Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,564)

Search Parameters:
Keywords = drug effectiveness assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11376 KB  
Article
Hyssopus cuspidatus Boriss Volatile Extract (SXC): A Dual-Action Antioxidant and Antifungal Agent Targeting Candida albicans Pathogenicity and Vulvovaginal Candidiasis via Host Oxidative Stress Modulation and Fungal Metabolic Reprogramming
by Yun-Dan Guo, Ming-Xuan Zhang, Quan-Yong Yu, Lu-Lu Wang, Yan-Xing Han, Tian-Le Gao, Yuan Lin, Cai Tie and Jian-Dong Jiang
Antioxidants 2025, 14(9), 1046; https://doi.org/10.3390/antiox14091046 (registering DOI) - 25 Aug 2025
Abstract
Background and purpose: Vulvovaginal candidiasis (VVC), caused by Candida albicans (C. albicans), is exacerbated by oxidative stress and uncontrolled inflammation. Pathogens like C. albicans generate reactive oxygen species (ROS) to enhance virulence, while host immune responses further amplify oxidative damage. This [...] Read more.
Background and purpose: Vulvovaginal candidiasis (VVC), caused by Candida albicans (C. albicans), is exacerbated by oxidative stress and uncontrolled inflammation. Pathogens like C. albicans generate reactive oxygen species (ROS) to enhance virulence, while host immune responses further amplify oxidative damage. This study investigates the antioxidant and antifungal properties of Hyssopus cuspidatus Boriss volatile extract (SXC), a traditional Uyghur medicinal herb, against fluconazole-resistant VVC. We hypothesize that SXC’s bioactive volatiles counteract pathogen-induced oxidative stress while inhibiting fungal growth and inflammation. Methods: GC-MS identified SXC’s major bioactive components, while broth microdilution assays determined minimum inhibitory concentrations (MICs) against bacterial/fungal pathogens, and synergistic interactions with amphotericin B (AmB) or fluconazole (FLC) were assessed via time–kill kinetics. Anti-biofilm activity was quantified using crystal violet/XTT assays, and in vitro studies evaluated SXC’s effects on C. albicans-induced cytotoxicity (LDH release in A431 cells) and inflammatory responses (cytokine production in LPS-stimulated RAW264.7 macrophages). A murine VVC model, employing estrogen-mediated pathogenesis and intravaginal C. albicans challenge, confirmed SXC’s in vivo effects. Immune modulation was assessed using ELISA and RT-qPCR targeting inflammatory and antioxidative stress mediators, while UPLC-MS was employed to profile metabolic perturbations in C. albicans. Results: Gas chromatography-mass spectrometry identified 10 key volatile components contributing to SXC’s activity. SXC exhibited broad-spectrum antimicrobial activity with MIC values ranging from 0.125–16 μL/mL against bacterial and fungal pathogens, including fluconazole-resistant Candida strains. Time–kill assays revealed that combinations of AmB-SXC and FLC-SXC achieved sustained synergistic bactericidal activity across all tested strains. Mechanistic studies revealed SXC’s dual antifungal actions: inhibition of C. albicans hyphal development and biofilm formation through downregulation of the Ras1-cAMP-Efg1 signaling pathway, and attenuation of riboflavin-mediated energy metabolism crucial for fungal proliferation. In the VVC model, SXC reduced vaginal fungal burden, alleviated clinical symptoms, and preserved vaginal epithelial integrity. Mechanistically, SXC modulated host immune responses by suppressing oxidative stress and pyroptosis through TLR4/NF-κB/NLRP3 pathway inhibition, evidenced by reduced caspase-1 activation and decreased pro-inflammatory cytokines (IL-1β, IL-6, TNF-α). Conclusions: SXC shows promise as a broad-spectrum natural antimicrobial against fungal pathogens. It inhibited C. albicans hyphal growth, adhesion, biofilm formation, and invasion in vitro, while reducing oxidative and preserving vaginal mucosal integrity in vivo. By disrupting fungal metabolic pathways and modulating host immune responses, SXC offers a novel approach to treating recurrent, drug-resistant VVC. Full article
Show Figures

