1

13 pages, 1401 KB  
Article
Design of a Knife Mill with a Drying Adaptation for Lignocellulose Biomass Milling: Peapods and Coffee Cherry
by Paula Andrea Ramírez Cabrera, Alejandra Sophia Lozano Pérez and Carlos Alberto Guerrero Fajardo
Designs 2025, 9(3), 57; https://doi.org/10.3390/designs9030057 - 4 May 2025
Cited by 1 | Viewed by 1287
Abstract
Effective grinding of residual agricultural materials helps to improve yield in the production of chemical compounds through hydrothermal technology. Milling pretreatment has different types of pre-treatment where ball mills, roller mills, and finally, the knife mill stand out. The knife mill being a [...] Read more.
Effective grinding of residual agricultural materials helps to improve yield in the production of chemical compounds through hydrothermal technology. Milling pretreatment has different types of pre-treatment where ball mills, roller mills, and finally, the knife mill stand out. The knife mill being a mill with continuous processing, its multiple benefits and contributions highlight the knife milling process; however, it is a process that is generally carried out with dry biomass that generates extra processing of the biomass before grinding, implying longer times and wear than other equipment. This work presents the design of a knife mill with an adaptation of free convection drying as a joint process of knife milling and drying. The design is based on lignocellulosic biomass, and the knife milling results are presented for two biomasses: peapods and coffee cherries. The knife mill is designed with a motor, a housing with an integrated drive system, followed by a knife system and a feeding system with a housing and finally the free convection drying system achieving particle sizes in these biomasses smaller than 30 mm, depending on the time processed. The data demonstrate the significant impact of particle size on the yields of various platform chemicals obtained from coffee cherry and peapod waste biomass. For coffee cherry biomass, smaller particle sizes, especially 0.5 mm, result in higher total yields compared to larger sizes while for peapod biomass at the smallest particle size of 0.5 mm, the total yield is the highest, at 45.13%, with notable contributions from sugar (15.63%) and formic acid (19.14%). Full article
Show Figures

Figure 1

15 pages, 2176 KB  
Article
A Promising Monolithic Catalyst for Advanced VOCs Oxidation by Graphene-Doped α-MnO2 Loaded on Cordierite Honeycomb
by Yilin Dong, Yiyang Zhao, Jing Sun, Yafang Shen, Xiqiang Zhao, Wenlong Wang, Zhanlong Song and Yanpeng Mao
Catalysts 2025, 15(4), 321; https://doi.org/10.3390/catal15040321 - 27 Mar 2025
Cited by 3 | Viewed by 1254
Abstract
A high-activity, low-cost, and easy-to-prepare monolithic catalyst is crucial for the industrial catalytic combustion of volatile organic compounds (VOCs) in a cost-effective manner. In this study, a highly efficient monolithic catalyst, designated as 4GM/COR, was developed by loading 4% graphene-doped α-MnO2 (4GM) [...] Read more.
A high-activity, low-cost, and easy-to-prepare monolithic catalyst is crucial for the industrial catalytic combustion of volatile organic compounds (VOCs) in a cost-effective manner. In this study, a highly efficient monolithic catalyst, designated as 4GM/COR, was developed by loading 4% graphene-doped α-MnO2 (4GM) catalyst onto pre-etched cordierite (COR) blocks using a straightforward “ball-milling-assisted impregnation” method. The anchoring force of the cordierite pores, generated through oxalic acid etching, enables the uniform and robust loading of powdered 4GM onto COR, preventing detachment under high temperatures or high gas flow rates. The loading rate, specific surface area, and concentrations of Mn3+ and surface-lattice and absorbed oxygen species in the monolithic catalyst increase with impregnation times from 2 to 4, indicating that catalytic activity is optimized through repeated impregnation. Catalytic performance tests demonstrated that the 4-4GM/COR exhibited the highest activity, achieving 90% degradation of toluene at 200 °C under both dry and humid (relative humidity is 85%) conditions. Furthermore, the 4-4GM/COR maintains high catalytic stability and activity even at a large GHSV of 6000 h−1. To conclude, the 4-4GM/COR monolithic catalyst developed in this study not only represents a promising option for industrial applications but also serves as an important reference for the synthesis of monolithic catalysts. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Graphical abstract

17 pages, 14231 KB  
Article
A Study on Rare Earth-Modified Co-Based Composite Powder and Its Effects on the Microstructure and Properties of Cemented Carbide
by Zhiyong Li, Azman Jalar and Norinsan Kamil Othman
Materials 2025, 18(7), 1494; https://doi.org/10.3390/ma18071494 - 27 Mar 2025
Viewed by 624
Abstract
A Co-based composite powder, doped with rare earth Y, was crafted through a series of processes involving spray-drying, calcination, and low-temperature reduction. This powder was then blended with tungsten carbide (WC) powder and subjected to ball-milling. The resultant mixture was consolidated into a [...] Read more.
A Co-based composite powder, doped with rare earth Y, was crafted through a series of processes involving spray-drying, calcination, and low-temperature reduction. This powder was then blended with tungsten carbide (WC) powder and subjected to ball-milling. The resultant mixture was consolidated into a robust Y-doped WC-Co cemented carbide via the process of spark plasma sintering (SPS). The outcomes demonstrate that incorporating rare earth Y into Co powder to form a Co-Y2O3 composite powder via an innovative spray-drying, calcination, and low-temperature reduction process ensures uniform distribution of Y in the Co matrix. This uniform distribution refines the alloy’s grain structure during subsequent sintering, leading to enhanced performance. Within a specific range, increasing the Y content improves the overall alloy properties. It is notable that at a Y content of 1.5%, the alloy’s properties reach a state of stability, characterized by a density of 98.91%, a maximum hardness of 2120 Hv30, and a fracture toughness of 8.24 MPa·m1/2. The novel Y incorporation method has been shown to enhance the strength of the binder phase, impede the growth of WC grains, and thereby lead to a substantial improvement in the overall performance of the cemented carbide. Full article
Show Figures

