Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (508)

Search Parameters:
Keywords = drawing ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 217 KiB  
Article
Brain Injury Patterns and Short-TermOutcomes in Late Preterm Infants Treated with Hypothermia for Hypoxic Ischemic Encephalopathy
by Aslihan Kose Cetinkaya, Fatma Nur Sari, Avni Merter Keceli, Mustafa Senol Akin, Seyma Butun Turk, Omer Ertekin and Evrim Alyamac Dizdar
Children 2025, 12(8), 1012; https://doi.org/10.3390/children12081012 - 31 Jul 2025
Viewed by 192
Abstract
Background: Hypoxic–ischemic encephalopathy (HIE) is a leading cause of severe neurological impairments in childhood. Therapeutic hypothermia (TH) is both safe and effective in neonates born at ≥36 weeks gestation with moderate to severe HIE. We aimed to evaluate short-term outcomes—including brain injury detected [...] Read more.
Background: Hypoxic–ischemic encephalopathy (HIE) is a leading cause of severe neurological impairments in childhood. Therapeutic hypothermia (TH) is both safe and effective in neonates born at ≥36 weeks gestation with moderate to severe HIE. We aimed to evaluate short-term outcomes—including brain injury detected on magnetic resonance imaging (MRI)—in infants born at 34–35 weeks of gestation drawing on our clinical experience with neonates under 36 weeks of gestational age (GA). Methods: In this retrospective cohort study, 20 preterm infants with a GA of 34 to 35 weeks and a matched cohort of 80 infants with a GA of ≥36 weeks who were diagnosed with moderate to severe HIE and underwent TH were included. Infants were matched in a 1:4 ratio based on the worst base deficit in blood gas and sex. Maternal and neonatal characteristics, brain MRI findings and short term outcomes were compared. Results: Infants with a GA of 34–35 weeks had a lower birth weight and a higher rate of caesarean delivery (both p < 0.001). Apgar scores, sex, intubation rate in delivery room, blood gas pH, base deficit and lactate were comparable between the groups. Compared to infants born at ≥36 weeks of GA, preterm neonates were more likely to receive inotropes, had a longer time to achieve full enteral feeding, and experienced a longer hospital stay. The mortality rate was 10% in the 34–35 weeks GA group. Neuroimaging revealed injury in 66.7% of infants born at 34–35 weeks of gestation and in 58.8% of those born at ≥36 weeks (p = 0.56). Injury was observed across multiple brain regions, with white matter being the most frequently affected in the 34–35 weeks GA group. Thalamic and cerebellar abnormal signal intensity or diffusion restriction, punctate white matter lesions, and diffusion restriction in the corpus callosum and optic radiations were more frequently detected in infants born at 34–35 weeks of gestation. Conclusions: Our study contributes to the growing body of literature suggesting that TH may be feasible and tolerated in late preterm infants. Larger randomized controlled trials focused on this vulnerable population are necessary to establish clear guidelines regarding the safety and efficacy of TH in late preterm infants. Full article
(This article belongs to the Section Pediatric Neonatology)
17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 282
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

16 pages, 1640 KiB  
Article
Polydroxyalkanoates Production from Simulated Food Waste Condensate Using Mixed Microbial Cultures
by Konstantina Filippou, Evaggelia Bouzani, Elianta Kora, Ioanna Ntaikou, Konstantina Papadopoulou and Gerasimos Lyberatos
Polymers 2025, 17(15), 2042; https://doi.org/10.3390/polym17152042 - 26 Jul 2025
Viewed by 384
Abstract
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use [...] Read more.
The growing environmental concerns associated with petroleum-based plastics require the development of sustainable, biodegradable alternatives. Polyhydroxyalkanoates (PHAs), a family of biodegradable bioplastics, offer a promising potential as eco-friendly substitutes due to their renewable origin and favorable degradation properties. This research investigates the use of synthetic condensate, mimicking the liquid fraction from drying and shredding of household food waste, as a viable substrate for PHA production using mixed microbial cultures. Two draw-fill reactors (DFRs) were operated under different feed organic concentrations (2.0 ± 0.5 and 3.8 ± 0.6 g COD/L), maintaining a consistent carbon-to-nitrogen ratio to selectively enrich microorganisms capable of accumulating PHAs through alternating nutrient availability and deficiency. Both reactors achieved efficient organic pollutant removal (>95% soluble COD removal), stable biomass growth, and optimal pH levels. Notably, the reactor with the higher organic load (DFR-2) demonstrated a modest increase in PHA accumulation (19.05 ± 7.18%) compared to the lower-loaded reactor (DFR-1; 15.19 ± 6.00%), alongside significantly enhanced biomass productivity. Polymer characterization revealed the formation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), influenced by the substrate composition. Microbial community analysis showed an adaptive shift towards Proteobacteria dominance, signifying successful enrichment of effective PHA producers. Full article
(This article belongs to the Special Issue Bioplastics)
Show Figures