Graphical abstract

17 pages, 5829 KB  
Article
Improving Efficacy and Reducing Systemic Toxicity: An In Vitro Study on the Role of Electrospun Gelatin Nanofiber Membrane for Localized Melanoma Treatment
by Jason Sun, Yi-Chung Lai, Bing-Wu Shee, Chih-Hsiang Fang, Ching-Yun Chen and Jui-Sheng Sun
Bioengineering 2025, 12(9), 910; https://doi.org/10.3390/bioengineering12090910 - 25 Aug 2025
Abstract
Malignant melanoma is a highly metastatic skin cancer, representing about 5% of all cancer diagnoses in the United States. Conventional chemotherapy often has limited effectiveness and severe systemic side effects. This study explores a localized, topical delivery system using cisplatin-loaded nanomembranes as a [...] Read more.
Malignant melanoma is a highly metastatic skin cancer, representing about 5% of all cancer diagnoses in the United States. Conventional chemotherapy often has limited effectiveness and severe systemic side effects. This study explores a localized, topical delivery system using cisplatin-loaded nanomembranes as a safer and more targeted alternative. Cell viability assays established the safe cisplatin concentrations for tissue culture. Gelatin-based nanomembranes incorporating cisplatin were fabricated via electrospinning. Biocompatibility and therapeutic efficacy were tested by applying the membranes to cultured melanoma and normal skin cells. Controlled drug release profiles were evaluated by adjusting cross-linking times. Cisplatin concentration between 3.125 and 12.5 µg/mL were found safe. Nanomembranes with these doses effectively eliminated melanoma cells with minimal harm to healthy skin cells. Drug-free membranes showed high biocompatibility. Cross-linking duration allowed tunable and stable drug release. Cisplatin-loaded gelatin nanomembranes offer a promising topical therapy for melanoma, enhancing drug targeting while reducing systemic toxicity. This approach may serve as a cost-effective alternative to systemic treatments like immunotherapy. Future research will focus on in vivo testing and clinical application. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

17 pages, 2063 KB  
Article
Comprehensive UPLC-MS/MS Method for Quantifying Four Key Intestinal Permeability Markers in Caco-2 Models
by Luciana Silva de Araújo, Eduardo José Crevelin, Luiz Alberto Beraldo de Moraes and Niege Araçari Jacometti Cardoso Furtado
Molecules 2025, 30(17), 3477; https://doi.org/10.3390/molecules30173477 - 24 Aug 2025
Abstract
A comprehensive UPLC-MS/MS method was developed and validated for the simultaneous separation and quantification of atenolol, propranolol, quinidine, and verapamil, using established intestinal permeability standards in the Caco-2 cell monolayer model. This in vitro model is widely accepted for predicting intestinal drug permeability [...] Read more.
A comprehensive UPLC-MS/MS method was developed and validated for the simultaneous separation and quantification of atenolol, propranolol, quinidine, and verapamil, using established intestinal permeability standards in the Caco-2 cell monolayer model. This in vitro model is widely accepted for predicting intestinal drug permeability and is formally recognized by global regulatory agencies, including the FDA, EMA, and WHO, as a surrogate for assessing drug permeability in biowaiver applications under the Biopharmaceutics Classification System (BCS) framework. Despite its regulatory importance, standardized methods for the simultaneous quantification of key permeability markers remain scarce. The selected compounds represent distinct transport pathways: paracellular (atenolol), passive transcellular (propranolol, verapamil), and P-glycoprotein-mediated efflux (quinidine). Method validation followed FDA guidelines and demonstrated high selectivity, linearity (r2 > 0.998), precision, and accuracy. Solid-phase extraction enhanced recovery and reduced matrix effects. Application to Caco-2 permeability assays confirmed expected transport profiles, including P-gp inhibition effects with verapamil. By integrating multiple analytes in a single workflow, the method improves analytical throughput, supports mechanistic interpretation, and ensures consistency across assays. This advanced separation strategy, combined with sensitive mass spectrometric detection, supports regulatory and BCS-based classification studies, contributing to the standardization of permeability assessments in drug development. Full article
Show Figures

