Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = double-porosity model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 325
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 4405 KiB  
Article
Soil Infiltration Characteristics and Driving Mechanisms of Three Typical Forest Types in Southern Subtropical China
by Yanrui Guo, Chongshan Wan, Shi Qi, Shuangshuang Ma, Lin Zhang, Gong Cheng, Changjiang Fan, Xiangcheng Zheng and Tianheng Zhao
Water 2025, 17(12), 1720; https://doi.org/10.3390/w17121720 - 6 Jun 2025
Viewed by 416
Abstract
Plant roots and soil properties play crucial roles in regulating soil hydrological processes, particularly in determining soil water infiltration capacity. However, the infiltration patterns and underlying mechanisms across different forest types in subtropical regions remain poorly understood. In this study, we measured the [...] Read more.
Plant roots and soil properties play crucial roles in regulating soil hydrological processes, particularly in determining soil water infiltration capacity. However, the infiltration patterns and underlying mechanisms across different forest types in subtropical regions remain poorly understood. In this study, we measured the infiltration characteristics of three typical stands (pure Phyllostachys edulis forest, mixed Phyllostachys edulis-Cunninghamia lanceolata forest, and pure Cunninghamia lanceolata forest) using a double-ring infiltrometer. Stepwise multiple regression and structural equation modeling (SEM) were employed to analyze the effects of root traits and soil physicochemical properties on soil infiltration capacity. The results revealed the following: (1) The initial infiltration rate (IIR), stable infiltration rate (SIR), and average infiltration rate (AIR) followed the order pure Phyllostachys edulis stand > mixed stand > pure Cunninghamia lanceolata stand. (2) Compared to the pure Cunninghamia lanceolata stand, the IIR, SIR, and AIR in the pure Phyllostachys edulis stand increased by 6.66%, 35.63%, and 28.51%, respectively, while those in the mixed stand increased by 28.79%, 28.82%, and 33.51%. (3) Fine root biomass, root length density, non-capillary porosity, and soil bulk density were identified as key factors influencing soil infiltration capacity. (4) Root biomass and root length density affected infiltration capacity through both direct pathways and indirect pathways mediated by alterations in non-capillary porosity and soil bulk density. These findings provide theoretical insights into soil responses to forest types and inform sustainable water–soil management practices in Phyllostachys edulis plantations. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

20 pages, 4850 KiB  
Article
Converting Cropland to Forest Improves Soil Water Retention Capacity by Changing Soil Aggregate Stability and Pore-Size Distribution
by Feng Gu, Minghua Zhou, Bo Zhu and Heng Wang
Sustainability 2025, 17(10), 4363; https://doi.org/10.3390/su17104363 - 12 May 2025
Cited by 1 | Viewed by 538
Abstract
The semi-arid region of North China has undergone extensive afforestation to prevent land degradation. Although afforestation was considered an effective way to improve soil water retention, the mechanism by which it affects soil hydraulic properties remained uncertain. In this study, soil water retention [...] Read more.
The semi-arid region of North China has undergone extensive afforestation to prevent land degradation. Although afforestation was considered an effective way to improve soil water retention, the mechanism by which it affects soil hydraulic properties remained uncertain. In this study, soil water retention curve (SWRC), soil water-stable aggregates, and other soil physicochemical properties were determined in short-term abandoned cropland (AC), shrubland (SL), and woodland (WL) that had been converted from cropland for 1, 8, and 24 years, respectively. Pearson correlation analysis and partial least-squares structural equation modeling methods were used to identify the main factors affecting soil hydraulic properties. Results showed that the SWRCs of all three land uses were well-fitted by a double-exponential model. The WL and SL land uses exhibited higher soil field capacity (0.33–0.37 cm3 cm−3), wilting point (0.20–0.23 cm3 cm−3), and available water content (0.13–0.15 cm3 cm−3). Surface soil exhibits a more pronounced trend in water retention capacity changes compared to subsoil under vegetation restoration. The WL and SL land uses showed more soil macroaggregates and intra-aggregate pores at surface layers, which mainly explained the variations in hydraulic properties. The main factors influencing soil hydraulic properties were soil aggregates, matrix and structural porosity, soil organic carbon (SOC), and soil bulk density (BD). Overall, afforestation can improve soil hydraulic properties and could be an effective practice for soil and water conservation in the semi-arid region of North China. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Graphical abstract

