Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (255)

Search Parameters:
Keywords = dropping moisture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3817 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 (registering DOI) - 1 Aug 2025
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
22 pages, 3231 KiB  
Article
Evapotranspiration in a Small Well-Vegetated Basin in Southwestern China
by Zitong Zhou, Ying Li, Lingjun Liang, Chunlin Li, Yuanmei Jiao and Qian Ma
Sustainability 2025, 17(15), 6816; https://doi.org/10.3390/su17156816 - 27 Jul 2025
Viewed by 274
Abstract
Evapotranspiration (ET) crucially regulates water storage dynamics and is an essential component of the terrestrial water cycle. Understanding ET dynamics is fundamental for sustainable water resource management, particularly in regions facing increasing drought risks under climate change. In regions like southwestern China, where [...] Read more.
Evapotranspiration (ET) crucially regulates water storage dynamics and is an essential component of the terrestrial water cycle. Understanding ET dynamics is fundamental for sustainable water resource management, particularly in regions facing increasing drought risks under climate change. In regions like southwestern China, where extreme drought events are prevalent due to complex terrain and climate warming, ET becomes a key factor in understanding water availability and drought dynamics. Using the SWAT model, this study investigates ET dynamics and influencing factors in the Jizi Basin, Yunnan Province, a small basin with over 71% forest coverage. The model calibration and validation results demonstrated a high degree of consistency with observed discharge data and ERA5, confirming its reliability. The results show that the annual average ET in the Jizi Basin is 573.96 mm, with significant seasonal variations. ET in summer typically ranges from 70 to 100 mm/month, while in winter, it drops to around 20 mm/month. Spring ET exhibits the highest variability, coinciding with the occurrence of extreme hydrological events such as droughts. The monthly anomalies of ET effectively reproduce the spring and early summer 2019 drought event. Notably, ET variation exhibits significant uncertainty under scenarios of +1 °C temperature and −20% precipitation. Furthermore, although land use changes had relatively small effects on overall ET, they played crucial roles in promoting groundwater recharge through enhanced percolation, especially forest cover. The study highlights that, in addition to climate and land use, soil moisture and groundwater conditions are vital in modulating ET and drought occurrence. The findings offer insights into the hydrological processes of small forested basins in southwestern China and provide important support for sustainable water resource management and effective climate adaptation strategies, particularly in the context of increasing drought vulnerability. Full article
Show Figures

Figure 1

20 pages, 3980 KiB  
Article
Laboratory and Full-Scale Tests of Modern Chimney Casings Based on Lightweight Perlite Concrete with Hydrophobic Admixtures
by Arkadiusz Mordak, Krzysztof Drozdzol, Damian Beben and Pawel Jarzynski
Materials 2025, 18(14), 3398; https://doi.org/10.3390/ma18143398 - 20 Jul 2025
Viewed by 249
Abstract
Currently, chimney technology is looking for new materials with improved thermal insulation properties and, at the same time, adequate durability. The use of concretes based on lightweight aggregates, such as expanded perlite, is capable of meeting such a challenge, provided that the composition [...] Read more.
Currently, chimney technology is looking for new materials with improved thermal insulation properties and, at the same time, adequate durability. The use of concretes based on lightweight aggregates, such as expanded perlite, is capable of meeting such a challenge, provided that the composition of the concrete mixes is appropriately modified. The main research challenge when designing chimney system casing elements lies in ensuring adequate resistance to moisture penetration (maximum water absorption of 25%), while achieving the lowest possible bulk density (below 1000 kg/m3), sufficient compressive strength (minimum 3.5 MPa), and capillary water uptake not exceeding 0.6%. In the present research, laboratory tests were conducted to improve the fundamental technical properties of lightweight perlite-based concrete to meet the aforementioned requirements. Laboratory tests of perlite concrete were carried out by adding eight chemical admixtures with a hydrophobic effect and the obtained results were compared with a reference concrete (without admixtures). However, the positive results obtained under laboratory conditions were not confirmed under actual production conditions. Therefore, further tests were conducted on chimney casings taken directly from the production line. Subsequent chemical admixtures with a hydrophobic effect, based on silane/siloxane water emulsions, were applied to determine the concrete mix’s optimal composition. The results of the tests carried out on perlite concrete chimney casings from the production line confirm the effectiveness of the applied chemical admixtures with a hydrophobic effect in improving the moisture resistance. This was further supported by the outcomes of the so-called ‘drop test’ and capillary uptake test, with the suitable bulk density and compressive strength being maintained. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 1686 KiB  
Article
Analysis of Sewage Sludge Drying Parameters Using Different Additives
by Małgorzata Makowska, Sebastian Kujawiak, Damian Janczak, Patryk Miler and Wojciech Czekała
Sustainability 2025, 17(14), 6500; https://doi.org/10.3390/su17146500 - 16 Jul 2025
Viewed by 250
Abstract
This paper describes the process of drying sewage sludge mixtures with the addition of various components: straw chaff, wood sawdust, ash, bark, wood chips, and walnut shells. The tests were conducted in two series: summer and autumn (with maximum insolation of 24.1 and [...] Read more.
This paper describes the process of drying sewage sludge mixtures with the addition of various components: straw chaff, wood sawdust, ash, bark, wood chips, and walnut shells. The tests were conducted in two series: summer and autumn (with maximum insolation of 24.1 and 29.8 MJ∙m−2, respectively). Using a set of sensors with which the experimental station was equipped, the parameters of the environment (temperature, humidity, and insolation) and the parameters of the dried mixtures (temperature and humidity) were measured. Based on the results obtained, the influence of external factors on the parameters, time, and drying effect of the respective mixtures was analyzed. With the initial moisture content of the mixtures ranging from 41 to 79%, a final moisture content of 6 to 49% was obtained, depending on the components and drying conditions. It was found that the drying rate was most influenced by the amount of solar energy and the associated outdoor (maximum 29 °C and 19 °C) and indoor (maximum 33 °C and 24 °C) air temperatures, and in the second series, there was an additional effect of the temperature of the mixtures (maximum 30 °C), upon which the intensity of water evaporation depended. Straw chaff and walnut shells proved to be the best additives, for which the highest drying rates were obtained (max. 50 to 60% humidity drop). The possibility of using dried materials for agricultural and energy purposes was indicated. This approach is in line with the principles of sustainable development. Full article
Show Figures

