Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = droseraceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1694 KiB  
Review
Distribution of Acetogenic Naphthoquinones in Droseraceae and Their Chemotaxonomic Utility
by Jan Schlauer, Andreas Fleischmann, Siegfried R. H. Hartmeyer, Irmgard Hartmeyer and Heiko Rischer
Biology 2024, 13(2), 97; https://doi.org/10.3390/biology13020097 - 3 Feb 2024
Cited by 1 | Viewed by 3522
Abstract
Chemotaxonomy is the link between the state of the art in analytical chemistry and the systematic classification and phylogenetic analysis of biota. Although the characteristic secondary metabolites from diverse biotic sources have been used in pharmacology and biological systematics since the dawn of [...] Read more.
Chemotaxonomy is the link between the state of the art in analytical chemistry and the systematic classification and phylogenetic analysis of biota. Although the characteristic secondary metabolites from diverse biotic sources have been used in pharmacology and biological systematics since the dawn of mankind, only comparatively recently established reproducible methods have allowed the precise identification and distinction of structurally similar compounds. Reliable, rapid screening methods like TLC (Thin Layer Chromatography) can be used to investigate sufficiently large numbers of samples for chemotaxonomic purposes. Using distribution patterns of mutually exclusive naphthoquinones, it is demonstrated in this review how a simple set of chemical data from a representative sample of closely related species in the sundew family (Droseraceae, Nepenthales) provides taxonomically and phylogenetically informative signal within the investigated group and beyond. Full article
(This article belongs to the Section Plant Science)
Show Figures

Graphical abstract

12 pages, 5390 KiB  
Communication
The Localization of Cell Wall Components in the Quadrifids of Whole-Mount Immunolabeled Utricularia dichotoma Traps
by Bartosz J. Płachno and Małgorzata Kapusta
Int. J. Mol. Sci. 2024, 25(1), 56; https://doi.org/10.3390/ijms25010056 - 19 Dec 2023
Cited by 4 | Viewed by 2333
Abstract
Utricularia (bladderworts) are carnivorous plants. They produce small hollow vesicles, which function as suction traps that work underwater and capture fine organisms. Inside the traps, there are numerous glandular trichomes (quadrifids), which take part in the secretion of digestive enzymes, the resorption of [...] Read more.
Utricularia (bladderworts) are carnivorous plants. They produce small hollow vesicles, which function as suction traps that work underwater and capture fine organisms. Inside the traps, there are numerous glandular trichomes (quadrifids), which take part in the secretion of digestive enzymes, the resorption of released nutrients, and likely the pumping out of water. Due to the extreme specialization of quadrifids, they are an interesting model for studying the cell walls. This aim of the study was to fill in the gap in the literature concerning the immunocytochemistry of quadrifids in the major cell wall polysaccharides and glycoproteins. To do this, the localization of the cell wall components in the quadrifids was performed using whole-mount immunolabeled Utricularia traps. It was observed that only parts (arms) of the terminal cells had enough discontinuous cuticle to be permeable to antibodies. There were different patterns of the cell wall components in the arms of the terminal cells of the quadrifids. The cell walls of the arms were especially rich in low-methyl-esterified homogalacturonan. Moreover, various arabinogalactan proteins also occurred. Cell walls in glandular cells of quadrifids were rich in low-methyl-esterified homogalacturonan; in contrast, in the aquatic carnivorous plant Aldrovanda vesiculosa, cell walls in the glandular cells of digestive glands were poor in low-methyl-esterified homogalacturonan. Arabinogalactan proteins were found in the cell walls of trap gland cells in all studied carnivorous plants: Utricularia, and members of Droseraceae and Drosophyllaceae. Full article
Show Figures