20 pages, 10937 KiB  
Article
Modelling Pressure Dynamic of Oil–Gas Two-Phase Flow in Three-Zone Composite Double-Porosity Media Formation with Permeability Stress Sensitivity
by Guo-Tao Shen and Ren-Shi Nie
Energies 2025, 18(9), 2209; https://doi.org/10.3390/en18092209 - 26 Apr 2025
Viewed by 392
Abstract
In view of the flow zoning phenomenon existing in condensate gas reservoirs and the complex pore structure and strong heterogeneity of carbonate rock reservoirs, this study investigates the pressure dynamic behavior during the development process of such gas reservoirs by establishing corresponding models. [...] Read more.
In view of the flow zoning phenomenon existing in condensate gas reservoirs and the complex pore structure and strong heterogeneity of carbonate rock reservoirs, this study investigates the pressure dynamic behavior during the development process of such gas reservoirs by establishing corresponding models. The model divides the reservoir into three zones. The fluid flow patterns and reservoir physical property characteristics in the three regions are different. In particular, the fracture system in zone 1 has permeability stress sensitivity. The model is solved and the sensitivity analysis of the key parameters is carried out. The research results show that reservoir flow can be divided into 12 stages. Stress sensitivity affects all stages except the wellbore storage stage and becomes increasingly obvious over time. The closed boundary causes fracture closure from the lack of external energy, reducing effective flow channels and triggering the boundary response stage earlier. The increased condensate oil increases the flow resistance and pressure loss, and shortens the duration of the flow stage. The research suggests that improving reservoir conditions and enhancing fluid fluidity can reduce pressure loss and increase production capacity, providing valuable theoretical and practical guidance for the development of carbonate rock condensate gas reservoirs. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

14 pages, 12688 KiB  
Article
Numerical Investigation of Disturbance Characteristics of Surrounding Rock in Ultra-Close Coal Seams Mining Based on Particle Flow
by Jiahui Xu, Bowen Tian, Guichen Li, Changlun Sun and Haoyu Rong
Appl. Sci. 2025, 15(6), 3063; https://doi.org/10.3390/app15063063 - 12 Mar 2025
Cited by 1 | Viewed by 538
Abstract
To reveal the influence of ultra-close coal seams mining on surrounding rock disturbance, PFC2D is introduced to establish a simplified particle flow model of strata in the deeply buried mine, the damage and stress evolution characteristics of the surrounding rock were studied [...] Read more.
To reveal the influence of ultra-close coal seams mining on surrounding rock disturbance, PFC2D is introduced to establish a simplified particle flow model of strata in the deeply buried mine, the damage and stress evolution characteristics of the surrounding rock were studied based on double coal seam mining. The results show that after the model excavation, the fracture length of the rock strata reached an accuracy of 97% compared with the theoretical calculation results, showing a good match with the theoretical calculations and the initial stress level obtained by the subsequent model monitoring is consistent with the measured value. The primary and secondary key layers are broken as a result of mining the higher coal seam, the siltstone interlayer is unaffected while the bottom coal seam is partially harmed, and there is noticeable extrusion damage between the rocks. Meanwhile, the damage to the rocks inside the gob is only becoming worse as a result of mining the lower coal seam. While the surrounding rock of the upper coal seam mining exhibits clear stress redistribution features in three zones, the lower coal seam mining creates a local and multi-point high-stress distribution. The siltstone interlayer’s stress variation is essentially identical to that of the surrounding rock. The extrusion state among rocks is related to the porosity of the shattered surrounding rock area. The siltstone interlayer is pressured during the upper coal seam mining, but it maintains its integrity, only collapsing during the lower coal seam mining. Though the siltstone interlayer can retain the necessary integrity of support before the lower coal seam mining, its internal stress is unstable which should be paid attention to when designing the support scheme during the mining period. Full article
Show Figures