Figure 1

15 pages, 753 KiB  
Article
A Novel Cloud Energy Consumption Heuristic Based on a Network Slicing–Ring Fencing Ratio
by Vinay Sriram Iyer, Yasantha Samarawickrama and Giovani Estrada
Network 2025, 5(3), 27; https://doi.org/10.3390/network5030027 - 25 Jul 2025
Viewed by 209
Abstract
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our [...] Read more.
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our digital economy. A novel heuristic for the minimisation of energy consumption in cloud computing is presented. It draws similarities to the concept of “network slices”, in which an orchestrator enables multiplexing to reduce the network “churn” often associated with significant losses of energy consumption. The novel network slicing–ring fencing ratio is a heuristic calculated through an iterative procedure for the reduction in cloud energy consumption. Simulation results show how the non-convex equation optimises power by reducing energy from 10,680 kJ to 912 kJ, which is a 91.46% efficiency gain. In comparison, the Heuristic AUGMENT Non-Convex algorithm (HA-NC, by Hossain and Ansari) reported a 312.74% increase in energy consumption from 2464 kJ to 10,168 kJ, while the Priority Selection Offloading algorithm (PSO, by Anajemba et al.) also reported a 150% increase in energy consumption, from 10,738 kJ to 26,845 kJ. The proposed network slicing–ring fencing ratio is seen to successfully balance energy consumption and computing performance. We therefore think the novel approach could be of interest to network architects and cloud operators. Full article
Show Figures

Figure 1

15 pages, 1256 KiB  
Article
A New Method for Quantitative Evaluation Concentration Polarization Under Different Conditions for the Forward Osmosis Process
by Ping Xiao and Liang Liu
Membranes 2025, 15(8), 223; https://doi.org/10.3390/membranes15080223 - 25 Jul 2025
Viewed by 277
Abstract
Concentration polarization (CP) is one of the inherent problems that lowers the operating performance of forward osmosis (FO) membranes. Therefore, a quantitative evaluation of CP is vital to understand its impact on the FO process. This study systematically investigated the influences of different [...] Read more.
Concentration polarization (CP) is one of the inherent problems that lowers the operating performance of forward osmosis (FO) membranes. Therefore, a quantitative evaluation of CP is vital to understand its impact on the FO process. This study systematically investigated the influences of different CPs on the osmotic pressure drop across the membrane under different conditions by using the water transmission coefficient, ηWT, defined as the ratio of the measured water flux to the theoretical water flux. The results showed that ηWT decreased with an increase in the concentration gradient between the draw solution (DS) and the feed solution (FS) under different conditions. The proportions of osmotic pressure drop caused by dilutive internal concentration polarization (ICP) increased, while those caused by concentrative external concentration polarization (ECP) decreased, in different types of DSs in FO mode. Both ECP and ICP were found to be capable of reducing osmotic pressure. However, the internal CP had the dominant influence. To better understand the adverse effects of CP, using an organic FS provided greater insight than using deionized (DI) water as the FS. As the FS concentration increased, the water flux reduced, and the adverse effects of CP worsened. CaCl2 led to a greater reduction in water transfer efficiency than NaCl when used as the DS. In comparison to FO mode, pressure-retarded osmosis (PRO) mode led to greater pure water flux and flux decline. In FO mode, both the proportion of dilutive ICP and the ηWT decreased, while the proportion of concentrative ECP increased over time. However, in PRO mode, the proportions of dilutive ECP and concentrative ICP increased, and ηWT gradually decreased. Dilutive ICP had a significant negative effect on osmotic pressure in the former, while dilutive ECP was dominant in the latter. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