Figure 1

23 pages, 1856 KiB  
Article
Comparative Evaluation of Gelatin and HPMC Inhalation Capsule Shells Exposed to Simulated Humidity Conditions
by Sabrina Magramane, Nikolett Kállai-Szabó, Dóra Farkas, Károly Süvegh, Romána Zelkó and István Antal
Pharmaceutics 2025, 17(7), 877; https://doi.org/10.3390/pharmaceutics17070877 - 3 Jul 2025
Viewed by 574
Abstract
Background/Objectives: This study investigates the impact of high humidity (25 °C, 75% relative humidity) on gelatin and hydroxypropyl methylcellulose (HPMC) capsules used in dry powder inhalers (DPIs), focusing on moisture dynamics, structural responses, and mechanical performance, with an emphasis on understanding how [...] Read more.
Background/Objectives: This study investigates the impact of high humidity (25 °C, 75% relative humidity) on gelatin and hydroxypropyl methylcellulose (HPMC) capsules used in dry powder inhalers (DPIs), focusing on moisture dynamics, structural responses, and mechanical performance, with an emphasis on understanding how different capsule types respond to prolonged exposure to humid conditions. Methods: Capsules were exposed to controlled humidity conditions, and moisture uptake was measured via thermal analysis. Visual observations of silica bead color changes were performed to assess moisture absorption, while surface wettability was measured using the sessile drop method. Hardness testing, mechanical deformation, and puncture tests were performed to evaluate structural and mechanical changes. Positron annihilation lifetime spectroscopy (PALS) was used to analyze free volume expansion. Results: HPMC capsules exhibited rapid moisture uptake, attributed to their lower equilibrium moisture content and ability to rearrange dynamically, preventing brittleness. In contrast, gelatin capsules showed slower moisture absorption but reached higher equilibrium levels, resulting in plasticization and softening. Mechanical testing showed that HPMC capsules retained structural integrity with minimal deformation, while gelatin capsules became softer and exhibited reduced puncture resistance. Structural analysis revealed greater free volume expansion in HPMC capsules, consistent with their amorphous nature, compared with gelatin’s semi-crystalline matrix. Conclusions: HPMC capsules demonstrated superior humidity resilience, making them more suitable for protecting moisture-sensitive active pharmaceutical ingredients (APIs) in DPI formulations. These findings underline the importance of appropriate storage conditions, as outlined in the Summary of Product Characteristics, to ensure optimal capsule performance throughout patient use. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