Figure 1

19 pages, 10708 KiB  
Article
Evaluation of the Influence of Primary and Secondary Crystal Orientations and Selected Structural Characteristics on Creep Resistance in Single-Crystal Nickel-Based Turbine Blades
by Kamil Gancarczyk, Robert Albrecht, Paweł Sułkowicz, Mirosław Szala and Mariusz Walczak
Materials 2025, 18(5), 919; https://doi.org/10.3390/ma18050919 - 20 Feb 2025
Cited by 2 | Viewed by 744
Abstract
This study evaluates the perfection of the crystal structure of single-crystal turbine blade castings made from the CMSX-4 nickel superalloy. The analysis included primary and secondary crystal orientation measurements using the Ω-scan method and the novel OD-EFG X-ray diffractometer. The selected microstructural parameters [...] Read more.
This study evaluates the perfection of the crystal structure of single-crystal turbine blade castings made from the CMSX-4 nickel superalloy. The analysis included primary and secondary crystal orientation measurements using the Ω-scan method and the novel OD-EFG X-ray diffractometer. The selected microstructural parameters of the single crystals were also analyzed, including the assessment of stereological parameters and the degree of porosity. A creep test was performed according to standard procedures and under conditions simulating real operational environments. The model single-crystal turbine blades were manufactured using the Bridgman–Stockbarger method, with variable withdrawal rates of 1 and 3 mm/min. Heat treatment of the single-crystal castings involved solution treatment followed by double aging. The evaluation of structural perfection was carried out in three states: as-cast, after solution heat treatment, and after double aging. The crystallographic orientation of the blades was determined on both the airfoil and the root part. The study determined how crystallographic orientation and microstructural parameters influence the creep resistance of the castings. It was found that in the as-cast condition, the greatest influence on high creep strength has a small deviation of the primary and constant value of secondary crystal orientation along the height of the blade casting. After heat treatment, the highest creep resistance was obtained for the blade manufactured at a withdrawal rate at 1 mm/min. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 7164 KiB  
Article
Transformations in Flow Characteristics and Fluid Force Reduction with Respect to the Vegetation Type and Its Installation Position Downstream of an Embankment
by A H M Rashedunnabi, Norio Tanaka and Md Abedur Rahman
Fluids 2025, 10(1), 16; https://doi.org/10.3390/fluids10010016 - 17 Jan 2025
Cited by 1 | Viewed by 715
Abstract
Compound mitigation systems, integrations of natural and engineering structures against the high inundating current from tsunamis or storm surges, have garnered significant interest among researchers, especially following the Tohoku earthquake and tsunami in 2011. Understanding the complex flow phenomena is essential for the [...] Read more.
Compound mitigation systems, integrations of natural and engineering structures against the high inundating current from tsunamis or storm surges, have garnered significant interest among researchers, especially following the Tohoku earthquake and tsunami in 2011. Understanding the complex flow phenomena is essential for the resilience of the mitigation structures and effective energy reduction. This study conducted a flume experiment to clarify flow characteristics and fluid force dissipation in a compound defense system. Vegetation models (V) with different porosities (Φ) were placed at three different positions downstream of an embankment model (E). A single-layer emergent vegetation model was considered, and a short-layer vegetation with several values of Φ was incorporated to increase its density (decreased Φ). Depending on Φ and the spacing (S) between the E and V, hydraulic jumps occurred in the physical system. The findings demonstrated that a rise in S allowed a hydraulic jump to develop inside the system and contributed to reducing the fluid force in front and downstream of V. Due to the reduced porosity of the double-layer vegetation, the hydraulic jump moved upstream and terminated within the system, resulting in a uniform water surface upstream of V and downstream of the system. As a result, the fluid force in front of and behind V reduced remarkably. Full article
Show Figures

Figure 1

11 pages, 3570 KiB  
Article
Starting Electroosmosis in a Fibrous Porous Medium with Arbitrary Electric Double-Layer Thickness
by Wei Z. Chen and Huan J. Keh
Chemistry 2025, 7(1), 5; https://doi.org/10.3390/chemistry7010005 - 8 Jan 2025
Viewed by 885
Abstract
The transient electroosmotic response in a charged porous medium consisting of a uniform array of parallel circular cylindrical fibers with arbitrary electric double layers filled with an electrolyte solution, for the stepwise application of a transverse electric field, is analyzed. The fluid momentum [...] Read more.
The transient electroosmotic response in a charged porous medium consisting of a uniform array of parallel circular cylindrical fibers with arbitrary electric double layers filled with an electrolyte solution, for the stepwise application of a transverse electric field, is analyzed. The fluid momentum conservation equation is solved for each cell by using a unit cell model, where a single cylinder is surrounded by a coaxial shell of the electrolyte solution. A closed-form expression for the transient electroosmotic velocity of the bulk fluid in the Laplace transform is obtained as a function of the ratio of the cylinder radius to the Debye screening length and the porosity of the fiber matrix. The effect of the fiber matrix porosity on the continuous growth of the electroosmotic velocity over time is substantial and complicated. For a fiber matrix with larger porosity, the bulk fluid velocity takes longer to reach a certain percentage of its final value. Although the final value of the bulk fluid velocity generally increases with increasing porosity, early velocities may decrease with increasing porosity. For a given fiber matrix porosity, the transient electroosmotic velocity is a monotonically increasing function of the ratio of the cylinder radius to the Debye length. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