Figure 1

24 pages, 4217 KB  
Article
Optimization of Mechanical and Dynamic Properties of Tread Rubber Using Fumed Silica and Hydration Processing
by Qingchen Chu, Xiaolong Tian, Huiguang Bian and Chuansheng Wang
Polymers 2025, 17(6), 714; https://doi.org/10.3390/polym17060714 - 7 Mar 2025
Cited by 2 | Viewed by 1655
Abstract
Fumed silica, a nanomaterial with a high specific surface area, excellent chemical stability, and electrical insulation, serves as an effective filler for rubber compounding. Compared to traditional carbon black, silica (SiO2), the main component of fumed silica, improves the hardness and [...] Read more.
Fumed silica, a nanomaterial with a high specific surface area, excellent chemical stability, and electrical insulation, serves as an effective filler for rubber compounding. Compared to traditional carbon black, silica (SiO2), the main component of fumed silica, improves the hardness and tear resistance of tread rubber, making it a viable substitute in some formulations. However, silica-filled compounds generally exhibit lower tensile properties and abrasion resistance than carbon black. Fumed silica, with its higher structural integrity, provides additional reinforcement points within natural rubber matrices, enhancing tensile strength and abrasion resistance. Studies demonstrate that replacing carbon black with an equivalent amount of fumed silica as the primary filler significantly improves tread rubber’s hardness (by 20%) and 300% tensile modulus (by 14%) while also reducing rolling resistance and enhancing wet skid performance. Fumed silica’s large specific surface area and low density (10–15% of conventional silica) make it challenging to use directly as a tread rubber filler due to dust formation and prolonged mixing times. This study developed a process combining fumed silica with deionized water, followed by drying and ball milling. This treatment reduces the material’s volume, forming a cohesive gel that, upon processing, minimizes dust and significantly decreases mixing time and difficulty. The interaction between the hydroxyl (–OH) groups on the surface of fumed silica and water molecules likely results in hydrated silica. This interaction enhances surface polarity and forms a hydration layer, improving the hydrophilicity and dispersion of fumed silica in rubber matrices. This reduces the shear modulus difference (ΔG′) between low and high strain, maintaining a consistent elastic modulus over a wide strain range. Such stability enables rubber to perform better under dynamic loads or in complex working conditions. The experimental results demonstrate that the hydration–ball milling process enhances the tensile strength of vulcanizates, improves the dispersion of fumed silica in rubber, strengthens the filler network, boosts dynamic performance, and enhances the wet skid resistance of tread rubber. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

14 pages, 4464 KB  
Article
Effects of Graphene Nanoplatelets and Nanosized Al4C3 Formation on the Wear Properties of Hot Extruded Al-Based Nanocomposites
by Mihail Kolev, Rumyana Lazarova, Veselin Petkov and Rositza Dimitrova
Lubricants 2025, 13(2), 67; https://doi.org/10.3390/lubricants13020067 - 4 Feb 2025
Cited by 3 | Viewed by 1504
Abstract
This study investigates the influence of graphene nanoplatelets (GNPs) and the formation of nanosized Al4C3 on the tribological performance of hot extruded aluminum-based nanocomposites. Al/GNP nanocomposites with varying GNP contents (0, 0.1, 0.5, and 1.1 wt.%) were fabricated through powder [...] Read more.
This study investigates the influence of graphene nanoplatelets (GNPs) and the formation of nanosized Al4C3 on the tribological performance of hot extruded aluminum-based nanocomposites. Al/GNP nanocomposites with varying GNP contents (0, 0.1, 0.5, and 1.1 wt.%) were fabricated through powder metallurgy, including ball milling, compaction, and hot extrusion at 500 °C, which was designed to facilitate the formation of nanosized carbides during the extrusion process. The effect of GNPs and nanosized carbides on the tribological properties of the composites was evaluated using dry friction pin-on-disk tests to assess wear resistance and the coefficient of friction (COF). Microstructural analyses using scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed the uniform distribution of GNPs and the formation of nanosized Al4C3 in the samples. Incorporating 0.1 wt.% GNPs resulted in the lowest wear mass loss (1.40 mg) while maintaining a stable COF (0.52), attributed to enhanced lubrication and load transfer. Although a higher GNP content (1.1 wt.%) resulted in increased wear due to agglomeration, the nanocomposite still demonstrated superior wear resistance compared to the unreinforced aluminum matrix. These findings underscore the potential of combining nanotechnology with precise processing techniques to enhance the wear and friction properties of aluminum-based composites. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

Back to TopTop