Figure 1

30 pages, 2203 KiB  
Review
Biological Potential of Carnivorous Plants from Nepenthales
by Magdalena Wójciak, Marcin Feldo, Piotr Stolarczyk and Bartosz J. Płachno
Molecules 2023, 28(8), 3639; https://doi.org/10.3390/molecules28083639 - 21 Apr 2023
Cited by 7 | Viewed by 6944
Abstract
Since Charles Darwin and his book carnivorous plants have aroused interest and heated debate. In addition, there is growing interest in this group of plants as a source of secondary metabolites and in the application of their biological activity. The aim of this [...] Read more.
Since Charles Darwin and his book carnivorous plants have aroused interest and heated debate. In addition, there is growing interest in this group of plants as a source of secondary metabolites and in the application of their biological activity. The aim of this study was to trace the recent literature in search of the application of extracts obtained from families Droseraceae, Nepenthaceae, and Drosophyllaceae to show their biological potential. The data collected in the review clearly indicate that the studied Nepenthales species have great biological potential in terms of antibacterial, antifungal, antioxidant, anti-inflammatory, and anticancer use. We proposed that further investigations should include: (i) bioactivity-guided investigations of crude plant extract to connect a particular type of action with a specific compound or a group of metabolites; (ii) a search for new bioactive properties of carnivorous plants; (iii) establishment of molecular mechanisms associated with specific activity. Furthermore, further research should be extended to include less explored species, i.e., Drosophyllum lusitanicum and especially Aldrovanda vesiculosa. Full article
(This article belongs to the Special Issue Medicinal Value of Natural Bioactive Compounds and Plant Extracts)
Show Figures

Figure 1

20 pages, 2869 KiB  
Review
Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites
by Magdalena Wójciak, Marcin Feldo, Piotr Stolarczyk and Bartosz J. Płachno
Molecules 2023, 28(5), 2155; https://doi.org/10.3390/molecules28052155 - 24 Feb 2023
Cited by 14 | Viewed by 5963
Abstract
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. [...] Read more.
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droseraceae, which were studied using modern identification techniques, i.e., high-performance liquid chromatography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be used in pharmacy and for medical purposes. The main types of the identified compounds include phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gallic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile organic compounds. Due to the biological activity of most of these substances, the importance of the carnivorous plant as a pharmaceutical crop will increase. Full article
(This article belongs to the Special Issue Plant Metabolites: Accumulation, Profiling and Bioactivity)
Show Figures

Figure 1

12 pages, 4873 KiB  
Communication
Immunocytochemical Analysis of Bifid Trichomes in Aldrovanda vesiculosa L. Traps
by Bartosz J. Płachno, Małgorzata Kapusta, Piotr Stolarczyk, Magdalena Wójciak and Piotr Świątek
Int. J. Mol. Sci. 2023, 24(4), 3358; https://doi.org/10.3390/ijms24043358 - 8 Feb 2023
Cited by 9 | Viewed by 2651
Abstract
The two-armed bifids (bifid trichomes) occur on the external (abaxial) trap surface, petiole, and stem of the aquatic carnivorous plant Aldrovanda vesiculosa (Droseracee). These trichomes play the role of mucilage trichomes. This study aimed to fill the gap in the literature concerning the [...] Read more.
The two-armed bifids (bifid trichomes) occur on the external (abaxial) trap surface, petiole, and stem of the aquatic carnivorous plant Aldrovanda vesiculosa (Droseracee). These trichomes play the role of mucilage trichomes. This study aimed to fill the gap in the literature concerning the immunocytochemistry of the bifid trichomes and compare them with digestive trichomes. Light and electron microscopy was used to show the trichome structure. Fluorescence microscopy revealed the localization of carbohydrate epitopes associated with the major cell wall polysaccharides and glycoproteins. The stalk cells and the basal cells of the trichomes were differentiated as endodermal cells. Cell wall ingrowths occurred in all cell types of the bifid trichomes. Trichome cells differed in the composition of their cell walls. The cell walls of the head cells and stalk cells were enriched with arabinogalactan proteins (AGPs); however, they were generally poor in both low- and highly-esterified homogalacturonans (HGs). The cell walls in the trichome cells were rich in hemicelluloses: xyloglucan and galactoxyloglucan. The cell wall ingrowths in the basal cells were significantly enriched with hemicelluloses. The presence of endodermal cells and transfer cells supports the idea that bifid trichomes actively transport solutes, which are polysaccharide in nature. The presence of AGPs (which are considered plant signaling molecules) in the cell walls in these trichome cells indicates the active and important role of these trichomes in plant function. Future research should focus on the question of how the molecular architecture of trap cell walls changes in cells during trap development and prey capture and digestion in A. vesiculosa and other carnivorous plants. Full article
(This article belongs to the Special Issue Recent Advances in Abiotic Stress Signaling)
Show Figures