Figure 1

16 pages, 1474 KB  
Article
Development, Validation and Application of the Dried Blood Spot Analysis Method for the Determination of Ustekinumab in Patients with Inflammatory Bowel Disease
by Panagiotis-Dimitrios Mingas, Jurij Aguiar Zdovc, Iztok Grabnar, David Drobne and Tomaž Vovk
Pharmaceuticals 2025, 18(9), 1253; https://doi.org/10.3390/ph18091253 - 24 Aug 2025
Abstract
Background: Ustekinumab (UST) is a monoclonal antibody (mAb) used in the treatment of inflammatory bowel disease (IBD). Elevated serum concentrations are typically associated with improved therapeutic outcomes, and therapeutic drug monitoring (TDM) is a useful tool for guiding mAbs treatment. This study [...] Read more.
Background: Ustekinumab (UST) is a monoclonal antibody (mAb) used in the treatment of inflammatory bowel disease (IBD). Elevated serum concentrations are typically associated with improved therapeutic outcomes, and therapeutic drug monitoring (TDM) is a useful tool for guiding mAbs treatment. This study aimed to develop a dried blood spot (DBS) method for TDM of UST in patients with IBD. Methods: The commercial enzyme-linked immunosorbent assay for plasma samples was optimized for DBS samples and subsequently validated according to international guidelines for classical and DBS-specific validation parameters. It was then applied to analyze serum and DBS samples obtained from venous and capillary blood of IBD patients undergoing UST therapy. Results: The method was linear (3–12 mg/L) with acceptable inter-day accuracy (90.1–106%) and precision (<12%). We confirmed that there was no hematocrit effect and that DBS samples were stable for one month under room conditions. A linear model was developed between venous DBS and serum UST concentrations, which showed no systemic bias, and 71% of the samples were within ±20% of the mean. In addition, a linear correlation between venous DBS and capillary DBS samples was established, showing no significant bias, with 84% of samples within ±20% of the mean. Finally, a novel strategy was developed to overcome the limitations of poor-quality samples (irregular shapes) based on area image analysis. Conclusions: The newly developed DBS method is the first to enable reliable measurement of UST in capillary blood, appropriate clinical interpretation of the measured concentrations, and remote monitoring of patients in the early phase of therapy. Full article
Show Figures

Graphical abstract

14 pages, 2929 KB  
Article
Isolation, Characterization, Antioxidant and Anticancer Activities of Compounds from Erythrina caffra Stem Bark Extract
by Femi Olawale, Olusola Bodede, Mario Ariatti and Moganavelli Singh
Antioxidants 2025, 14(9), 1035; https://doi.org/10.3390/antiox14091035 - 22 Aug 2025
Viewed by 107
Abstract
Erythrina caffra is a traditional plant used to treat cancer and inflammation. The study aimed to assess and isolate anticancer compounds from E. caffra bark. The plant material was extracted sequentially in n-hexane, dichloromethane, ethyl acetate and methanol. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging [...] Read more.
Erythrina caffra is a traditional plant used to treat cancer and inflammation. The study aimed to assess and isolate anticancer compounds from E. caffra bark. The plant material was extracted sequentially in n-hexane, dichloromethane, ethyl acetate and methanol. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 3-(4,5-di methyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to evaluate the crude extracts’ antioxidant and anticancer activities, respectively. Column chromatography was used to purify the potent extracts of the stem bark in order to isolate the bioactive compounds. The crude extracts of the E. caffra bark demonstrated antioxidant and anticancer activity, with the dichloromethane (DCM) extract producing the most favorable activity. Three compounds, namely Hexacosanyl isoferulate, Tetradecyl isoferulate, and 1-Heneicosanol, were detected in fractions from the DCM extract. All the isolated compounds showed significant anticancer potential, with the hydroxycinnamic acid compounds showing better anticancer effects in the cervical (HeLa) and breast cancer (MCF-7) cells. The compounds showed greater activity than even the standard drug, 5-fluorouracil, in the MCF-7 cells, with the tetradecyl isoferulate and hexacosanyl isoferulate fractions having IC50 values of 123.62 and 58.84 µg/mL, respectively. The compounds were observed to be capable of triggering caspase cascade events, leading to apoptotic cell death. Overall, E. caffra extracts contained important bioactive compounds that induced apoptotic cell death in HeLa and MCF-7 tumor cells, warranting further investigations in vitro and in vivo. Full article
Show Figures

