Comparison of Postoperative Outcomes in 71 Patients Undergoing Cataract Surgery at a Single Center with and Without Preoperative Keratostill Moisturizing Eye Drops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
Cataract Staging
2.3. Participant Exclusion Criteria
2.4. Group Assignment and Randomization
2.5. Schedule
Measurement Tools and OCT Parameters
2.6. OSDI Questionnaire
Modification of the OSDI Questionnaire
2.7. TBUT Questionnaire
2.8. Statistical Environment
2.8.1. Robust Linear Mixed-Effects Model (RLMM)
2.8.2. Correlation Analyses
2.8.3. Sample Size Analysis
- Zα/2 = 1.96Zα/2 = 1.96 for a two-tailed test at α = 0.05.
- Zβ = 0.84Zβ = 0.84 for 80% power.
- d = Effect Size = 0.5d = Effect Size = 0.5.
- σσ = standard deviation from similar studies.
3. Results
3.1. Patient Demographics and Baseline Characteristics of Study Groups
3.2. Baseline Medical Parameters: OSDI, TBUT, and Corneal Epithelial Thickness
3.3. Gender-Based Variability in OSDI Improvement Following Eye Drop Use
3.3.1. Overview of OSDI Analysis
3.3.2. Effect of Age and Gender on OSDI
3.3.3. OSDI Changes over Time—Estimated Marginal Means (EMMS) Analysis
3.3.4. OSDI Contrast Analysis—Differences over Time Between Groups
3.3.5. Comparative Statistical Analysis of OSDI Across Groups and Time Point
3.4. Overview of TBUT Analysis
3.4.1. Effect of Age and Gender on TBUT
3.4.2. TBUT Changes in Non-Operated Eyes
3.4.3. TBUT Changes in Operated Eyes
3.4.4. Comparative Analysis of TBUT Across Study Groups
3.5. Overview of Corneal Epithelial Thickness Analysis
3.5.1. Effect of Age and Gender on Corneal Epithelial Thickness
3.5.2. Changes in Corneal Epithelial Thickness over Time in Non-Operative Eyes
3.5.3. Changes in Corneal Epithelial Thickness over Time in Operative Eyes
3.6. Contrast Analysis—Differences over Time Between Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fachir, F.S. Association between Gender and Utilization of Cataract Surgical Services: A Systematic Review and Meta-Analysis. Sriwij. J. Ophthalmol. 2023, 6, 237–243. [Google Scholar] [CrossRef]
- Giannaccare, G.; Barabino, S.; Di Zazzo, A.; Villani, E. Preventing and Managing Iatrogenic Dry Eye Disease during the Entire Surgical Pathway: A Study Focusing on Patients Undergoing Cataract Surgery. J. Clin. Med. 2024, 13, 748. [Google Scholar] [CrossRef] [PubMed]
- Brunet, S.; Canadanovic, V.; Babic, N.; Miljković, A.; Jovanović, S.; Barisic, S. Dry Eye Syndrome and Cataract Surgery. Med. Pregl. 2019, 72, 105–109. [Google Scholar] [CrossRef]
- Garg, P.; Gupta, A.; Tandon, N.; Raj, P. Dry Eye Disease after Cataract Surgery: Study of Its Determinants and Risk Factors. Turk. J. Ophthalmol. 2020, 50, 133–142. [Google Scholar] [CrossRef]
- Shaaban, Y.M.; Aziz, B.F. Tear Film Assessment before and after Phacoemulsification in Patients with Age-Related Cataracts. BMC Ophthalmol. 2024, 24, 280. [Google Scholar] [CrossRef]