23 pages, 556 KiB  
Article
Study on Impact of Managerial Effectiveness and Digitalization on Green Total Factor Productivity of Enterprises: Sample of Listed Heavy-Polluting Enterprises in China
by Jun Yan and Zexia Zhao
Sustainability 2025, 17(15), 6700; https://doi.org/10.3390/su17156700 - 23 Jul 2025
Viewed by 303
Abstract
In the process of evaluating the quality of a company’s development, the issues related to production capacity and environmental pollution have emerged as significant concerns. Drawing on the methodologies employed in previous related research, this study utilizes the Data Envelopment Analysis with relaxation [...] Read more.
In the process of evaluating the quality of a company’s development, the issues related to production capacity and environmental pollution have emerged as significant concerns. Drawing on the methodologies employed in previous related research, this study utilizes the Data Envelopment Analysis with relaxation variables and the Global Malmquist–Luenberger index to measure the green total factor productivity of Chinese heavy-polluting enterprises. The main findings of this study are as follows: (1) It is clearly demonstrated that higher managerial effectiveness has a substantial positive impact on the improvement of a company’s green total factor productivity; (2) the digitalization progress within enterprises serves as a moderating factor in the relationship between managerial effectiveness and green total factor productivity; (3) the extent of financial constraints acts as a mediating variable, intervening in the relationship between managerial efficiency and green total factor productivity; and (4) a threshold effect is detected between managerial effectiveness and the debt repayment pressure faced by enterprises. When the threshold values of managerial effectiveness or the quick ratio are surpassed, the influence of managerial effectiveness on the green total factor productivity of enterprises will undergo a change. Full article
(This article belongs to the Special Issue Sustainable Corporate Governance and Firm Performance)
Show Figures

Figure 1

22 pages, 2359 KiB  
Article
Investigation of the Charging and Discharging Cycle of Packed-Bed Storage Tanks for Energy Storage Systems: A Numerical Study
by Ayah Marwan Rabi’, Jovana Radulovic and James M. Buick
Thermo 2025, 5(3), 24; https://doi.org/10.3390/thermo5030024 - 18 Jul 2025
Viewed by 201
Abstract
In recent years, packed-bed systems have emerged as an attractive design for thermal energy storage systems due to their high thermal efficiency and economic feasibility. As integral components of numerous large-scale applications systems, packed-bed thermal energy stores can be successfully paired with renewable [...] Read more.
In recent years, packed-bed systems have emerged as an attractive design for thermal energy storage systems due to their high thermal efficiency and economic feasibility. As integral components of numerous large-scale applications systems, packed-bed thermal energy stores can be successfully paired with renewable energy and waste heat to improve energy efficiency. An analysis of the thermal performances of two packed beds (hot and cold) during six-hour charging and discharging cycles has been conducted in this paper using COMSOL Multiphysics software, utilizing the optimal design parameters that have been determined in previous studies, including porosity (0.2), particle diameters (4 mm) for porous media, air as a heat transfer fluid, magnesia as a storage medium, mass flow rate (13.7 kg/s), and aspect ratio (1). The performance has been evaluated during both the charging and discharging cycles, in terms of the system’s capacity factor, the energy stored, and the thermal power, in order to understand the system’s performance and draw operational recommendations. Based on the results, operating the hot/cold storage in the range of 20–80% of the full charge was found to be a suitable range for the packed-bed system, ensuring that the charging/discharging power remains within 80% of the maximum. Full article
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
Measurement Techniques for Highly Dynamic and Weak Space Targets Using Event Cameras
by Haonan Liu, Ting Sun, Ye Tian, Siyao Wu, Fei Xing, Haijun Wang, Xi Wang, Zongyu Zhang, Kang Yang and Guoteng Ren
Sensors 2025, 25(14), 4366; https://doi.org/10.3390/s25144366 - 12 Jul 2025
Viewed by 358
Abstract
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors [...] Read more.
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors in complex space environments. In contrast, event cameras—drawing inspiration from biological vision—can capture brightness changes at ultrahigh speeds and output a series of asynchronous events, thereby demonstrating enormous potential for space detection applications. Based on this, this paper proposes an event data extraction method for weak, high-dynamic space targets to enhance the performance of event cameras in detecting space targets under high-dynamic maneuvers. In the target denoising phase, we fully consider the characteristics of space targets’ motion trajectories and optimize a classical spatiotemporal correlation filter, thereby significantly improving the signal-to-noise ratio for weak targets. During the target extraction stage, we introduce the DBSCAN clustering algorithm to achieve the subpixel-level extraction of target centroids. Moreover, to address issues of target trajectory distortion and data discontinuity in certain ultrahigh-dynamic scenarios, we construct a camera motion model based on real-time motion data from an inertial measurement unit (IMU) and utilize it to effectively compensate for and correct the target’s trajectory. Finally, a ground-based simulation system is established to validate the applicability and superior performance of the proposed method in real-world scenarios. Full article
Show Figures