Figure 1

57 pages, 10155 KiB  
Article
Small Leaves, Big Diversity: Citizen Science and Taxonomic Revision Triples Species Number in the Carnivorous Drosera microphylla Complex (D. Section Ergaleium, Droseraceae)
by Thilo Krueger, Alastair Robinson, Greg Bourke and Andreas Fleischmann
Biology 2023, 12(1), 141; https://doi.org/10.3390/biology12010141 - 16 Jan 2023
Cited by 11 | Viewed by 13279
Abstract
The carnivorous Drosera microphylla complex from southwest Western Australia comprises a group of rare, narrowly endemic species that are potentially threatened by habitat destruction and illegal collection, thus highlighting a need for accurate taxonomic classification to facilitate conservation efforts. Following extensive fieldwork over [...] Read more.
The carnivorous Drosera microphylla complex from southwest Western Australia comprises a group of rare, narrowly endemic species that are potentially threatened by habitat destruction and illegal collection, thus highlighting a need for accurate taxonomic classification to facilitate conservation efforts. Following extensive fieldwork over two decades, detailed studies of both Australian and European herbaria and consideration of both crucial contributions by citizen scientists and social media observations, nine species of the D. microphylla complex are here described and illustrated, including four new species: D. atrata, D. hortiorum, D. koikyennuruff, and D. reflexa. The identities of the previously described infraspecific taxa D. calycina var. minor and D. microphylla var. macropetala are clarified. Both are here lectotypified, reinstated, and elevated to species rank. A replacement name, D. rubricalyx, is provided for the former taxon. Key morphological characters distinguishing the species of this complex include the presence or absence of axillary leaves, lamina shape, petal colour, filament shape, and style length. A detailed identification key, comparison figures, and a distribution map are provided. Six of the nine species are recommended for inclusion on the Priority Flora List under the Conservation Codes for Western Australian Flora and Fauna. Full article
(This article belongs to the Special Issue Advances in Plant Taxonomy and Systematics)
Show Figures