- Ishrat, S.; Nema, N.; Chandravanshi, S.C.L. Incidence and Pattern of Dry Eye after Cataract Surgery. Saudi J. Ophthalmol. 2019, 33, 34–40. [Google Scholar] [CrossRef]
- Nowomiejska, K.; Lukasik, P.; Brzozowska, A.; Toro, M.D.; Sedzikowska, A.; Bartosik, K.; Rejdak, R. Prevalence of Ocular Demodicosis and Ocular Surface Conditions in Patients Selected for Cataract Surgery. J. Clin. Med. 2020, 9, 3069. [Google Scholar] [CrossRef]
- Mencucci, R.; Vignapiano, R.; Rubino, P.; Favuzza, E.; Cantera, E.; Aragona, P.; Rolando, M. Iatrogenic Dry Eye Disease: Dealing with the Conundrum of Post-Cataract Discomfort. A P.I.C.A.S.S.O. Board Narrative Review. Ophthalmol. Ther. 2021, 10, 211–223. [Google Scholar] [CrossRef]
- Naderi, M.; Jadidi, K.; Mosavi, S.; Daneshi, S. Transepithelial Photorefractive Keratectomy for Low to Moderate Myopia in Comparison with Conventional Photorefractive Keratectomy. J. Ophthalmic Vis. Res. 2016, 11, 358. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Xue, K.; Xie, J.; Xie, G.; Gu, S.; Zhao, Y. Preoperative Management of MGD with Vectored Thermal Pulsation before Cataract Surgery: A Prospective Controlled Clinical Trial. Semin. Ophthalmol. 2021, 36, 2–8. [Google Scholar] [CrossRef]
- Favuzza, E.; Mencucci, R.; Cennamo, M.; Vicchio, L.; Giansanti, F. Protecting the Ocular Surface in Cataract Surgery: The Efficacy of the Perioperative Use of a Hydroxypropyl Guar and Hyaluronic Acid Ophthalmic Solution. Clin. Ophthalmol. 2020, 14, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Donthineni, P.; Deshmukh, R.; Ramamurthy, C.; Sangwan, V.; Mehta, J.; Basu, S. Management of Cataract in Dry Eye Disease: Preferred Practice Pattern Guidelines. Indian J. Ophthalmol. 2023, 71, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Shokoohi-Rad, S.; Javaheri, S.Z.H.; Malekabad, F.Z.; Khakshoor, H.; Daluee, M.K. Effects of Preoperative Doses of Betamethasone Acetate 0.1% on Dry Eye Control after Cataract Surgery. Indian J. Ophthalmol. 2020, 68, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Hovanesian, J.; Epitropoulos, A.; Donnenfeld, E.D.; Holladay, J.T. The Effect of Lifitegrast on Refractive Accuracy and Symptoms in Dry Eye Patients Undergoing Cataract Surgery. Clin. Ophthalmol. 2020, 14, 2709–2716. [Google Scholar] [CrossRef]
- Wang, M.T.M.; Xue, A.L.; Craig, J.P. Comparative Evaluation of 5 Validated Symptom Questionnaires as Screening Instruments for Dry Eye Disease. JAMA Ophthalmol. 2019, 137, 228–229. [Google Scholar] [CrossRef]
- Chatterjee, S.; Agrawal, D.; Chaturvedi, P. Ocular Surface Disease Index© and the Five-Item Dry Eye Questionnaire: A Comparison in Indian Patients with Dry Eye Disease. Indian J. Ophthalmol. 2021, 69, 2396–2400. [Google Scholar] [CrossRef]
- Paugh, J.R.; Tse, J.; Nguyen, T.; Sasai, A.; Chen, E.; De Jesus, M.T.; Kwan, J.; Nguyen, A.L.; Farid, M.; Garg, S. Efficacy of the Fluorescein Tear Breakup Time Test in Dry Eye. Cornea 2020, 39, 92–98. [Google Scholar] [CrossRef]