25 pages, 16189 KiB  
Article
Accounting for the Structure–Property Relationship of Hollow-Fiber Membranes in Modeling Hemodialyzer Clearance
by Anton Kozmai, Mikhail Porozhnyy, Violetta Gil, Dmitrii Butylskii, Dmitry Lopatin, Aleksey Rodichenko, Igor Voroshilov, Artem Mareev and Victor Nikonenko
Polymers 2024, 16(24), 3491; https://doi.org/10.3390/polym16243491 - 14 Dec 2024
Viewed by 876
Abstract
The relevance of the hemodialysis procedure is increasing worldwide due to the growing number of patients suffering from chronic kidney disease. Taking into account the structure of dialysis polymer membranes is an important aspect in their development to achieve the required performance of [...] Read more.
The relevance of the hemodialysis procedure is increasing worldwide due to the growing number of patients suffering from chronic kidney disease. Taking into account the structure of dialysis polymer membranes is an important aspect in their development to achieve the required performance of hemodialyzers. We propose a new mathematical model of mass transfer that allows hollow-fiber membrane structural parameters to be taken into account in simulating the clearance (CL) of hemodialyzers in a way that does not require difficult to achieve close approximation to the exact geometry of the membrane porous structure. The model was verified by a comparison of calculations with experimental data on CL obtained using a lab-made dialyzer as well as commercially available ones. The simulations by the model show the non-trivial behavior of the dialyzer clearance as a function of membrane porosity (fp) and the arrangement of pores (α). The analysis of this behavior allows one to consider two strategies for increasing the CL of the dialyzer by optimizing the polymer membrane structure: (1) creating a membrane with a well-structured pore system (where α → 1) since doubling α at a high enough fp can lead to an almost tenfold increase in CL; (2) increasing the porosity of the membrane characterized by a random arrangement of pores (α → 0), where, at a relatively low α, a sharp increase in CL is observed with a small increase in fp over a certain threshold value. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

27 pages, 9670 KiB  
Article
Application of Microsponge Drug Platform to Enhance Methotrexate Administration in Rheumatoid Arthritis Therapy
by Noemi Fiaschini, Patrizia Nadia Hanieh, Daniela Ariaudo, Rita Cimino, Carlo Abbate, Elena Romano, Francesca Cavalieri, Mariano Venanzi, Valeria Palumbo, Manuel Scimeca, Roberta Bernardini, Maurizio Mattei, Alberto Migliore and Antonio Rinaldi
Pharmaceutics 2024, 16(12), 1593; https://doi.org/10.3390/pharmaceutics16121593 - 13 Dec 2024
Viewed by 1412
Abstract
Background/Objectives: This study aimed to develop a novel nanotechnological slow-release drug delivery platform based on hyaluronic acid Microsponge (MSP) for the subcutaneous administration of methotrexate (MTX) in the treatment of rheumatoid arthritis (RA). RA is a chronic autoimmune disease characterized by joint inflammation [...] Read more.
Background/Objectives: This study aimed to develop a novel nanotechnological slow-release drug delivery platform based on hyaluronic acid Microsponge (MSP) for the subcutaneous administration of methotrexate (MTX) in the treatment of rheumatoid arthritis (RA). RA is a chronic autoimmune disease characterized by joint inflammation and damage, while MTX is a common disease-modifying antirheumatic drug (DMARD), the conventional use of which is limited by adverse effects and the lack of release control. Methods: MSP were synthesized as freeze-dried powder to increase their stability and allow for a facile reconstitution prior to administration and precise MTX dosing. Results: A highly stable and rounded-shaped micrometric MSP, characterized by an open porosity inner structure, achieved both a high MTX loading efficiency and a slow release of MTX after injection. Our drug release assays indeed demonstrated a characteristic drug release profile consisting of a very limited burst release in the first few hours, followed by a slow release of MTX sustained for over a month. By means of a preclinical rat model of RA, the administration of MTX-loaded MSP proved to nearly double the therapeutic efficacy compared to sole MTX, according to a steep reduction in arthritic score compared to control groups. The preclinical study was replicated twice to confirm this improvement in performance and the safety profile of the MSP. Conclusions: This study suggests that the MSP drug delivery platform holds significant potential for clinical use in improving RA therapy by enabling the sustained slow release of MTX, thereby enhancing therapeutic outcomes and minimizing side effects associated with conventional burst-release drug administration. Full article
Show Figures