Graphical abstract

14 pages, 5047 KiB  
Article
Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps, Structure and Functions
by Bartosz J. Płachno, Małgorzata Kapusta, Piotr Stolarczyk and Piotr Świątek
Int. J. Mol. Sci. 2023, 24(1), 553; https://doi.org/10.3390/ijms24010553 - 29 Dec 2022
Cited by 10 | Viewed by 3970
Abstract
The digestive organs of carnivorous plants have external (abaxial) glands and trichomes, which perform various functions. Dionaea muscipula Ellis (the Venus flytrap) is a model carnivorous plant species whose traps are covered by external trichomes. The aim of the study was to fill [...] Read more.
The digestive organs of carnivorous plants have external (abaxial) glands and trichomes, which perform various functions. Dionaea muscipula Ellis (the Venus flytrap) is a model carnivorous plant species whose traps are covered by external trichomes. The aim of the study was to fill in the gap regarding the structure of the stellate outer trichomes and their immunocytochemistry and to determine whether these data support the suggestions of other authors about the roles of these trichomes. Light and electron microscopy was used to show the trichomes’ structure. Fluorescence microscopy was used to locate the carbohydrate epitopes that are associated with the major cell wall polysaccharides and glycoproteins. The endodermal cells and internal head cells of the trichomes were differentiated as transfer cells, and this supports the idea that stellate trichomes transport solutes and are not only tomentose-like trichomes. Trichome cells differ in the composition of their cell walls, e.g., the cell walls of the internal head cells are enriched with arabinogalactan proteins (AGPs). The cell walls of the outer head cells are poor in both low and highly homogalacturonans (HGs), but the immature trichomes are rich in the pectic polysaccharide (1–4)–β-D-galactan. In the immature traps, young stellate trichomes produce mucilage which may protect the trap surface, and in particular, the trap entrance. However, the role of these trichomes is different when the outer head cells collapse. In the internal head cells, a thick secondary wall cell was deposited, which together with the thick cell walls of the outer head cells played the role of a large apoplastic space. This may suggest that mature stellate trichomes might function as hydathodes, but this should be experimentally proven. Full article
(This article belongs to the Special Issue Advances in Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 4043 KiB  
Article
Snatching Sundews—Analysis of Tentacle Movement in Two Species of Drosera in Terms of Response Rate, Response Time, and Speed of Movement
by Caroline Ivesic, Wolfram Adlassnig, Marianne Koller-Peroutka, Linda Kress and Ingeborg Lang
Plants 2022, 11(23), 3212; https://doi.org/10.3390/plants11233212 - 23 Nov 2022
Cited by 2 | Viewed by 3631
Abstract
Drosera, Droseraceae, catch prey with sticky tentacles. Both Australian Drosera allantostigma and widespread D. rotundifolia show three types of anatomically different tentacles: short, peripheral, and snap-tentacles. The latter two are capable of fast movement. This motion was analysed after mechanical, chemical, and [...] Read more.
Drosera, Droseraceae, catch prey with sticky tentacles. Both Australian Drosera allantostigma and widespread D. rotundifolia show three types of anatomically different tentacles: short, peripheral, and snap-tentacles. The latter two are capable of fast movement. This motion was analysed after mechanical, chemical, and electrical stimulation with respect to response rate, response time, and angular velocity of bending. Compared to D. rotundifolia, D. allantostigma responds more frequently and faster; the tentacles bend with higher angular velocity. Snap-tentacles have a lower response rate, shorter response time, and faster angular velocity. The response rates for chemical and electrical stimuli are similar, and higher than the rates for mechanical stimulus. The response time is not dependent on stimulus type. The higher motility in D. allantostigma indicates increased dependence on mechanical prey capture, and a reduced role of adhesive mucilage. The same tentacle types are present in both species and show similar motility patterns. The lower response rate of snap-tentacles might be a safety measure against accidental triggering, since the motion of snap-tentacles is irreversible and tissue destructive. Furthermore, tentacles seem to discern stimuli and respond specifically. The established model of stereotypical tentacle movement may not fully explain these observations. Full article
(This article belongs to the Special Issue Advances in Carnivorous and Parasitic Plants)
Show Figures

Figure 1

18 pages, 4366 KiB  
Article
Searching for Optimal Substitute Habitats for Plants by Biological Experiments—A Case Study of the Endangered Species Aldrovanda vesiculosa L. (Droseraceae)
by Magdalena Pogorzelec, Marzena Parzymies, Barbara Pawlik-Skowrońska, Michał Arciszewski and Jacek Mielniczuk
Int. J. Environ. Res. Public Health 2022, 19(17), 10743; https://doi.org/10.3390/ijerph191710743 - 29 Aug 2022
Cited by 2 | Viewed by 2435
Abstract
The selection of appropriate locations for the reintroduction of endangered plant species is an important process, because it usually influences the success of the conservation. The aim of this study was to select the optimal substitute habitats for Aldrovanda vesiculosa, taking into [...] Read more.
The selection of appropriate locations for the reintroduction of endangered plant species is an important process, because it usually influences the success of the conservation. The aim of this study was to select the optimal substitute habitats for Aldrovanda vesiculosa, taking into account the influence of physical–chemical factors (light intensity, temperature, pH, concentration of dissolved forms of nitrogen and cyanobacterial toxin microcystin-LR) on the efficiency of plant growth. Water analysis and field observations of the habitats of six lakes in Eastern Poland typified as potential substitute habitats for aldrovanda were carried out. The results of the experiments showed that both the concentration and the form in which nitrogen compounds are present in the environment were the factors limiting the growth rate and condition of plants. The second factor that caused the inhibition of aldrovanda growth was microcystin-LR. It was found that the habitat conditions in Lake Brzeziczno were within the ecological tolerance of the species. Particularly important was the low content of mineral compounds and the available forms of nitrogen and phosphorus in the water. Therefore, the probability of development of toxic cyanobacteria, the metabolites of which may affect the growth of A. vesiculosa, is also minimal. Full article
(This article belongs to the Special Issue Environmental Influences on Endangered Species)
Show Figures