- Balyen, L. Evaluation of the Relationship Between Ocular Surface Disease Index and Dry Eye Test Parameters in Computer Users. Kafkas J. Med. Sci. 2019, 9, 169. [Google Scholar] [CrossRef]
- Greco, G.; Pistilli, M.; Asbell, P.A.; Maguire, M.G.; Dry Eye Assessment and Management Study Research Group. Association of Severity of Dry Eye Disease with Work Productivity and Activity Impairment in the Dry Eye Assessment and Management Study. Ophthalmology 2021, 128, 850–856. [Google Scholar] [CrossRef]
- Edorh, N.A.; El Maftouhi, A.; Djerada, Z.; Arndt, C.; Denoyer, A. New Model to Better Diagnose Dry Eye Disease Integrating OCT Corneal Epithelial Mapping. Br. J. Ophthalmol. 2022, 106, 1488–1495. [Google Scholar] [CrossRef]
- Abou Shousha, M.; Wang, J.; Kontadakis, G.; Feuer, W.; Canto, A.P.; Hoffmann, R.; Perez, V.L. Corneal Epithelial Thickness Profile in Dry-Eye Disease. Eye 2020, 34, 915–922. [Google Scholar] [CrossRef]
- Kasetsuwan, N.; Satitpitakul, V.; Changul, T.; Jariyakosol, S. Incidence and Pattern of Dry Eye after Cataract Surgery. PLoS ONE 2013, 8, e78657. [Google Scholar] [CrossRef] [PubMed]
- Koller, M. Robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models. J. Stat. Softw. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- Koller, M. Robust Estimation of Linear Mixed Models. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2013. [Google Scholar]
- Bland, J.M.; Altman, D.G. Calculating Correlation Coefficients with Repeated Observations: Part 2—Correlation between Subjects. BMJ 1995, 310, 633. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Calculating Correlation Coefficients with Repeated Observations: Part 1—Correlation within Subjects. BMJ 1995, 310, 446. [Google Scholar] [CrossRef]
- Bakdash, J.Z.; Marusich, L.R. Rmcorr: Repeated Measures Correlation. Front. Psychol. 2017, 8, 456, Erratum in Front. Psychol. 2019, 10, 1201. [Google Scholar] [CrossRef]
- Zamora, M.G.; Maldonado, M.J.; Caballero, E.F. Short-Term Changes in Ocular Surface Signs and Symptoms after Phacoemulsification. Eur. J. Ophthalmol. 2020, 30, 1301–1307. [Google Scholar] [CrossRef]
- Yu, Y.; Yao, K.; Hua, H.; Wu, M.; Yu, Y.; Yu, W.; Lai, K. Evaluation of Dry Eye after Femtosecond Laser-Assisted Cataract Surgery. J. Cataract. Refract. Surg. 2015, 41, 2614–2623. [Google Scholar] [CrossRef]
- Shao, D.; Wang, H.; Zhu, X.; Sun, W.; Cheng, P.; Chen, W. Effects of Femtosecond Laser-Assisted Cataract Surgery on Dry Eye. Exp. Ther. Med. 2018, 16, 5073–5078. [Google Scholar] [CrossRef]
- Fogagnolo, P.; Favuzza, E.; Marchina, D.; Cennamo, M.; Vignapiano, R.; Quisisana, C.; Rossetti, L.; Mencucci, R. New Therapeutic Strategy and Innovative Lubricating Ophthalmic Solution in Minimizing Dry Eye Disease Associated with Cataract Surgery: A Randomized Prospective Study. Adv. Ther. 2020, 37, 1664–1674. [Google Scholar] [CrossRef]
- Mencucci, R.; Giansanti, F.; Favuzza, E.; Decandia, G.; Cennamo, M. Hyaluronic Acid/Trehalose Ophthalmic Solution in Reducing Post-Cataract Surgery Dry Eye Signs and Symptoms: A Prospective Interventional Randomized Open-Label Study. J. Clin. Med. 2021, 10, 4699. [Google Scholar] [CrossRef]