Figure 1

19 pages, 3563 KiB  
Article
Free Vibration of Graphene Nanoplatelet-Reinforced Porous Double-Curved Shells of Revolution with a General Radius of Curvature Based on a Semi-Analytical Method
by Aiwen Wang and Kairui Zhang
Mathematics 2024, 12(19), 3060; https://doi.org/10.3390/math12193060 - 30 Sep 2024
Cited by 1 | Viewed by 1061
Abstract
Based on domain decomposition, a semi-analytical method (SAM) is applied to analyze the free vibration of double-curved shells of revolution with a general curvature radius made from graphene nanoplatelet (GPL)-reinforced porous composites. The mechanical properties of the GPL-reinforced composition are assessed with the [...] Read more.
Based on domain decomposition, a semi-analytical method (SAM) is applied to analyze the free vibration of double-curved shells of revolution with a general curvature radius made from graphene nanoplatelet (GPL)-reinforced porous composites. The mechanical properties of the GPL-reinforced composition are assessed with the Halpin–Tsai model. The double-curvature shell of revolution is broken down into segments along its axis in accordance with first-order shear deformation theory (FSDT) and the multi-segment partitioning technique, to derive the shell’s functional energy. At the same time, interfacial potential is used to ensure the continuity of the contact surface between neighboring segments. By applying the least-squares weighted residual method (LWRM) and modified variational principle (MVP) to relax and achieve interface compatibility conditions, a theoretical framework for analyzing vibrations is developed. The displacements and rotations are described through Fourier series and Chebyshev polynomials, accordingly, converting a two-dimensional issue into a suite of decoupled one-dimensional problems. The obtained solutions are contrasted with those achieved using the finite element method (FEM) and other existing results, and the current formulation’s validity and precision are confirmed. Example cases are presented to demonstrate the free vibration of GPL-reinforced porous composite double-curved paraboloidal, elliptical, and hyperbolical shells of revolution. The findings demonstrate that the natural frequency of the shell is related to pore coefficients, porosity, the mass fraction of the GPLs, and the distribution patterns of the GPLs. Full article
(This article belongs to the Special Issue Applied Mathematics in Nonlinear Dynamics and Chaos)
Show Figures

Figure 1

20 pages, 6175 KiB  
Article
Study on the Fracture Evolution Characteristics of Overlying Strata in a Fully Mechanized Mining Face with a Large Mining Height Based on a Three-Dimensional Large-Scale Physical Simulation Experimental System
by Zongyong Wei, Yucai Yin, Botao Li, Shugang Li, Haifei Lin, Peng Xiao and Yang Ding
Processes 2024, 12(10), 2087; https://doi.org/10.3390/pr12102087 - 26 Sep 2024
Viewed by 867
Abstract
To investigate the evolution characteristics of overlying rock fractures, based on a geological prototype of a large-height comprehensive mining face in Shanxi, a three-dimensional large-scale physical similarity model was established. The experiments were carried out using microseismic monitoring and physical model cutting methods [...] Read more.
To investigate the evolution characteristics of overlying rock fractures, based on a geological prototype of a large-height comprehensive mining face in Shanxi, a three-dimensional large-scale physical similarity model was established. The experiments were carried out using microseismic monitoring and physical model cutting methods to study the activity and fissure evolution of the overburden rock. Model cutting revealed that, approximately 65 m from the bottom of the coal seam, delamination occurred, marking the top of the overburden rock fissure zone and the bottom of the bending and sinking zone. At 25 m from the coal seam bottom, the rock layer was highly fragmented, forming the collapse zone, which was 4.8 times the mining height. Between 25 and 65 m from the bottom, a fissure zone existed, which was 12.5 times the mining height, with abundant delamination fissures at the top of the fissure zone. Significant microseismic events were observed as the coal face advanced to 45 m, with notable increases in the concentrations and distribution ranges of these events in both the strike and height directions of the coal seam. The subsidence range of the overlying rock layer expanded from the top to the bottom, with the subsidence slope area extending gradually and the central compaction area remaining relatively flat. The overall shape presented an irregular ellipse, with peripheral uplift phenomena observed in the subsidence area. At 39 m from the coal seam bottom, the maximum subsidence of the rock stratum was 4.0 m, with subsidence amounts decreasing with increasing stratum height. Fissure density along the coal seam inclination and direction exhibited a double hump pattern, with fissure areas on both sides showing high densities and the central compaction areas having low densities. Coal seam mining caused stress redistribution in the surrounding rock layer, and the stress in front of the work was divided into the stress reduction zone, dynamic influence zone, mining influence zone, and unaffected zone. Coal rock porosity under high stress was less sensitive to stress changes, resulting in smaller changes in fissure permeability and fissures remaining mostly closed. Full article
(This article belongs to the Topic New Advances in Mining Technology)
Show Figures