Figure 1

20 pages, 5552 KiB  
Article
Immunocytochemical Analysis of the Wall Ingrowths in the Digestive Gland Transfer Cells in Aldrovanda vesiculosa L. (Droseraceae)
by Bartosz J. Płachno, Małgorzata Kapusta, Piotr Stolarczyk, Piotr Świątek, Maciej Strzemski and Vitor F. O. Miranda
Cells 2022, 11(14), 2218; https://doi.org/10.3390/cells11142218 - 16 Jul 2022
Cited by 12 | Viewed by 2883
Abstract
Carnivorous plants are unique due to their ability to attract small animals or protozoa, retain them in specialized traps, digest them, and absorb nutrients from the dissolved prey material; however, to this end, these plants need a special secretion-digestive system (glands). A common [...] Read more.
Carnivorous plants are unique due to their ability to attract small animals or protozoa, retain them in specialized traps, digest them, and absorb nutrients from the dissolved prey material; however, to this end, these plants need a special secretion-digestive system (glands). A common trait of the digestive glands of carnivorous plants is the presence of transfer cells. Using the aquatic carnivorous species Aldrovanda vesiculosa, we showed carnivorous plants as a model for studies of wall ingrowths/transfer cells. We addressed the following questions: Is the cell wall ingrowth composition the same between carnivorous plant glands and other plant system models? Is there a difference in the cell wall ingrowth composition between various types of gland cells (glandular versus endodermoid cells)? Fluorescence microscopy and immunogold electron microscopy were employed to localize carbohydrate epitopes associated with major cell wall polysaccharides and glycoproteins. The cell wall ingrowths were enriched with arabinogalactan proteins (AGPs) localized with the JIM8, JIM13, and JIM14 epitopes. Both methylesterified and de-esterified homogalacturonans (HGs) were absent or weakly present in the wall ingrowths in transfer cells (stalk cells and head cells of the gland). Both the cell walls and the cell wall ingrowths in the transfer cells were rich in hemicelluloses: xyloglucan (LM15) and galactoxyloglucan (LM25). There were differences in the composition between the cell wall ingrowths and the primary cell walls in A. vesiculosa secretory gland cells in the case of the absence or inaccessibility of pectins (JIM5, LM19, JIM7, LM5, LM6 epitopes); thus, the wall ingrowths are specific cell wall microdomains. Even in the same organ (gland), transfer cells may differ in the composition of the cell wall ingrowths (glandular versus endodermoid cells). We found both similarities and differences in the composition of the cell wall ingrowths between the A. vesiculosa transfer cells and transfer cells of other plant species. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

13 pages, 45311 KiB  
Article
Arabinogalactan Proteins in the Digestive Glands of Dionaea muscipula J.Ellis Traps
by Bartosz J. Płachno, Małgorzata Kapusta, Piotr Stolarczyk and Piotr Świątek
Cells 2022, 11(3), 586; https://doi.org/10.3390/cells11030586 - 8 Feb 2022
Cited by 13 | Viewed by 3697
Abstract
The arabinogalactan proteins (AGP) play important roles in plant growth and developmental processes. However, to the best of our knowledge, there is no information on the spatial distribution of AGP in the plant organs and tissues of carnivorous plants during their carnivorous cycle. [...] Read more.
The arabinogalactan proteins (AGP) play important roles in plant growth and developmental processes. However, to the best of our knowledge, there is no information on the spatial distribution of AGP in the plant organs and tissues of carnivorous plants during their carnivorous cycle. The Dionaea muscipula trap forms an “external stomach” and is equipped with an effective digestive-absorbing system. Because its digestive glands are composed of specialized cells, the hypothesis that their cell walls are also very specialized in terms of their composition (AGP) compared to the cell wall of the trap epidermal and parenchyma cells was tested. Another aim of this study was to determine whether there is a spatio-temporal distribution of the AGP in the digestive glands during the secretory cycle of D. muscipula. Antibodies that act against AGPs, including JIM8, JIM13 and JIM14, were used. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. In both the un-fed and fed traps, there was an accumulation of AGP in the cell walls of the gland secretory cells. The epitope, which is recognized by JIM14, was a useful marker of the digestive glands. The secretory cells of the D. muscipula digestive glands are transfer cells and an accumulation of specific AGP was at the site where the cell wall labyrinth occurred. Immunogold labeling confirmed an occurrence of AGP in the cell wall ingrowths. There were differences in the AGP occurrence (labeled with JIM8 and JIM13) in the cell walls of the gland secretory cells between the unfed and fed traps. Full article
(This article belongs to the Special Issue Research on Plant Cell Wall Biology)
Show Figures