- Yusufoğlu, E.; Keser, S. The Effect of Sodium Hyaluronate on Dry Eye and Corneal Epithelial Thickness Following Cataract Surgery. Int. Ophthalmol. 2024, 44, 211. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Bonilla, J.C.; Del Olmo-Jimeno, A.; Llovet-Osuna, F.; Hernández-Galilea, E. A Randomized Crossover Study Comparing Trehalose/Hyaluronate Eyedrops and Standard Treatment: Patient Satisfaction in the Treatment of Dry Eye Syndrome. Ther. Clin. Risk Manag. 2015, 11, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Daull, P.; Raymond, E.; Feraille, L.; Garrigue, J.-S. Safety and Tolerability of Overdosed Artificial Tears by Abraded Rabbit Corneas. J. Ocul. Pharmacol. Ther. 2018, 34, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.A.; Rocha, E.M.; Aragona, P.; Clayton, J.A.; Ding, J.; Golebiowski, B.; Hampel, U.; McDermott, A.M.; Schaumberg, D.A.; Srinivasan, S.; et al. TFOS DEWS II Sex Gender and Hormones Report. Ocul. Surf. 2017, 15, 284–333. [Google Scholar] [CrossRef]
- Jones, L.; Downie, L.E.; Korb, D.; Benitez-Del-Castillo, J.M.; Dana, R.; Deng, S.X.; Dong, P.N.; Geerling, G.; Hida, R.Y.; Liu, Y.; et al. TFOS DEWS II Management and Therapy Report. Ocul. Surf. 2017, 15, 575–628. [Google Scholar] [CrossRef]
- Starr, C.E.; Gupta, P.K.; Farid, M.; Beckman, K.A.; Chan, C.C.; Yeu, E.; Gomes, J.A.P.; Ayers, B.D.; Berdahl, J.P.; Holland, E.J.; et al. An Algorithm for the Preoperative Diagnosis and Treatment of Ocular Surface Disorders. J. Cataract. Refract. Surg. 2019, 45, 669–684. [Google Scholar] [CrossRef]
- Chuang, J.; Tong, L.; Shih, K.C.; Chan, T.C.; Wan, K.H.; Jhanji, V. Preoperative Optimization of Ocular Surface Disease before Cataract Surgery. J. Cataract. Refract. Surg. 2017, 43, 1596–1607. [Google Scholar] [CrossRef]
- Biela, K.; Mackiewicz, J.; Winiarczyk, M.; Borowicz, D. Dry Eye Disease as a Cause of Refractive Errors After Cataract Surgery—A Systematic Review. Clin. Ophthalmol. 2023, 17, 1629–1638. [Google Scholar] [CrossRef]
- Röggla, V.; Menapace, R.; Leydolt, C.; Schartmüller, D.; Schwarzenbacher, L.; Meyer, E.; Abela-Formanek, C. Influence of Artificial Tears on Keratometric Measurements in Cataract Patients. Am. J. Ophthalmol. 2021, 221, 1–8. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.H.; Kim, M.K.; Ha, Y.; Paik, H.J. Improved Accuracy of Intraocular Lens Power Calculation by Preoperative Management of Dry Eye Disease. BMC Ophthalmol. 2021, 21, 364. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.; Yang, L.; Ning, X.; Liu, J. Effect of Dry Eye on the Reliability of Keratometry for Cataract Surgery Planning. J. Français Ophtalmol. 2024, 47, 103999. [Google Scholar] [CrossRef] [PubMed]