Figure 1

11 pages, 3201 KB  
Article
Deoxyshikonin Inhibits Influenza A Virus Infection at an Early Stage
by Won-Kyung Cho and Jin Yeul Ma
Int. J. Mol. Sci. 2025, 26(17), 8158; https://doi.org/10.3390/ijms26178158 - 22 Aug 2025
Viewed by 155
Abstract
Deoxyshikonin (DS) is a derivative of shikonin, the main compound present in Lithospermi radi, the root of Lithospermum erythrorhizon Siebold and Zucc. In this study, we investigated the antiviral effects of DS using Influenza A/PR8/34, which expresses green fluorescent protein (GFP) as [...] Read more.
Deoxyshikonin (DS) is a derivative of shikonin, the main compound present in Lithospermi radi, the root of Lithospermum erythrorhizon Siebold and Zucc. In this study, we investigated the antiviral effects of DS using Influenza A/PR8/34, which expresses green fluorescent protein (GFP) as well as wild-type PR8/34 H1N1 Influenza A virus (IAV). Fluorescence microscopy and flow cytometry results showed that DS from 1.25 to 5 µM significantly and dose-dependently inhibited PR8-GFP IAV infection. A plaque assay confirmed the inhibitory effect of DS against H1N1 IAV infection. Consistently, immunofluorescence results showed that DS suppresses IAV protein expression. Time-of-drug-addition and hemagglutination inhibition assays revealed that DS exhibits anti-influenza virus efficacy by blocking the viral attachment and penetration into the cells and has a direct virus-eradication effect in the early stages of infection. However, DS did not repress neuraminidase activity. Our findings suggest that DS could be used not only to protect against the early stages of IAV infection, but also to treat influenza virus infections in combination with NA inhibitors. Full article
(This article belongs to the Special Issue Viral and Host Targets to Fight RNA Viruses)
Show Figures

Figure 1

21 pages, 5953 KB  
Article
Network Pharmacology and Experimental Validation Identify Paeoniflorin as a Novel SRC-Targeted Therapy for Castration-Resistant Prostate Cancer
by Meng-Yao Xu, Jun-Biao Zhang, Yu-Zheng Peng, Mei-Cheng Liu, Si-Yang Ma, Ye Zhou, Zhi-Hua Wang and Sheng Ma
Pharmaceuticals 2025, 18(8), 1241; https://doi.org/10.3390/ph18081241 - 21 Aug 2025
Viewed by 167
Abstract
Background: Despite advances in prostate cancer treatment, castration-resistant prostate cancer (CRPC) remains clinically challenging due to inherent therapy resistance and a lack of durable alternatives. Although traditional Chinese medicine offers untapped potential, the therapeutic role of paeoniflorin (Pae), a bioactive compound derived from [...] Read more.
Background: Despite advances in prostate cancer treatment, castration-resistant prostate cancer (CRPC) remains clinically challenging due to inherent therapy resistance and a lack of durable alternatives. Although traditional Chinese medicine offers untapped potential, the therapeutic role of paeoniflorin (Pae), a bioactive compound derived from Paeonia lactiflora, in prostate cancer has yet to be investigated. Methods: Using an integrative approach (network pharmacology, molecular docking, and experimental validation), we identified Pae key targets, constructed protein–protein interaction networks, and performed GO/KEGG pathway analyses. A Pae-target-based prognostic model was developed and validated. In vitro and in vivo assays assessed Pae effects on proliferation, migration, invasion, apoptosis, and tumor growth. Results: Pae exhibited potent anti-CRPC activity, inhibiting cell proliferation by 60% and impairing cell migration by 65% compared to controls. Mechanistically, Pae downregulated SRC proto-oncogene, non-receptor tyrosine kinase (SRC) mRNA expression by 68%. The Pae-target-based prognostic model stratified patients into high- and low-risk groups with distinct survival outcomes. Organoid and xenograft studies confirmed Pae-mediated tumor growth inhibition and SRC downregulation. Conclusions: Pae overcomes CRPC resistance by targeting SRC-mediated pathways, presenting a promising therapeutic strategy. Our findings underscore the utility of network pharmacology-guided drug discovery and advocate for further clinical exploration of Pae in precision oncology. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