Figure 1

16 pages, 1391 KiB  
Article
On the Necessity of Including the Dissociation Kinetics When Modelling Gas Hydrate Pipeline Plug Dissociation
by Johnbosco Aguguo and Matthew Clarke
Energies 2024, 17(12), 3036; https://doi.org/10.3390/en17123036 - 20 Jun 2024
Cited by 1 | Viewed by 1034
Abstract
Gas hydrate plugs in petroleum fluid pipelines are a major flow assurance problem and thus, it is important for industry to have reliable mathematical models for estimating the time required to dissociate a hydrate pipeline plug. The existing mathematical models for modelling hydrate [...] Read more.
Gas hydrate plugs in petroleum fluid pipelines are a major flow assurance problem and thus, it is important for industry to have reliable mathematical models for estimating the time required to dissociate a hydrate pipeline plug. The existing mathematical models for modelling hydrate plug dissociation treat the problem as a pure heat transfer problem. However, an early study by Jamaluddin et al. speculated that the kinetics of gas hydrate dissociation could become the rate-limiting factor under certain operating conditions. In this short communication, a rigorous 2D model couples the equations of heat transfer and fluid flow with Clarke and Bishnoi’s model for the kinetics of hydrate dissociation. A distinguishing feature of the current work is the ability to predict the shape of the dissociating hydrate–gas interface. The model is used to correlate experimental data for both sI and sII hydrate plug dissociation, via single-sided depressurization and double-sided depressurization. As a preliminary examination on the necessity of including dissociation kinetics, this work is limited to conditions for which hydrate dissociation rate constants are available; kinetic rate constants for hydrate dissociation are available at temperatures above 273.15 K. Over the range of conditions that were investigated, it was found that including the intrinsic kinetics of hydrate dissociation led to only a very small improvement in the accuracy of the predictions of the cumulative gas volumes collected during dissociation. By contrast, a sensitivity study showed that the predictions of hydrate plug dissociation are very sensitive to the value of the porosity. Thus, it is concluded that unless values of the thermophysical properties of a hydrate plug are known, accounting for the dissociation kinetics need not be a priority. Full article
Show Figures