Figure 1

15 pages, 33163 KiB  
Article
An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration
by Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi and Adam A. Stokes
Biomimetics 2025, 10(7), 455; https://doi.org/10.3390/biomimetics10070455 - 11 Jul 2025
Viewed by 455
Abstract
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an [...] Read more.
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology—particularly their hydraulic extension mechanism—we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure—a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Graphical abstract

21 pages, 4000 KiB  
Article
Structure-Properties Correlations of PVA-Cellulose Based Nanocomposite Films for Food Packaging Applications
by Konstantinos Papapetros, Georgios N. Mathioudakis, Dionysios Vroulias, Nikolaos Koutroumanis, George A. Voyiatzis and Konstantinos S. Andrikopoulos
Polymers 2025, 17(14), 1911; https://doi.org/10.3390/polym17141911 - 10 Jul 2025
Viewed by 386
Abstract
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations [...] Read more.
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations in these macroscopic properties, which are critical for food packaging applications, are correlated with structural information at the molecular level. Strong interactions between the fillers and polymer host matrix were observed, while the PVA crystallinity exhibited a maximum at ~1% loading. Finally, the orientation of the PVA nanocrystals in the uniaxially stretched samples was found to depend non-monotonically on the CNC loading and draw ratio. Concerning the macroscopic properties of the composites, the swelling properties were reduced for the D1 food simulant, while for water, a considerable decrease was observed only when high NLC loadings were involved. Furthermore, although the water vapor transmission rates are roughly similar for all samples, the CO2, N2, and O2 gas permeabilities are low, exhibiting further decrease in the 1% and 1–5% loading for CNC and NLC composites, respectively. The mechanical properties were considerably altered as a consequence of the good dispersion of the filler, increased crystallinity of the polymer matrix, and morphology of the filler. Thus, up to ~50%/~170% enhancement of the Young’s modulus and up to ~20%/~50% enhancement of the tensile strength are observed for the CNC/NLC composites. Interestingly, the elongation at break is also increased by ~20% for CNC composites, while it is reduced by ~40% for the NLC composites, signifying the favorable/unfavorable interactions of cellulose/lignin with the matrix. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Graphical abstract

23 pages, 2055 KiB  
Article
Do CEO Traits Matter? A Machine Learning Analysis Across Emerging and Developed Markets
by Chioma Ngozi Nwafor, Obumneme Z. Nwafor, Chinonyerem Matilda Omenihu and Madina Abdrakhmanova
Adm. Sci. 2025, 15(7), 268; https://doi.org/10.3390/admsci15070268 - 10 Jul 2025
Viewed by 386
Abstract
This study investigates the relationship between CEO characteristics and firm performance across emerging and developed economies using both panel regression and machine learning techniques. Drawing on Upper Echelons Theory, we examine whether CEO age, tenure, gender, founder status, and appointment origin influence Return [...] Read more.
This study investigates the relationship between CEO characteristics and firm performance across emerging and developed economies using both panel regression and machine learning techniques. Drawing on Upper Echelons Theory, we examine whether CEO age, tenure, gender, founder status, and appointment origin influence Return on Assets (ROA), Return on Equity (ROE), and market-to-book ratio. We apply the fixed and random effects models for inference and deploy random forest and XGBoost models to determine the feature importance of each CEO trait. Our findings show that CEO tenure consistently predicts improved ROE and ROA, while CEO age and founder status negatively affect firm performance. Female CEOs, though not consistently significant in the baseline models, positively influence market valuation in emerging markets according to interaction models. Firm-level characteristics such as size and leverage dominate CEO traits in explaining performance outcomes, especially in machine learning rankings. By integrating machine learning feature importance, this study contributes an original approach to CEO evaluation, enabling firms and policymakers to prioritise leadership traits that matter most. The findings have practical implications for succession planning, diversity policy, and performance-based executive appointments. Full article
Show Figures