20 pages, 4044 KiB  
Article
Pressure Drop Process as a Pretreatment for Enhancing Rehydration of Adzuki Beans (Vigna angularis)
by Suyeon Lee, Sangoh Kim and Seokwon Lim
Foods 2025, 14(13), 2286; https://doi.org/10.3390/foods14132286 - 27 Jun 2025
Viewed by 261
Abstract
Pressure drop processes, such as dissolved inorganic carbon and gun-puffing, have shown utility in the food industry, but their reliance on heat remains a limiting factor. This study involved the development of a processor capable of performing nonthermal pressure drop treatment, which minimizes [...] Read more.
Pressure drop processes, such as dissolved inorganic carbon and gun-puffing, have shown utility in the food industry, but their reliance on heat remains a limiting factor. This study involved the development of a processor capable of performing nonthermal pressure drop treatment, which minimizes thermal changes in food. In addition, its effects on the structure and soaking efficiency of adzuki beans were analyzed. Two improved pressure drop processes were tested: PDA, which applied 1 kgf/cm2 of pressure before release, and PDB, which applied a higher pressure and gradually decreased it in steps of 1 kgf/cm2. Both the PDA and PDB pretreatments enhanced soaking more effectively than heat treatments at 60 °C and 100 °C, whereas no significant effect was observed at 25 °C, indicating a minimal heat requirement for moisture and gas release. Notably, repeated PDB application (more than 40 times) further increased the moisture absorption without thermal influence. Scanning electron microscopy revealed that the PDA, PDB, and heat treatments caused cracks in the hilum region and increased surface wrinkling and mesh structure deformation. These findings demonstrate the potential of pressure drop treatment to improve soaking efficiency through structural modification, supporting its use as an effective nonthermal pretreatment method. Full article
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Study on Dynamic Response Characteristics of Electrical Resistivity of Gas Bearing Coal in Spontaneous Imbibition Process
by Kainian Wang, Zhaofeng Wang, Hongzhe Jia, Shujun Ma, Yongxin Sun, Liguo Wang and Xin Guo
Processes 2025, 13(7), 2028; https://doi.org/10.3390/pr13072028 - 26 Jun 2025
Viewed by 327
Abstract
The capillary force driving the water penetration process in the coal pore network is the key factor affecting the effect of coal seam water injection. The resistivity method can be used to determine the migration characteristics of water in coal. In order to [...] Read more.
The capillary force driving the water penetration process in the coal pore network is the key factor affecting the effect of coal seam water injection. The resistivity method can be used to determine the migration characteristics of water in coal. In order to study the relationship between the resistivity of gas-bearing coal and the migration of water in the process of imbibition, the self-generated imbibition tests of coal under different external water conditions were carried out by using the self-developed gas-bearing coal imbibition experimental platform and the dynamic response characteristics of coal resistivity with external water were obtained. The results show that the water injected into the coal body migrates from bottom to top under the driving of capillary force, and the resistivity of the wetted coal body shows a sudden decline, slow decline, and gradually stable stage change. Through the slice drying method, it is found that the moisture in the coal body is almost uniform after imbibition, and the resistivity method can be used to accurately and quantitatively characterize the moisture content of the coal body. In the axial direction, as water infiltrates layer by layer, the sudden change time of resistivity is delayed with the deepening of the layer. The resistivity of each layer first drops sharply then slows down and tends to stabilize. The stable value of resistivity increases gradually with the depth of the layer. In the radial direction, within the same plane, water first migrates to the centre of the coal body and then begins to spread outwards. The average mutation time and stable value of coal resistivity during spontaneous imbibition decrease with increasing water content. When the water content reaches 10%, the stable value of resistivity tends to be constant, and the relationship between the stable value of coal resistivity and water content conforms to an exponential function. Full article
Show Figures