- Wanten, J.C.; Bauer, N.J.C.; Berendschot, T.T.J.M.; van den Biggelaar, F.J.H.M.; Nuijts, R.M.M.A. Dissatisfaction after Implantation of Extended Depth-of-Focus Intraocular Lenses. J. Cataract. Refract. Surg. 2025, 51, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Rajendraprasad, R.M.; Kwatra, G.; Batra, N. Carboxymethyl Cellulose versus Hydroxypropyl Methylcellulose Tear Substitutes for Dry Eye Due to Computer Vision Syndrome: Comparison of Efficacy and Safety. Int. J. Appl. Basic Med. Res. 2021, 11, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Mysen, O.M.B.; Hynnekleiv, L.; Magnø, M.S.; Vehof, J.; Utheim, T.P. Review of Hydroxypropyl Methylcellulose in Artificial Tears for the Treatment of Dry Eye Disease. Acta Ophthalmol. 2024, 102, 881–896. [Google Scholar] [CrossRef]
- Zhao, T.; Jiang, X.; Hao, R.; Ding, Y.; Jing, D.; Li, X. Efficacy of 2% Hydroxypropyl Methylcellulose and Bandage Contact Lens for the Management of Dry Eye Disease after Cataract Surgery. J. Ophthalmol. 2024, 2024, 8415425. [Google Scholar] [CrossRef]
- Sabur, H.; Acar, M. Dexpanthenol/Sodium Hyaluronate Eye Drops for Corneal Epithelial Healing Following Corneal Cross-Linking in Patients with Keratoconus. Int. Ophthalmol. 2023, 43, 3461–3469. [Google Scholar] [CrossRef]
- Sabur, H.; Arslan, N.; Acar, M. Efficacy of Dexpanthenol/Sodium Hyaluronate Fixed Combination Versus Sodium Hyaluronate Eye Drops for the Treatment of Dry Eye Disease and Ocular Surface Inflammation Following Cataract Surgery: A Comparative Study. Turk. Klin. J. Ophthalmol. 2023, 32, 81–89. [Google Scholar] [CrossRef]
- Köppe, M.K.; Auffarth, G.U.; Hallak, M.K.; Stengele, A.L.; Khoramnia, R. Evaluation of Dry Eye Treatment with Sodium Hyaluronate- and Dexpanthenol-Containing Eye Drops on Ocular Surface Improvement after Cataract Surgery. Diagnostics 2024, 14, 1097. [Google Scholar] [CrossRef]
- Tsubota, K.; Yokoi, N.; Watanabe, H.; Dogru, M.; Kojima, T.; Yamada, M.; Kinoshita, S.; Kim, H.-M.; Tchah, H.-W.; Hyon, J.Y.; et al. A New Perspective on Dry Eye Classification: Proposal by the Asia Dry Eye Society. Eye Contact Lens 2020, 46 (Suppl. S1), S2–S13. [Google Scholar] [CrossRef]
- Craig, J.P.; Nelson, J.D.; Azar, D.T.; Belmonte, C.; Bron, A.J.; Chauhan, S.K.; de Paiva, C.S.; Gomes, J.A.P.; Hammitt, K.M.; Jones, L.; et al. TFOS DEWS II Report Executive Summary. Ocul. Surf. 2017, 15, 802–812. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Travé Huarte, S.; Jones, L.; Craig, J.P.; Wang, M.T.M. Clinical Practice Patterns in the Management of Dry Eye Disease: A TFOS International Survey. Ocul. Surf. 2021, 21, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H. TFOS DEWS II Diagnostic Methodology Report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-W.; Hsu, S.-L.; Hsu, C.-C. Real-World Practice Patterns for Dry Eye Diagnosis: A Multicenter Observational Study in Taiwan. Jpn. J. Ophthalmol. 2025, 69, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Larmo, P.S.; Järvinen, R.L.; Setälä, N.L.; Yang, B.; Viitanen, M.H.; Engblom, J.R.; Tahvonen, R.L.; Kallio, H.P. Oral Sea Buckthorn Oil Attenuates Tear Film Osmolarity and Symptoms in Individuals with Dry Eye. J. Nutr. 2010, 140, 1462–1468. [Google Scholar] [CrossRef]