16 pages, 7082 KB  
Article
Ultrasound-Responsive Drug Delivery System Based on Piezoelectric Catalytic Mechanisms
by Kaixi Cui, Tianzheng Li, Yifei Ma, Chuanjin Zhang, Ke Zhang, Chao Qi and Kaiyong Cai
J. Funct. Biomater. 2025, 16(8), 304; https://doi.org/10.3390/jfb16080304 - 21 Aug 2025
Viewed by 238
Abstract
Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) [...] Read more.
Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) nanoparticles with a ROS-sensitive hydrogel matrix, forming an ultrasound-activated dual-function therapeutic system. Upon ultrasound irradiation, the BTO nanoparticles generate ROS—predominantly hydroxyl radicals (OH) and singlet oxygen (1O2)—through the piezoelectric effect, which triggers hydrogel degradation and facilitates the controlled release of encapsulated therapeutic agents. The composition and kinetics of ROS generation were evaluated using radical scavenging assays and fluorescence probe techniques, while the drug release behavior was validated under simulated oxidative environments and acoustic fields. Structural and compositional characterizations (TEM, XRD, and XPS) confirmed the quality and stability of the nanoparticles, and cytocompatibility was assessed using 3T3 fibroblasts. This synergistic strategy, combining piezocatalytic ROS generation with hydrogel disintegration, demonstrates a feasible approach for designing responsive nanoplatforms in ultrasound-mediated drug delivery systems. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery and Cancer Therapy)
Show Figures

Figure 1

17 pages, 2625 KB  
Article
Postbiotic pA1c®HI for Preventing Insulin Resistance and Obesity in a Caenorhabditis elegans Model of Prediabetes
by Deyan Yavorov-Dayliev, Iñaki Iturria, Leyre Iriarte, Miriam Araña, Miguel Barajas and Josune Ayo
Int. J. Mol. Sci. 2025, 26(16), 8094; https://doi.org/10.3390/ijms26168094 - 21 Aug 2025
Viewed by 215
Abstract
Cardiometabolic diseases such as obesity, prediabetes (PreD), and type 2 diabetes (T2D) are global health challenges linked to metabolic dysfunction. While probiotics show promise, postbiotics offer advantages in stability, safety, and food incorporation. This study evaluates the postbiotic pA1c®HI, a heat-inactivated [...] Read more.
Cardiometabolic diseases such as obesity, prediabetes (PreD), and type 2 diabetes (T2D) are global health challenges linked to metabolic dysfunction. While probiotics show promise, postbiotics offer advantages in stability, safety, and food incorporation. This study evaluates the postbiotic pA1c®HI, a heat-inactivated form of the probiotic pA1c®, for its potential in modulating glucose and lipid metabolism in Caenorhabditis elegans, compared to its live form. Worms were supplemented with pA1c®HI and live pA1c® in glucose-enriched media. Fat accumulation, gene expression, oxidative stress, and lifespan were measured using Nile Red and DHE staining, qPCR, and longevity assays. pA1c®HI significantly reduced glucose-induced fat accumulation, achieving fat reduction comparable to the anti-obesity drug orlistat and showing superior efficacy compared to the live probiotic form. It modulated the expression of genes associated with lipid oxidation (acox-1, cpt-2), fatty acid synthesis (fat-5), insulin signaling (daf-2, daf-16), and oxidative stress response (skn-1). Synergistic combinations with chromium picolinate (PC) and zinc (Zn) further enhanced metabolic outcomes. Importantly, pA1c®HI retained efficacy after thermal treatment (121–135 °C), supporting its potential for use in processed foods. pA1c®HI is a stable, effective postbiotic that modulates key pathways associated with obesity, PreD, and T2D in C. elegans, with superior performance to the live probiotic and added benefits when combined with PC and Zn. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 2638 KB  
Article
Identification of Bioactive Compounds in Warburgia salutaris Leaf Extracts and Their Pro-Apoptotic Effects on MCF-7 Breast Cancer Cells
by Lebogang Valentia Monama, Daniel Lefa Tswaledi, Tshisikhawe Masala Hadzhi, Makgwale Sharon Mphahlele, Mopeledi Blandina Madihlaba, Matlou Phineas Mokgotho, Leshweni Jeremia Shai and Emelinah Hluphekile Mathe
Int. J. Mol. Sci. 2025, 26(16), 8065; https://doi.org/10.3390/ijms26168065 - 20 Aug 2025
Viewed by 304
Abstract
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use [...] Read more.
The apoptotic mechanism is complex and involves many pathways. Defects can occur at any time along these pathways, resulting in malignant cell transformation and resistance to anticancer drugs. Collective efforts have made great progress in the implementation of natural products in clinical use and in discovering new therapeutic opportunities. This study aimed to screen volatile compounds of Warburgia salutaris leaf extracts and investigate their pro-apoptotic effects on MCF-7 cells. The approach was mainly based on determining cell viability using MTT and scratch assays, and DNA synthesis and damage using BrdU and comet assays, respectively. DAPI/PI stains were used for morphological analysis and expression was determined by RT-PCR and human apoptotic proteome profiler. Warburgia salutaris extracts exhibited antiproliferative effects on MCF-7 cells in a time- and dose-dependent manner. Acetone and methanol extracts exhibited low IC50 at 24, 48 and 72 h. Furthermore, the scratch test revealed that MCF-7 does not metastasise when treated with IC50. Expression showed upregulation of pro-apoptotic proteins and executioner caspases. Taken together, these findings suggest that leaves can promote apoptosis through the intrinsic apoptotic pathway, as observed by upregulation of the Bax and caspase 3 proteins. This paper provides new insights into the mechanisms of action of W. salutaris leaf extracts in the development of anticancer drugs. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Figure 1