Figure 1

9 pages, 767 KiB  
Communication
Contrasting Dihydronaphthoquinone Patterns in Closely Related Drosera (Sundew) Species Enable Taxonomic Distinction and Identification
by Jan Schlauer, Siegfried R. H. Hartmeyer, Irmgard Hartmeyer, Tuulikki Seppänen-Laakso and Heiko Rischer
Plants 2021, 10(8), 1601; https://doi.org/10.3390/plants10081601 - 4 Aug 2021
Cited by 4 | Viewed by 2813
Abstract
Dihydronaphthoquinones are described as constituents of sundews (Drosera), Venus flytraps (Dionaea), and dewy pines (Drosophyllum) for the first time. As in the corresponding naphthoquinones, these reduced derivatives may occur in two regio-isomeric series distinguished by the relative [...] Read more.
Dihydronaphthoquinones are described as constituents of sundews (Drosera), Venus flytraps (Dionaea), and dewy pines (Drosophyllum) for the first time. As in the corresponding naphthoquinones, these reduced derivatives may occur in two regio-isomeric series distinguished by the relative position of a methyl group (at position 2 or 7 in the naphthalene skeleton), depending on the taxon. Species producing plumbagin (2-methyljuglone, 1) do commonly contain the corresponding dihydroplumbagin (5), while species containing ramentaceone (7-methyljuglone, 2) also contain dihydroramentaceone (7-methyl-β-dihydrojuglone, 6). So far, only few species containing plumbagin (1) and dihydroplumbagin (5) additionally form dihydroramentaceone (6) but not ramentaceone (2). Thus, subtle but constant differences in the chemism of closely related and morphologically similar species reliably define and distinguish taxa within D. sect. Arachnopus, which is taken to exemplify their chemotaxonomic utility. The joint presence of quinones and hydroquinones allows observations and predictions on the chemical structures and the reactions of these intriguing natural products. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

9 pages, 2191 KiB  
Article
A Chemometry of Aldrovanda vesiculosa L. (Waterwheel, Droseraceae) Populations
by Bartosz J. Płachno, Maciej Strzemski, Sławomir Dresler, Lubomír Adamec, Kamila Wojas-Krawczyk, Ireneusz Sowa, Anna Danielewicz and Vitor F. O. Miranda
Molecules 2021, 26(1), 72; https://doi.org/10.3390/molecules26010072 - 25 Dec 2020
Cited by 6 | Viewed by 4025
Abstract
The genus Aldrovanda is a Palaeogene element containing a single extant species, Aldrovanda vesiculosa L. This aquatic carnivorous herb has a very wide range of distribution, natively covering four continents; however, it is a critically endangered aquatic plant species worldwide. Previous studies revealed [...] Read more.
The genus Aldrovanda is a Palaeogene element containing a single extant species, Aldrovanda vesiculosa L. This aquatic carnivorous herb has a very wide range of distribution, natively covering four continents; however, it is a critically endangered aquatic plant species worldwide. Previous studies revealed that A. vesiculosa had an extremely low genetic variation. The main aim of the present paper is to explore, using chemometric tools, the diversity of 16 A. vesiculosa populations from various sites from four continents (Eurasia, Africa, Australia). Using chemometric data as markers for genetic diversity, we show the relationships of 16 A. vesiculosa populations from various sites, including four continents. Phytochemical markers allowed the identification of five well-supported (bootstrap > 90%) groups among the 16 populations sampled. The principal component analysis data support the idea that the strongly related African (Botswana) and Australian (Kimberley, NT, NW Australia) populations are the most distant ones, separated from the European and Asian ones. However, considering the five Australian populations sampled, three are nested within the Eurasian group. The chemometric data are correlated positively with the geographical distances between the samples, which suggests a tendency toward isolation for the most distant populations. Full article
Show Figures

Figure 1

Back to TopTop