Figure 1

23 pages, 7242 KiB  
Article
A Multiphysics Simulation Study of the Thermomechanical Coupling Response of Energy Piles
by Chang Xu, Yawen Wang, Xiaolin Meng, Qihang Lv, Hui Chen and Qingdong Wu
Buildings 2024, 14(5), 1440; https://doi.org/10.3390/buildings14051440 - 16 May 2024
Viewed by 1422
Abstract
The global demand for energy is on the rise, accompanied by increasing requirements for low-carbon environmental protection. In recent years, China’s “double carbon action” initiative has brought about new development opportunities across various sectors. The concept of energy pile foundation aims to harness [...] Read more.
The global demand for energy is on the rise, accompanied by increasing requirements for low-carbon environmental protection. In recent years, China’s “double carbon action” initiative has brought about new development opportunities across various sectors. The concept of energy pile foundation aims to harness geothermal energy, aligning well with green, low-carbon, and sustainable development principles, thus offering extensive application prospects in engineering. Drawing from existing research globally, this paper delves into four key aspects impacting the thermodynamic properties of energy piles: the design of buried pipes, pile structure, heat storage materials within the pipe core, and soil treatment around the pile using carbon fiber urease mineralization. Leveraging the innovative mineralization technique known as urease-induced carbonate mineralization precipitation (EICP), this study employs COMSOL Multiphysics simulation software to analyze heat transfer dynamics and establish twelve sets of numerical models for energy piles. The buried pipe design encompasses two types, U-shaped and spiral, while the pile structure includes concrete solid energy piles and tubular energy piles. Soil conditions around the pile are classified into undisturbed sand and carbon fiber-infused EICP mineralized sand. Different inner core heat storage materials such as air, water, unaltered sand, and carbon fiber-based EICP mineralized sand are examined within tubular piles. Key findings indicate that spiral buried pipes outperform U-shaped ones, especially when filled with liquid thermal energy storage (TES) materials, enhancing temperature control of energy piles. The carbon fiber urease mineralization technique significantly improves heat exchange between energy piles and surrounding soil, reducing soil porosity to 4.9%. With a carbon fiber content of 1.2%, the ultimate compressive strength reaches 1419.4 kPa. Tubular energy piles mitigate pile stress during summer temperature fluctuations. Pile stress distribution varies under load and temperature stresses, with downward and upward friction observed at different points along the pile length. Overall, this research underscores the efficacy of energy pile technologies in optimizing energy efficiency while aligning with sustainable development goals. Full article
(This article belongs to the Special Issue Trends and Prospects in Civil Engineering Structures)
Show Figures

Figure 1

22 pages, 5094 KiB  
Article
A Fully Coupled Gas–Water–Solids Mathematical Model for Vertical Well Drainage of Coalbed Methane
by Chengwang Wang, Haifeng Zhao, Zhan Liu, Tengfei Wang and Gaojie Chen
Energies 2024, 17(6), 1497; https://doi.org/10.3390/en17061497 - 21 Mar 2024
Viewed by 1506
Abstract
The coupling relationship between the deformation field, the diffusion field, and the seepage field is an important factor in fluid transport mechanisms in the long-term coalbed methane (CBM) exploitation process. A mathematical model of gas–water two-phase fluid–structure coupling in a double-porosity medium in [...] Read more.
The coupling relationship between the deformation field, the diffusion field, and the seepage field is an important factor in fluid transport mechanisms in the long-term coalbed methane (CBM) exploitation process. A mathematical model of gas–water two-phase fluid–structure coupling in a double-porosity medium in coal reservoirs is established in this paper. Taking Hancheng Block, a typical production block in Qinshui Basin, as the geological background critical desorption pressure, reservoir permeability anisotropy is considered in the model. COMSOL Multiphysics (COMSOL_6.0) was used to create the model. The accuracy and rationality of the model were verified by comparing field production data with the results of the simulation. Using the simulation, the influence law of various reservoir geological characteristics parameters (Langmuir strain constant, ratio of critical desorption pressure to reservoir pressure of coal seam (CDPRP), elastic modulus, initial water saturation, Langmuir pressure, etc.) on CBM productivity, reservoir pressure, and permeability ratio was discussed, and a thorough analysis of the factors affecting productivity was obtained using the orthogonal test method. The findings of this study indicate that the change in permeability is the result of the superposition effect of many factors. Different stages of drainage have different primary regulating factors. Rock skeleton stress has a consequence on coal matrix permeability in the early drainage stage, and coal matrix shrinkage is primarily impacted in the later drainage stage. Besides the initial water saturation, other reservoir geological parameters (e.g., CDPRP, Langmuir volume, Langmuir strain constant, elastic modulus) have a strong relationship with productivity. When the value of coal geological parameters increases, the degree of productivity release is higher (as the initial water saturation increases, the production decreases correspondingly). Different coal and rock parameters have varying levels of impact on the drainage stage of CBM wells. The influences of the CDPRP, Langmuir volume, Langmuir strain constant, and elastic modulus on gas production are mainly concentrated in the initial and intermediate drainage stages and begin to fall off during the last drainage stage. Per the multi-factor analysis, the main coal–rock parameters affecting the productivity release are the Langmuir strain constant, followed by the CDPRP and other parameters. The analysis findings can offer theoretical guidance for CBM well selection and layer selection and enhance the block’s overall CBM development level. The improved productivity prediction model for CBM, which is based on fluid–structure coupling theory, can offer a new technical benchmark for CBM well productivity prediction. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery for Unconventional Oil and Gas Reservoirs)
Show Figures

Figure 1

Back to TopTop