20 pages, 6354 KB  
Article
Cloning and Functional Characterization of a Novel Brevinin-1-Type Peptide from Sylvirana guentheri with Anticancer Activity
by Huyen Thi La, Quynh Bach Thi Nhu, Hai Manh Tran, Huyen Thi Ngo, Phuc Minh Thi Le, Hanh Hong Hoang, Linh Trong Nguyen, Dat Tien Nguyen and Thanh Quang Ta
Curr. Issues Mol. Biol. 2025, 47(8), 673; https://doi.org/10.3390/cimb47080673 - 20 Aug 2025
Viewed by 315
Abstract
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial [...] Read more.
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial peptides (AMPs) have attracted attention due to their ability to selectively target microbial and cancer cells while exhibiting minimal toxicity toward normal cells. Although Vietnam possesses rich biodiversity, including a wide range of Anura species, studies on AMPs from these organisms remain limited. In this study, a novel AMP, brevinin-1 E8.13, was identified from the skin secretion of Sylvirana guentheri, a frog species native to Vietnam. The brevinin-1 E8.13 peptide was successfully cloned, sequenced, and chemically synthesized. Functional assays revealed that brevinin-1 E8.13 possesses strong antibacterial activity against Staphylococcus aureus and exerts significant antiproliferative effects on various human cancer cell lines, including A549 (lung), AGS (gastric), Jurkat (leukemia), HCT116 (colorectal), HL60 (leukemia), and HepG2 (liver). The peptide demonstrated moderate to potent cytotoxic activity, with IC50 values ranging from 7.5 to 14.8 μM, depending on the cell type. Notably, brevinin-1 E8.13 exhibited low cytotoxicity toward normal human dermal fibroblast (HDF) cells and even promoted cell proliferation at lower concentrations. Furthermore, Chemically Activated Fluorescent Expression (CAFLUX) bioassay results confirmed that the peptide significantly downregulated Cyp1a1 gene expression in HepG2 cells. Collectively, these findings highlight the therapeutic potential of brevinin-1 E8.13 as a dual-function antimicrobial and anticancer agent derived from the skin secretion of Sylvirana guentheri. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

25 pages, 2958 KB  
Article
Brazilian Red Propolis and Its Active Constituent 7-O-methylvestitol Impair Early and Late Stages of Toxoplasma gondii Infection in Human Placental Models
by Samuel Cota Teixeira, Guilherme de Souza, Natalia Carine Lima dos Santos, Rafael Martins de Oliveira, Nagela Bernadelli Sousa Silva, Joed Pires de Lima Junior, Alessandra Monteiro Rosini, Luana Carvalho Luz, Aryani Felixa Fajardo Martínez, Marcos Paulo Oliveira Almeida, Guilherme Vieira Faria, Rosiane Nascimento Alves, Angelica Oliveira Gomes, Maria Anita Lemos Vasconcelos Ambrosio, Rodrigo Cassio Sola Veneziani, Jairo Kenupp Bastos, José Roberto Mineo, Carlos Henrique Gomes Martins, Eloisa Amália Vieira Ferro and Bellisa Freitas Barbosa
Microorganisms 2025, 13(8), 1937; https://doi.org/10.3390/microorganisms13081937 - 20 Aug 2025
Viewed by 247
Abstract
Toxoplasma gondii is a globally distributed protozoan parasite and a major cause of congenital infections, particularly in South America. Current therapies for congenital toxoplasmosis are limited by toxicity, long treatment regimens, and suboptimal efficacy, highlighting the urgent need for safer and more effective [...] Read more.
Toxoplasma gondii is a globally distributed protozoan parasite and a major cause of congenital infections, particularly in South America. Current therapies for congenital toxoplasmosis are limited by toxicity, long treatment regimens, and suboptimal efficacy, highlighting the urgent need for safer and more effective alternatives. In this study, we evaluated the antiparasitic effects of crude ethanolic extract of Brazilian Red Propolis (BRP) and its isolated compounds, focusing on 7-O-methylvestitol, in human trophoblast (BeWo) cells and third-trimester placental explants. Both BRP and 7-O-methylvestitol significantly reduced T. gondii adhesion, invasion, and intracellular replication, without compromising host cell viability. Ultrastructural analyses revealed irreversible parasite damage, and cytokine profiling demonstrated immunomodulatory effects, with enhanced production of interleukin (IL)-6, IL-8, and macrophage migration inhibitory factor (MIF) in BeWo cells and downregulation of IL-6, MIF, and tumor Necrosis Factor (TNF) in infected placental villi. Notably, 7-O-methylvestitol reproduced and, in some assays, surpassed the antiparasitic activity of BRP, suggesting it as a key bioactive constituent responsible for the therapeutic potential of the extract. These findings support the identification of 7-O-methylvestitol as a promising lead compound for structure-based drug design and repositioning strategies, advancing the development of novel, safe, and targeted therapies against congenital toxoplasmosis. Full article
(This article belongs to the Special Issue Advances in Toxoplasma gondii and Toxoplasmosis)
Show Figures