Figure 1

15 pages, 6426 KiB  
Article
Design of Ready-to-Use “Ball-in-Ball” Staphylococcus aureus Microsphere Based on Novel Cryoprotectant and Drop Freeze-Drying Technology: Effective Preservation and Application
by Zile Wang, Dongdong Chen, Xiaomei Zheng, Yuqing Li, Shaoqian Jiang, Yanfei Chen, Jingjian Jia, Libo Yu and Tao Peng
Foods 2025, 14(12), 2142; https://doi.org/10.3390/foods14122142 - 19 Jun 2025
Viewed by 471
Abstract
Staphylococcus aureus (S. aureus) poses a significant threat to public health and safety, and enhancing the monitoring of S. aureus in food is essential to curb and prevent foodborne transmission. In order to obtain strains for more convenient and rapid use [...] Read more.
Staphylococcus aureus (S. aureus) poses a significant threat to public health and safety, and enhancing the monitoring of S. aureus in food is essential to curb and prevent foodborne transmission. In order to obtain strains for more convenient and rapid use in quality control or quantitative analysis, this study designed a ready-to-use “ball-in-ball” microsphere based on a novel cryoprotectant combined with drop freeze-drying technology. When using a cryoprotectant that contains 1.5% bovine serum albumin, 4.5% trehalose, 8.2% polyethylene glycol 8000, and 4.1% D-mannitol, the survival rate of S. aureus can reach 98.2 ± 2.6%. This cryoprotectant effectively prevents S. aureus from shrinking, deforming, and damaging cell walls. Additionally, it shows desirable protective efficiency for other Gram-positive bacteria. The molding of microspheres is efficient and cost-effective, demonstrating good uniformity and stability without the need for pre-freezing. The moisture content and the count of S. aureus showed no significant changes over 90 days at −20 °C. In the simulated contaminated sample, the recovery rate of S. aureus in milk and green tea was 83.1–93.7%. This study could provide a practical approach to improve the monitoring efficiency of S. aureus and shows potential as a generalized strategy for preparing ready-to-use strains related to food safety. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

23 pages, 2776 KiB  
Article
Comparison of Postoperative Outcomes in 71 Patients Undergoing Cataract Surgery at a Single Center with and Without Preoperative Keratostill Moisturizing Eye Drops
by Piotr Miklaszewski, Anna Maria Gadamer, Dominika Janiszewska-Bil, Anita Lyssek-Boroń, Dariusz Dobrowolski, Edward Wylęgała, Beniamin Oskar Grabarek and Katarzyna Krysik
J. Clin. Med. 2025, 14(12), 4349; https://doi.org/10.3390/jcm14124349 - 18 Jun 2025
Viewed by 454
Abstract
Background/Objectives: Dry eye disease (DED) is a common condition that can significantly impact cataract surgery outcomes. Preoperative management strategies, including the use of moisturizing eye drops, may improve ocular surface health and postoperative recovery. This study aimed to compare postoperative outcomes in [...] Read more.
Background/Objectives: Dry eye disease (DED) is a common condition that can significantly impact cataract surgery outcomes. Preoperative management strategies, including the use of moisturizing eye drops, may improve ocular surface health and postoperative recovery. This study aimed to compare postoperative outcomes in 71 patients undergoing cataract surgery between June 2022 and May 2023 at a single center with and without preoperative keratostill moisturizing eye drops (sterile aqueous 0.3% hydroxypropyl methylcellulose solution) determined using the ocular surface disease index (OSDI), tear break-up time (TBUT), and optical coherence tomography (OCT) at diagnosis, on the day of surgery, and at two weeks postoperatively. Methods: A prospective observational study was conducted on 71 patients undergoing cataract surgery at Saint Barbara Hospital Trauma Center, Sosnowiec, Poland, from June 2022 to May 2023. Patients were randomly assigned to a test group (moisturizing eye drops) or a control group (no preoperative eye drops). The OSDI, TBUT, and OCT were evaluated at the baseline, preoperatively, and postoperatively. Results: The test group showed a significant improvement in OSDI scores (preoperative: 6.34 vs. baseline: 11.81; p < 0.001), which further decreased postoperatively (3.30; p < 0.001). TBUT also significantly increased from baseline to the preoperative visit (6.20 s to 7.97 s; p = 0.002) and remained stable after surgery (7.78 s). In contrast, the control group demonstrated only a minimal postoperative change in OSDI (3.92 to 3.70; p > 0.05) and a significant postoperative decrease in TBUT (5.96 s to 5.69 s; p = 0.864). Only the control group showed a significant postoperative decrease in epithelial thickness in operated eyes (p = 0.021), whereas no significant changes were observed in the test group. Conclusions: The preoperative use of moisturizing eye drops significantly improves the tear film stability, ocular comfort, and epithelial integrity, leading to better postoperative outcomes in cataract surgery patients. Full article
Show Figures