- Palkovits, S.; Schlatter, A.; Ruiss, M.; Fisus, A.; Bayer, N.; Kofler, P.; Findl, O. Role of Postoperative Lubrication in Preventing Dry Eye after Cataract Surgery in High- and Low-Risk Patients Stratified by Ocular Surface Frailty Index. PLoS ONE 2025, 20, e0312712. [Google Scholar] [CrossRef]
Age Group/Gender | Total (n = 71) | Control Group (n = 34) | Test Group (n = 37) |
---|---|---|---|
30–49 | 2 | 1 | 1 |
50–59 | 3 | 2 | 0 |
60–69 | 19 | 9 | 10 |
70–79 | 30 | 13 | 17 |
80–89 | 18 | 9 | 9 |
Female | 44 (62%) | 21 (61.8%) | 23 (62.2%) |
Male | 27 (38%) | 13 (28.2%) | 14 (37.8%) |
Parameter | Control (n = 34) | Test (n = 37) | p-Value |
---|---|---|---|
OSDI score | 3.1 (0.0, 6.9) | 12.5 (3.1, 21.4) | 0.002 |
TBUT (s) | 6.0 (4.3, 10.0) | 5.0 (4.0, 9.0) | 0.410 |
Corneal Epithelial Thickness (μm) | 54.0 (52.0, 56.0) | 53.0 (50.0, 57.0) | 0.180 |
Group | Time | EMM | SE | 95% CI (Lower Limit) | 95% CI (Upper Limit) |
---|---|---|---|---|---|
Control | Baseline | 3.92 | 1.13 | 1.71 | 6.13 |
Control | Preoperative | 4.88 | 1.13 | 2.67 | 7.09 |
Control | Postoperative | 3.70 | 1.13 | 1.49 | 5.91 |
Test | Baseline | 11.81 | 1.11 | 9.63 | 13.98 |
Test | Preoperative | 6.34 | 1.11 | 4.17 | 8.52 |
Test | Postoperative | 3.30 | 1.11 | 1.12 | 5.47 |
Group | Contrast | Estimate | SE | z | p | d |
---|---|---|---|---|---|---|
Control | Baseline–Preoperative | −0.96 | 0.65 | −1.47 | 0.305 | −0.16 |
Control | Baseline–Postoperative | 0.22 | 0.65 | 0.34 | 0.938 | 0.04 |
Control | Preoperative–Postoperative | 1.18 | 0.65 | 1.81 | 0.165 | 0.20 |
Test | Baseline–Preoperative | 5.47 | 0.62 | 8.77 | <0.001 | 0.94 |
Test | Baseline–Postoperative | 8.51 | 0.62 | 13.65 | <0.001 | 1.46 |
Test | Preoperative–Postoperative | 3.04 | 0.62 | 4.88 | <0.001 | 0.52 |
Contrast | Time | Estimate | SE | z | p-Value | d |
---|---|---|---|---|---|---|
Control-Test | Baseline | −7.89 | 1.57 | −5.03 | <0.001 | −1.36 |
Control-Test | Preoperative | −1.47 | 1.57 | −0.93 | 0.350 | −0.25 |
Control-Test | Postoperative | 0.40 | 1.57 | 0.25 | 0.799 | 0.07 |
Eye Status | Group | Contrast | Est. | SE | z | p | d |
---|---|---|---|---|---|---|---|
Non-operated | Control | Baseline–Preoperative | −0.05 | 0.54 | −0.10 | 0.994 | −0.01 |
Non-operated | Control | Baseline–Postoperative | −0.95 | 0.54 | −1.76 | 0.182 | −0.26 |
Non-operated | Control | Preoperative–Postoperative | −0.90 | 0.54 | −1.66 | 0.220 | −0.24 |
Non-operated | Test | Baseline–Preoperative | −0.93 | 0.52 | −1.80 | 0.169 | −0.25 |
Non-operated | Test | Baseline–Postoperative | −0.65 | 0.52 | −1.26 | 0.419 | −0.18 |
Non-operated | Test | Preoperative–Postoperative | 0.28 | 0.52 | 0.54 | 0.850 | 0.08 |
Operated | Control | Baseline–Preoperative | 0.56 | 0.54 | 1.03 | 0.555 | 0.15 |
Operated | Control | Baseline–Postoperative | 1.45 | 0.54 | 2.67 | 0.021 | 0.39 |
Operated | Control | Preoperative–Postoperative | 0.89 | 0.54 | 1.64 | 0.230 | 0.24 |