Figure 1

22 pages, 2534 KiB  
Article
Impact of the Mean Radiant Temperature (Tmrt) on Outdoor Thermal Comfort Based on Urban Renewal: A Case Study of the Panjiayuan Antique Market in Beijing, China
by Chenxiao Liu, Yani Fang, Yanglu Shi, Mingli Wang, Mo Han and Xiaobing Chen
Buildings 2025, 15(14), 2398; https://doi.org/10.3390/buildings15142398 - 8 Jul 2025
Viewed by 230
Abstract
Like other mega cities in China, Beijing is undergoing a large-scale urban renewal process. However, in the context of global warming and the goal of promoting human health and well-being, urban renewal should follow the principle of minimal intervention, draw inspiration from the [...] Read more.
Like other mega cities in China, Beijing is undergoing a large-scale urban renewal process. However, in the context of global warming and the goal of promoting human health and well-being, urban renewal should follow the principle of minimal intervention, draw inspiration from the condition of the climate and environment itself, and pursue the goal of common health and development between humans and non-human beings. This study takes the Panjiayuan Antique Market as the research object. Unlike previous studies that focused on the behavior patterns of vendors and buyers, this study focuses on the increase in users’ expectation on environmental thermal comfort when the Panjiayuan Antique Market transforms from a conventional commercial market into an urban public space. This study aimed to find a minimal intervention strategy suitable for urban public space renewal from the perspective of the microclimate, encouraging people to use outdoor public spaces more, thereby promoting physical and mental health, as well as social well-being. We used a mixed-methods approach comprising microclimate measurements, questionnaires (n = 254), and field measurements. Our results show that the mean radiant temperature (Tmrt) is the key factor that affects thermal comfort, and it is a comprehensive concept that is associated with other microclimate factors. Linking the quantitative sun-related factors, such as the solar position angle (SAA), the shadow area ratio (SAR), and direct sun hours (DSHs), we also found that the correlation between the Tmrt and physical spatial characteristics, such as the ratio of the visible sky (SVF), the aspect ratio (H/W), and orientation of the building layout, helped us to generate design strategies oriented by regulating microclimate, such as controlling thermal mass/radiant heating, solar radiation, and air convection. One of the significances of this study is its development of a design method that minimizes intervention in urban public spaces from the perspective of regulating the microclimate. In addition, this study proposes a new perspective of promoting people’s health and well-being by improving outdoor thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 699 KiB  
Article
Stock Market Hype: An Empirical Investigation of the Impact of Overconfidence on Meme Stock Valuation
by Richard Mawulawoe Ahadzie, Peterson Owusu Junior, John Kingsley Woode and Dan Daugaard
Risks 2025, 13(7), 127; https://doi.org/10.3390/risks13070127 - 1 Jul 2025
Viewed by 1006
Abstract
This study investigates the relationship between overconfidence and meme stock valuation, drawing on panel data from 28 meme stocks listed from 2019 to 2024. The analysis incorporates key financial indicators, including Tobin’s Q ratio, market capitalization, return on assets, leverage, and volatility. A [...] Read more.
This study investigates the relationship between overconfidence and meme stock valuation, drawing on panel data from 28 meme stocks listed from 2019 to 2024. The analysis incorporates key financial indicators, including Tobin’s Q ratio, market capitalization, return on assets, leverage, and volatility. A range of overconfidence proxies is employed, including changes in trading volume, turnover rate, changes in outstanding shares, and alternative measures of excessive trading. We observe a significant positive relationship between overconfidence (as measured by changes in trading volume) and firm valuation, suggesting that investor biases contribute to notable pricing distortions. Leverage has a significant negative relationship with firm valuation. In contrast, market capitalization has a significant positive relationship with firm valuation, implying that meme stock investors respond to both speculative sentiment and traditional firm fundamentals. Robustness checks using alternative proxies reveal that turnover rate and changes in the number of shares are negatively related to valuation. This shows the complex dynamics of meme stocks, where psychological factors intersect with firm-specific indicators. However, results from a dynamic panel model estimated using the Dynamic System Generalized Method of Moments (GMM) show that the turnover rate has a significantly positive relationship with firm valuation. These results offer valuable insights into the pricing behavior of meme stocks, revealing how investor sentiment impacts periodic valuation adjustments in speculative markets. Full article
(This article belongs to the Special Issue Theoretical and Empirical Asset Pricing)
Show Figures