Figure 1

16 pages, 3519 KiB  
Article
Flexible Moisture–Electric Generator Based on Vertically Graded GO–rGO/Ag Films
by Shujun Wang, Geng Li, Jiayue Wen, Jiayun Feng, He Zhang and Yanhong Tian
Materials 2025, 18(12), 2766; https://doi.org/10.3390/ma18122766 - 12 Jun 2025
Viewed by 650
Abstract
Moisture–electricity generators (MEGs) hold great promise for green energy conversion. However, existing devices focus on the need for complex gradient distribution treatments and the improvement in output voltage, overlooking the important role of the graphene oxide (GO) oxidation degree and the response time [...] Read more.
Moisture–electricity generators (MEGs) hold great promise for green energy conversion. However, existing devices focus on the need for complex gradient distribution treatments and the improvement in output voltage, overlooking the important role of the graphene oxide (GO) oxidation degree and the response time and recovery time in practical application. In this work, we develop printed MEGs by synthesizing reduced graphene oxide/silver nanoparticle (rGO/Ag) composites and controlling the GO oxidation degree. The rGO/Ag layer serves as a functional component that enhances cycling stability and shortens the recovery time. Additionally, compared to conventional rigid-structure devices, these flexible MEGs can be produced by inkjet printing and drop-casting techniques. A 1 cm2 MEG can generate a voltage of up to 60 mV within 2.4 s. Notably, higher output voltages can be easily achieved by connecting multiple MEG units in series, with 10 units producing 200 mV even under low relative humidity (RH). This work presents a low-cost, highly flexible, lightweight, and scalable power generator, paving the way for broader applications of GO and further advancement of MEG technology in wearable electronics, respiratory monitoring, and Internet of Things applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

26 pages, 4446 KiB  
Article
Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties
by Halima Belhadad, Nadir Bellel and Ana Bras
Buildings 2025, 15(11), 1950; https://doi.org/10.3390/buildings15111950 - 4 Jun 2025
Viewed by 517
Abstract
This study investigates the potential of thermally treated olive husk (OH)—a heterogeneous agro-industrial by-product comprising olive stones, pulp, and fibrous residues—as a multifunctional component in lightweight bio-concrete. Uniquely, this work harnesses the intrinsic dual nature of OH as both a fibrous reinforcement and [...] Read more.
This study investigates the potential of thermally treated olive husk (OH)—a heterogeneous agro-industrial by-product comprising olive stones, pulp, and fibrous residues—as a multifunctional component in lightweight bio-concrete. Uniquely, this work harnesses the intrinsic dual nature of OH as both a fibrous reinforcement and a porous aggregate, without further fractionation, to evaluate its influence on the hygrothermal and mechanical behavior of cementitious composites. While prior studies have often focused selectively on thermal conductivity, this work provides a comprehensive assessment of all major thermal parameters; including diffusivity, effusivity, and specific heat capacity; offering deeper insights into the full thermal behavior of bio-based concretes. OH was incorporated at 0%, 10%, and 20% by weight, and the resulting concretes were subjected to a comprehensive characterization of their thermal, hygric, mechanical, and microstructural properties. Thermal performance metrics included conductivity, specific heat capacity, diffusivity, effusivity, time lag, and predicted energy savings. Hygric behavior was assessed through the moisture buffering value (MBV), while density, porosity, and mechanical strengths were also evaluated. At 20% OH content, thermal conductivity decreased to 0.405 W/m·K (a 72% reduction), thermal diffusivity dropped by 87%, and thermal effusivity reached 554 W·s0.5/m2·K, collectively enhancing thermal inertia and increasing the time lag by 77% (to 2.32 h). MBVs improved to 2.18 g/m2·%RH, rated as “Excellent” for indoor moisture regulation. Despite the higher porosity, the bio-concrete maintained adequate mechanical integrity, with compressive and flexural strengths of 11.68 MPa and 3.58 MPa, respectively, attributed to the crack-bridging action of the fibrous inclusions. Microstructural analysis (SEM/XRD) revealed improved paste continuity and denser C–S–H formation, attributed to enhanced matrix compatibility following oil removal via thermal pre-treatment. These findings demonstrate the viability of OH as a new bio-based, multifunctional additive for fabricating thermally efficient, hygroscopically active, and structurally sound concretes suitable for sustainable construction. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