Operated | Test | Baseline–Preoperative | 0.08 | 0.52 | 0.16 | 0.987 | 0.02 |
Operated | Test | Baseline–Postoperative | 0.71 | 0.52 | 1.37 | 0.354 | 0.19 |
Operated | Test | Preoperative–Postoperative | 0.63 | 0.52 | 1.22 | 0.442 | 0.17 |
Eye Status | Group | Contrast | Estimate (Est.) | Standard Error (SE) | z | p | Cohen’s d (d) |
---|---|---|---|---|---|---|---|
Non-Operated | Control | Baseline–Preoperative | 0.20 | 0.53 | 0.38 | 0.922 | 0.13 |
Non-Operated | Control | Baseline–Postoperative | −0.59 | 0.53 | −1.12 | 0.504 | −0.38 |
Non-Operated | Control | Preoperative–Postoperative | −0.80 | 0.53 | −1.50 | 0.291 | -0.50 |
Non-Operated | Test | Baseline–Preoperative | −0.75 | 0.51 | −1.47 | 0.304 | −0.47 |
Non-Operated | Test | Baseline–Postoperative | −0.72 | 0.51 | −1.41 | 0.336 | −0.45 |
Non-Operated | Test | Preoperative–Postoperative | 0.03 | 0.51 | 0.06 | 0.998 | 0.02 |
Operated | Control | Baseline–Preoperative | 0.82 | 0.53 | 1.54 | 0.272 | 0.52 |
Operated | Control | Baseline–Postoperative | 1.09 | 0.53 | 2.05 | 0.099 | 0.69 |
Operated | Control | Preoperative–Postoperative | 0.27 | 0.53 | 0.51 | 0.864 | 0.17 |
Operated | Test | Baseline–Preoperative | −1.76 | 0.51 | −3.46 | 0.002 | −1.12 |
Operated | Test | Baseline–Postoperative | −1.58 | 0.51 | −3.10 | 0.005 | −1.00 |
Operated | Test | Preoperative–Postoperative | 0.18 | 0.51 | 0.36 | 0.931 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miklaszewski, P.; Gadamer, A.M.; Janiszewska-Bil, D.; Lyssek-Boroń, A.; Dobrowolski, D.; Wylęgała, E.; Grabarek, B.O.; Krysik, K. Comparison of Postoperative Outcomes in 71 Patients Undergoing Cataract Surgery at a Single Center with and Without Preoperative Keratostill Moisturizing Eye Drops. J. Clin. Med. 2025, 14, 4349. https://doi.org/10.3390/jcm14124349
Miklaszewski P, Gadamer AM, Janiszewska-Bil D, Lyssek-Boroń A, Dobrowolski D, Wylęgała E, Grabarek BO, Krysik K. Comparison of Postoperative Outcomes in 71 Patients Undergoing Cataract Surgery at a Single Center with and Without Preoperative Keratostill Moisturizing Eye Drops. Journal of Clinical Medicine. 2025; 14(12):4349. https://doi.org/10.3390/jcm14124349
Chicago/Turabian StyleMiklaszewski, Piotr, Anna Maria Gadamer, Dominika Janiszewska-Bil, Anita Lyssek-Boroń, Dariusz Dobrowolski, Edward Wylęgała, Beniamin Oskar Grabarek, and Katarzyna Krysik. 2025. "Comparison of Postoperative Outcomes in 71 Patients Undergoing Cataract Surgery at a Single Center with and Without Preoperative Keratostill Moisturizing Eye Drops" Journal of Clinical Medicine 14, no. 12: 4349. https://doi.org/10.3390/jcm14124349
APA StyleMiklaszewski, P., Gadamer, A. M., Janiszewska-Bil, D., Lyssek-Boroń, A., Dobrowolski, D., Wylęgała, E., Grabarek, B. O., & Krysik, K. (2025). Comparison of Postoperative Outcomes in 71 Patients Undergoing Cataract Surgery at a Single Center with and Without Preoperative Keratostill Moisturizing Eye Drops. Journal of Clinical Medicine, 14(12), 4349. https://doi.org/10.3390/jcm14124349