Figure 1

18 pages, 1136 KB  
Article
Advancing Drug Resistance Detection: Comparative Analysis Using Short-Read and Long-Read Next-Generation Sequencing Technologies
by Julie Martinez, Rezak Drali, Amira Doudou, Chalom Sayada, Ronan Boulmé, Dimitri Gonzalez, Laurent Deblir, Matthieu Barralon, Jérome Wautrin, Jonathan Porzio, Arnaud Reffay, Mohamed Errafyqy, Jonathan Kolsch, Jonathan Léonard, Giuseppina Zuco, Aitor Modol and Sofiane Mohamed
LabMed 2025, 2(3), 14; https://doi.org/10.3390/labmed2030014 - 20 Aug 2025
Viewed by 292
Abstract
In recent years, antiviral therapy has proved crucial in the treatment of infectious diseases, particularly infections by highly variable viruses such as human immunodeficiency virus, hepatitis B, hepatitis C, SARS-CoV-2 or bacteria such as Mycobacterium tuberculosis. Under the effect of selection pressure, [...] Read more.
In recent years, antiviral therapy has proved crucial in the treatment of infectious diseases, particularly infections by highly variable viruses such as human immunodeficiency virus, hepatitis B, hepatitis C, SARS-CoV-2 or bacteria such as Mycobacterium tuberculosis. Under the effect of selection pressure, this variability induces mutations that lead to resistance to antiviral and antibacterial drugs, and thus to escape from treatment. The use of Advanced Biological Laboratories (ABL) assays technology combined with next-generation sequencing (NGS) and automatized software to detect majority and minority variants involved in treatment resistance has become a mainstay for establishing therapeutic strategies. The present study demonstrated high concordance between majority and minority subtypes and mutations identified in 15 samples across four NGS platforms: ISeq100 (Illumina (San Diego, CA, USA)), MiSeq (Illumina), DNBSEQ-G400 (MGI (Santa Clara, CA, USA)) and Mk1C MinION (Oxford Nanopore (Oxford Science Park, UK)). However, nanopore technology showed a higher number of minority mutations (<20%). The analysis also validated the pooling of microbiological samples as a method for detecting mutations and genotypes in viral and bacterial organisms, using the easy-to-use DeepChek® bioinformatics software, compatible with all four sequencing platforms. This study underlines the constant evolution of microbiological diagnostic research and the need to adapt rapidly to improve patient care. Full article
(This article belongs to the Special Issue Rapid Diagnostic Methods for Infectious Diseases)
Show Figures