19 pages, 10561 KiB  
Article
Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer
by Anna Williams, Ian Hamerton and Giuliano Allegri
Polymers 2025, 17(11), 1503; https://doi.org/10.3390/polym17111503 - 28 May 2025
Cited by 1 | Viewed by 616
Abstract
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to [...] Read more.
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to understand their performance in ‘hot/wet’ conditions, as these are the conditions of their envisaged applications. One of the key failure mechanisms within composites is interlaminar fracture, commonly referred to as delamination. The environmental effects of moisture and elevated temperatures on interlaminar fracture toughness are therefore essential design considerations for laminated aerospace-grade composite materials. IM7/8552, a toughened epoxy/carbon fibre reinforced polymer, was experimentally characterised in both ‘Dry’ and ‘Wet’ conditions at 23 °C and 90 °C. A moisture uptake study was conducted during the ‘Wet’ conditioning of the material in a 70 °C/85% relative humidity environment. Dynamic mechanical thermal analysis was carried out to determine the effect of moisture on the glass transition temperature of the material. Mode I initiation and propagation fracture properties were determined using double cantilevered beam specimens and Mode II initiation fracture properties were deduced using end-notched flexure specimens. The effects of precracking and the methodology of high-temperature testing are discussed in this report. Mode I interlaminar fracture toughness, GIC, was found to increase with elevated temperatures and moisture content, with GIC=0.205kJ/m2 in ‘Dry 23 °C’ conditions increasing by 26% to GIC=0.259kJ/m2 in ‘Wet 90 °C’ conditions, demonstrating that the material exhibited its toughest behaviour in ‘hot/wet’ conditions. Increased ductility due to matrix softening and fibre bridging caused by temperature and moisture were key contributors to the elevated GIC values. Mode II interlaminar fracture toughness, GIIC, was observed to decrease most significantly when moisture or elevated temperature was applied individually, with the combination of ‘hot/wet’ conditions resulting in an 8% drop in GIIC, with GIIC=0.586kJ/m2 in ‘Dry 23 °C’ conditions and GIIC=0.541kJ/m2 in ‘Wet 90 °C’ conditions. The coupled effect of fibre-matrix interface degradation and increased plasticity due to moisture resulted in a relatively small knockdown on GIIC compared to GIC in ‘hot/wet’ conditions. Fractographic studies of the tested specimens were conducted using scanning electron microscopy. Noteworthy surface topography features were observed on specimens of different fracture modes, moisture saturation levels, and test temperature conditions, including scarps, cusps, broken fibres and river markings. The qualitative features identified during microscopy are critically examined to extrapolate the differences in quantitative results in the various environmental conditions. Full article
Show Figures

Graphical abstract

19 pages, 3201 KiB  
Article
Effect of Moisture Content and Normal Impact Velocity on the Coefficient of Restitution of ‘Memory’ Wheat Grains
by Jacek Marcinkiewicz, Grzegorz Waldemar Ślaski and Mikołaj Spadło
Appl. Sci. 2025, 15(11), 6055; https://doi.org/10.3390/app15116055 - 28 May 2025
Viewed by 306
Abstract
This study analyses the dynamic impact between winter wheat grains (‘Memory’ cultivar) and a flat metal surface under normal collisions. Four moisture levels (7%, 10%, 13% and 16%) and impact velocities from 1.0 to 4.5 m·s−1 were chosen to reflect conditions in [...] Read more.
This study analyses the dynamic impact between winter wheat grains (‘Memory’ cultivar) and a flat metal surface under normal collisions. Four moisture levels (7%, 10%, 13% and 16%) and impact velocities from 1.0 to 4.5 m·s−1 were chosen to reflect conditions in agricultural machinery. A custom test rig—comprising a transparent drop guide, a high-sensitivity piezoelectric force sensor and a high-speed camera—recorded grain velocity by vision techniques and contact force at 1 MHz. Force–time curves were examined to evaluate restitution velocity, the coefficient of restitution (CoR) and the effect of moisture on elastic–plastic deformation. CoR decreased non-linearly as impact velocity rose from 1.0 to 5.0 m·s−1, and moisture content increased from 7% to 16%, falling from ≈ 0.60 to 0.40–0.50. Grains with higher moisture struck at higher velocities showed greater plastic deformation, longer contact times and intensified energy dissipation, making them more susceptible to internal damage. The data provide validated reference values for discrete element method (DEM) calibration and will assist engineers in designing grain-handling equipment that minimises mechanical damage during harvesting, conveying and processing. Full article
Show Figures