Figure 1

16 pages, 6370 KiB  
Article
The Role of Ga Promoter in Enhancing the Performance of Ni/ZrO2+SiO2 Catalysts for Dry Methane Reforming
by Salma A. Al-Zahrani, Ahmed A. Ibrahim, Ghzzai Almutairi, Anis Hamza Fakeeha, Najat Masood, Sahar Y. Rajeh, Ahmed Al Otaib, Hessah Difallah A. Al-Enazy and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 627; https://doi.org/10.3390/catal15070627 - 26 Jun 2025
Viewed by 451
Abstract
The potential of dry reforming methane (DRM) to convert two greenhouse gases concurrently is drawing interest from around the world. This research focused on developing supported nickel catalysts for the DRM, utilizing stabilized zirconia (SZ31107), which contains 5% SiO2, as the [...] Read more.
The potential of dry reforming methane (DRM) to convert two greenhouse gases concurrently is drawing interest from around the world. This research focused on developing supported nickel catalysts for the DRM, utilizing stabilized zirconia (SZ31107), which contains 5% SiO2, as the support material. To promote the catalysts with a 5 wt.% Ni concentration, we used varying gallium loadings, specifically 0.1, 0.25, 0.5, 0.75, and 1 wt.%. After a detailed analysis, characterization was performed using X-ray diffraction, N2-physorption, temperature-programmed reduction/desorption techniques, thermogravimetry, and Raman spectroscopy. The optimal DRM performance, achieved at 700 °C with a 1:1 CH4:CO2 feed, was recorded for the catalyst that has 0.25 wt.% Ga. The catalyst demonstrated remarkable average conversion rates of 56% for CH4 and 66% for CO2 after 300 min at 700 °C, with an H2:CO ratio of 0.84. Activity was further enhanced by raising the temperature to 800 °C, which resulted in an 87% CO2 conversion and an 80% CH4 conversion. Studies on the catalyst’s long-term stability revealed a slow deactivation. With computed activation energies of 28,009 J/mol for CH4 conversion and 21,875 J/mol for CO2 conversion, temperature-programmed reaction tests conducted over the best catalyst demonstrated the DRM reaction’s endothermic character. Small additions of Ga encouraged the creation of more graphitic carbon structures, according to Raman spectroscopy of spent catalysts; the ideal catalyst had the lowest ID/IG ratio. These results suggest that the 5Ni+0.25Ga/SZ31107 catalyst is a promising candidate for large-scale syngas and hydrogen production. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

20 pages, 1730 KiB  
Article
The Effects of Abdominal Draw-In Maneuvers Combined with Blood Flow Restriction on the Transverse Abdominis in University Students with Sedentary Lifestyles
by Yueh-Ling Hsieh, Tzu-Yu Weng, Nian-Pu Yang, Yu-Liang Lai and Andy Chien
Life 2025, 15(6), 965; https://doi.org/10.3390/life15060965 - 17 Jun 2025
Viewed by 907
Abstract
The abdominal drawing-in maneuver (ADIM) is one of the most valuable exercises for explicitly targeting and strengthening the transversus abdominis (TrA), a key muscle in the deep core. However, using the ADIM for the selective training of the transverse abdominis can be challenging [...] Read more.
The abdominal drawing-in maneuver (ADIM) is one of the most valuable exercises for explicitly targeting and strengthening the transversus abdominis (TrA), a key muscle in the deep core. However, using the ADIM for the selective training of the transverse abdominis can be challenging for certain individuals. This study investigated the effects of combining ADIM with blood flow restriction (BFR) training on TrA strengthening in sedentary university students. Forty university students with sedentary lifestyles (mean age: 23.28 ± 2.468 years; range 20–25 years) were randomly assigned to an ADIM+BFR group and a control group (ADIM only). Both groups underwent 25 min ADIM training sessions twice weekly for four weeks. Ultrasound measurements assessed TrA thickness, contraction ratio, and preferential activation. Core stability, strength, and endurance were evaluated using the double leg lowering, abdominal strength, and abdominal static endurance tests. The ADIM+BFR group showed significant improvements in TrA thickness, contraction ratio, and preferential activation compared to the control group following the four-week training intervention (p < 0.05). The ADIM+BFR group demonstrated improved core stability and enhanced abdominal strength and endurance compared to the control group (p < 0.05). The results support the effectiveness of ADIM+BFR training in enhancing TrA contraction and activation in sedentary university students. This approach also improves core stability, strength, and endurance. BFR provides a novel and readily applicable method for promoting TrA activation during ADIM training. Full article
(This article belongs to the Special Issue Innovative Perspectives in Physical Therapy and Health)
Show Figures

Figure 1

Back to TopTop