Figure 1

18 pages, 4035 KB  
Article
Antiviral Activity of Medicinal Plant Extracts Vitex negundo and Macaranga tanarius Against SARS-CoV-2
by Muhareva Raekiansyah, Mya Myat Ngwe Tun, Alexandra Ang, Alexandra Lee, Stephani Joy Macalino, Junie Billones, Yuki Takamatsu, Takeshi Urano, Lyre Anni E. Murao, Noel Quiming, Kouichi Morita and Maria Constancia Carrillo
Pathogens 2025, 14(8), 820; https://doi.org/10.3390/pathogens14080820 - 19 Aug 2025
Viewed by 449
Abstract
Natural products possess a wide range of biological and biochemical potentials, with plant-derived compounds being significant sources for discovering new drugs. In this study, extracts of Vitex negundo and Macaranga tanarius prepared with different solvents were tested for their antiviral activity against the [...] Read more.
Natural products possess a wide range of biological and biochemical potentials, with plant-derived compounds being significant sources for discovering new drugs. In this study, extracts of Vitex negundo and Macaranga tanarius prepared with different solvents were tested for their antiviral activity against the original SARS-CoV-2 Wuhan strain and its variants using plaque assay, quantitative real time RT-PCR, and immunofluorescence assay (IFA). Our results showed that at their maximum non-toxic concentrations, Vitex-Dichloromethane (DCM) and Macaranga extracts significantly inhibited SARS-CoV-2 Wuhan strain growth in Vero E6 cells, showing a 5-log reduction in plaque assay and confirmed by IFA. Meanwhile, Vitex-Hexane showed moderate activity with a 2-log decrease. The inhibition was shown in a dose-dependent manner. The antiviral efficacy of these extracts was further demonstrated against various SARS-CoV-2 variants including Alpha, Beta, Delta, and Omicron. Both Vitex-DCM and Macaranga showed strong virucidal activity. In addition, Vitex-DCM and Macaranga inhibited the transcriptional activity of purified SARS-CoV-2 RdRp, indicating that RdRp inhibition may contribute to viral suppression as shown at the post-infection stage. Furthermore, combining Vitex-DCM or Macaranga with remdesivir showed a synergistic effect against SARS-CoV-2. These results suggest that Vitex negundo and Macaranga tanarius extracts are promising candidates for anti-SARS-CoV-2 treatments. Their synergy with remdesivir also underscores the potential of drug combinations in fighting SARS-CoV-2 and preventing the emergence of mutant variants. Full article
Show Figures

Figure 1

17 pages, 1576 KB  
Article
Design of an MIP-Based Electrochemical Sensor for the Determination of Paracetamol in Pharmaceutical Samples
by José Alberto Cabas Rodríguez, Fernando Javier Arévalo and Adrian Marcelo Granero
Biosensors 2025, 15(8), 544; https://doi.org/10.3390/bios15080544 - 19 Aug 2025
Viewed by 258
Abstract
Paracetamol (PAR) is a common antipyretic and analgesic extensively used to treat cold and flu symptoms. It has been proven to be effective in headaches and relieving fever and pain. It is usually found as an over-the-counter drug, which has been associated with [...] Read more.
Paracetamol (PAR) is a common antipyretic and analgesic extensively used to treat cold and flu symptoms. It has been proven to be effective in headaches and relieving fever and pain. It is usually found as an over-the-counter drug, which has been associated with an increase in cases of poisoning due to overdose. Therefore, the development of new analytical tools for the detection of PAR at low concentrations in different samples is necessary. In this work, a Molecularly Imprinted Polymer (MIP)-based electrochemical sensor was designed for the selective and sensitive determination of PAR using a glassy carbon electrode (GCE) modified with a polymeric film obtained through the electropolymerization of o-aminophenol. A complete characterization based on electrochemical techniques, such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and scanning electron microscopy (SEM) was used to examine all steps involved in the construction of the MIP-based electrochemical sensor. In addition, all parameters affecting the MIP were optimized. As a result, the MIP-based electrochemical sensor showed a very low limit of detection (LOD) of 10 nM, with an analytical sensitivity of (3.4 ± 0.1) A M⁻¹. In addition, construction of the MIP-based electrochemical sensor showed highly reproducibility, expressed in terms of a variation coefficient lower than 4%. The MIP-based electrochemical sensor was successfully used in an assay for the determination of PAR in pharmaceutical products. The performance of the MIP-based electrochemical sensor was compared to High Performance Liquid Chromatography (HPLC) for the determination of PAR in pharmaceutical samples, showing excellent agreement between the two methodologies. A very important aspect of the developed sensor was its reusability for at least twenty times. The MIP-based electrochemical sensor is a reliable analytical tool for the determination of PAR. Full article
Show Figures

Figure 1

Back to TopTop