Figure 1

20 pages, 2216 KiB  
Article
Assessing the Physico-Mechanical Properties of Three Date Fruit Varieties for Conserving the Keeping and Appearance Qualities
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(11), 1838; https://doi.org/10.3390/foods14111838 - 22 May 2025
Cited by 1 | Viewed by 486
Abstract
The physico-mechanical properties of date fruit varieties can indicate their quality and freshness. These properties, which include firmness, moisture content, and mechanical resistance, are closely linked to the fruit’s overall quality and can be used to assess its ripeness and suitability for consumption. [...] Read more.
The physico-mechanical properties of date fruit varieties can indicate their quality and freshness. These properties, which include firmness, moisture content, and mechanical resistance, are closely linked to the fruit’s overall quality and can be used to assess its ripeness and suitability for consumption. Therefore, the current study evaluated the physico-mechanical properties of three date varieties—Sukkari, Khalas, and Saqie—across different ripening stages to enhance food quality and optimize postharvest handling. The study uniquely focused on how ripening stages affect the stress–strain behavior of dates, offering new insights into their mechanical resistance, deformability, and structural stability, all of which are critical parameters for maintaining food quality during storage, transportation, and processing. Significant changes in physical characteristics, including size, mass, moisture content, and density, were observed as the fruit progressed through ripening stages. Sukkari showed the most notable decrease in moisture content, from 61.8% at the Khalal stage to 17.3% at the Tamar stage, resulting in softening and reduced mechanical resistance, potentially impacting shelf life and consumer acceptance. Khalas exhibited a more gradual decline in mechanical properties, with moisture content dropping to 24.6%. At the same time, Saqie demonstrated minimal changes in mechanical properties and moisture content, suggesting better structural and nutritional quality retention. Additionally, the dynamic coefficient of friction increased with temperature and pressure at the Tamr stage, with Sukkari showing the highest values (up to 0.496), followed by Khalas (up to 0.451) and Saqie (up to 0.406). This study introduced the concept of variety-specific differences in frictional behavior, providing valuable insights for improving mechanical processing, reducing physical damage, and preserving date fruits’ nutritional and sensory quality. In conclusion, findings highlight the importance of variety-specific mechanical profiling in improving processing protocols, reducing postharvest losses, and maintaining the nutritional and sensory quality of date fruits for industrial-scale operations. Full article
Show Figures

Figure 1

12 pages, 953 KiB  
Article
Effects of Saturated Soil Moisture on Fall Armyworm Pupal Development
by Tianqi Tian, Yingyan Zhai, Zhijie Chen, Yiwei Yang and Bo Hong
Insects 2025, 16(5), 521; https://doi.org/10.3390/insects16050521 - 14 May 2025
Cited by 1 | Viewed by 534
Abstract
Spodoptera frugiperda, known as the fall armyworm (FAW), a major invasive pest in corn, is rapidly spreading all over the world. Similarly to other Lepidoptera insects, FAW pupae usually develop in soil. Therefore, the soil moisture level is expected to be an [...] Read more.
Spodoptera frugiperda, known as the fall armyworm (FAW), a major invasive pest in corn, is rapidly spreading all over the world. Similarly to other Lepidoptera insects, FAW pupae usually develop in soil. Therefore, the soil moisture level is expected to be an important factor impacting their growth. In order to study the development and emergence of FAW pupae in a 100% soil moisture environment, three factors were selected for experiments in this study: the duration of saturated (100%) moisture treatment (0 h, 24 h, 48 h, and 72 h), the initial soil moisture before the larvae entered the soil (0 and 50%), and pupal age (1 day, 4 days, and 7 days). We discovered that (1) the emergence percentage of FAW pupae decreased with an increase in the saturated soil moisture treatment time, and the emergence percentage dropped to 0 after 72 h of continuous treatment; (2) the younger the age of FAW pupae, the more susceptible they were to being affected by saturated soil moisture treatment, and the emergence percentage of 7-day-old pupae was higher than that of 1-day-old pupae; and (3) FAW larvae that pupated in dry soil (0% moisture) had pupae with higher survival rates under subsequent 100% soil moisture stress, whereas those pupating in moderately moist soil (50% moisture) had lower survival rates under the same condition. Our study showed that the initial moisture level of the soil and the length of time the soil is saturated have a significant impact on FAW pupal development. The three factors of excessive stress time, wet initial soil moisture (50%), and lower pupal age ultimately lead to a decrease in the emergence percentage and survival rate of FAW pupae. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop