Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = doping-less device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3671 KB  
Article
Research on Linear Energy Transfer of SiC Materials Based on Monte Carlo Method
by Jiamu Xiao, Heng Xie, Shougang Du, Shulong Wang, Tianlong Zhao and Hongxia Liu
Micromachines 2025, 16(10), 1092; https://doi.org/10.3390/mi16101092 - 26 Sep 2025
Viewed by 309
Abstract
The energy deposition process for the main components of SIC Schottky diodes is simulated based on Geant4. Particle bombardment results were simulated under different angles, target materials and doping concentrations on the same target material for different light particles and heavy ions, and [...] Read more.
The energy deposition process for the main components of SIC Schottky diodes is simulated based on Geant4. Particle bombardment results were simulated under different angles, target materials and doping concentrations on the same target material for different light particles and heavy ions, and then the Linear Energy Transfer of SiC materials and external conditions that affect LET are obtained. The results show that the LET value of protons exhibits significant oscillations at low energy incidence, gradually decreasing exponentially after 10−1 MeV. Alpha particles have a LET peak near 1 MeV, while beta particles show an exponential decrease. The LET values at low energy levels increase exponentially, while at high energy levels, the LET values show a similar linear relationship with energy. For different incident angles, the average LET value of protons in the low-level region gradually increases as the incident angle increases. The average LET value of protons in the remaining energy ranges is less affected by angle; the incident angle has no significant effect on the LET distribution of alpha particles within the full spectrum range. The results provide important references for understanding the energy deposition process and LET distribution of silicon carbide devices under single-particle interaction. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 3rd Edition)
Show Figures

Figure 1

22 pages, 3281 KB  
Article
Design of Active Hopping Sites via Trace Trivalent Cation in IT-SOFC Anode
by Ke Tong, Toshiyuki Mori, Andrii Rednyk, Shunya Yamamoto, Shigeharu Ito and Fei Ye
Energies 2025, 18(16), 4314; https://doi.org/10.3390/en18164314 - 13 Aug 2025
Viewed by 489
Abstract
Intermediate-temperature solid oxide fuel cells (IT-SOFCs) have attracted attention due to their potential to overcome the trade-off between the performance and lifetime of SOFC devices. However, the guiding principle for effective material design, which can reduce operating temperatures and overcome performance decreases caused [...] Read more.
Intermediate-temperature solid oxide fuel cells (IT-SOFCs) have attracted attention due to their potential to overcome the trade-off between the performance and lifetime of SOFC devices. However, the guiding principle for effective material design, which can reduce operating temperatures and overcome performance decreases caused by excessive overpotential on the anode surface, has not been clearly established. In the present work, we studied the reported Schottky anomaly, which has been observed exclusively in yttria-stabilized zirconia (YSZ). To investigate this phenomenon, a small amount (less than 1200 ppm) of trivalent cations (Rh3+ or Fe3+), chemically similar to Y3+ in Y2O3, was doped onto the YSZ surface in the anode layer. Then, the current density observed from the SOFC device at 973 K was found to be nine-times higher than the SOFC device with an undoped anode. The surface first-principles calculations in the present work indicate that this performance enhancement is caused by the delocalized electrons induced by trivalent cation doping in the vicinity of the three-phase boundary and the promotion of surface oxygen diffusion in YSZ. Based on all experimental data, the effective material design guiding principle was obtained for utilizing the unique physical property of YSZ for applications such as IT-SOFCs. Full article
(This article belongs to the Special Issue Advances in Fuel Cells: Materials, Technologies, and Applications)
Show Figures

Figure 1

6 pages, 964 KB  
Article
Predictive Mobility Model for β-Ga2O3 at Cryogenic Temperature
by Chunyu Zhou, Shuai Chen, Danying Wang, Yong Liu and Guanyu Wang
Electronics 2025, 14(11), 2120; https://doi.org/10.3390/electronics14112120 - 23 May 2025
Viewed by 664
Abstract
In this work, the transport properties of charge carriers in β-Ga2O3 were investigated, along with intrinsic physical mechanisms such as lattice vibrations, impurity scattering, and interfacial effects. The high-field behavior of carrier mobility was characterized using vacuum [...] Read more.
In this work, the transport properties of charge carriers in β-Ga2O3 were investigated, along with intrinsic physical mechanisms such as lattice vibrations, impurity scattering, and interfacial effects. The high-field behavior of carrier mobility was characterized using vacuum deposition techniques for the fabrication of electrodes with ohmic contacts, and the Hall effect measurement system was employed to test the temperature-dependent mobility of Sn-doped n-type (100) and (001) β-Ga2O3 samples at a cryogenic temperature. A predictive model for β-Ga2O3 mobility was developed by examining the effects of the temperature on the scattering mechanisms based on a theoretical transport model. The experimental results for β-Ga2O3 mobility, which varied with the temperature and doping concentration, showed good agreement with the theoretical model within the temperature range of 15–300 K. The maximum discrepancy between the predictive model and the experimental data was less than 5%. This study provides valuable theoretical insights for the design and simulation of β-Ga2O3 devices. Full article
Show Figures

Figure 1

15 pages, 5983 KB  
Article
Mn2+-Doped CsPbBr2I Quantum Dots Photosensitive Films for High-Performance Photodetectors
by Mengwei Chen, Wei Huang, Chenguang Shen, Yingping Yang and Jie Shen
Nanomaterials 2025, 15(6), 444; https://doi.org/10.3390/nano15060444 - 15 Mar 2025
Viewed by 1018
Abstract
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped [...] Read more.
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped CsPbBr2I QDs with varying concentrations were synthesized via the one-pot method in this work. By replacing Pb2+ ions, moderate Mn2+ doping caused lattice contraction and improved crystallinity. At the same time, Mn2+-doping effectively passivated surface defects, reducing the defect density by 33%, and suppressed non-radiative recombination, thereby improving photoluminescence (PL) intensity and carrier mobility. The optimized Mn:CsPbBr2I QDs-based photodetector exhibited superior performance, with a dark current of 1.19 × 10−10 A, a photocurrent of 1.29 × 10−5 A, a responsivity (R) of 0.83 A/W, a specific detectivity (D*) of 3.91 × 1012 Jones, an on/off ratio up to 105, and the response time reduced to less than 10 ms, all outperforming undoped CsPbBr2I QDs devices. Stability tests demonstrated enhanced durability, retaining 80% of the initial photocurrent after 200 s of cycling (compared to 50% for undoped devices) and stable operation over 20 days. This work offers a workable strategy for rational doping and structural optimization in the construction of high-performance perovskite optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofilms)
Show Figures

Figure 1

32 pages, 5714 KB  
Article
Polynomial Modeling of Noise Figure in Erbium-Doped Fiber Amplifiers
by Rocco D’Ingillo, Alberto Castronovo, Stefano Straullu and Vittorio Curri
Fibers 2025, 13(3), 34; https://doi.org/10.3390/fib13030034 - 14 Mar 2025
Viewed by 1370
Abstract
Erbium-Doped Fiber Amplifiers (EDFAs) are fundamental to optical communication networks, providing signal amplification while introducing noise that affects system performance. Accurate noise figure estimation is critical for optimizing link budgets, monitoring optical Signal-to-Noise Ratio (OSNR), and enabling real-time network optimization. Traditional analytical models, [...] Read more.
Erbium-Doped Fiber Amplifiers (EDFAs) are fundamental to optical communication networks, providing signal amplification while introducing noise that affects system performance. Accurate noise figure estimation is critical for optimizing link budgets, monitoring optical Signal-to-Noise Ratio (OSNR), and enabling real-time network optimization. Traditional analytical models, while computationally efficient, often fail to capture device-specific variations, whereas machine-learning-based approaches require large training datasets and introduce high computational overhead. This paper proposes a polynomial regression model for real-time EDFA noise figure estimation, striking a balance between accuracy and computational efficiency. The model leverages Generalized Least Squares (GLS) regression to fit a multivariate polynomial function to measured EDFA noise figure data, ensuring robustness against measurement noise and dataset variations. The proposed method is benchmarked against experimental measurements from multiple EDFAs, achieving prediction errors that are within the measurement uncertainty of Optical Spectrum Analyzers (OSAs). Furthermore, the model demonstrates strong generalization across different EDFA architectures, outperforming analytical models while requiring significantly less data than deep-learning approaches. Computational efficiency is also analyzed, showing that inference time is below 0.2 ms per evaluation, making the model suitable for real-time digital-twin applications in optical networks. Future work will explore hybrid modeling approaches, integrating physics-based regression with Machine Learning (ML) to enhance performance in high-variance spectral regions. These results highlight the potential of lightweight polynomial regression models as an alternative to complex ML-based solutions, enabling scalable and efficient EDFA performance prediction for next-generation optical networks. Full article
Show Figures

Figure 1

19 pages, 12311 KB  
Article
Rapid and Efficient Polymer/Contaminant Removal from Single-Layer Graphene via Aqueous Sodium Nitrite Rinsing for Enhanced Electronic Applications
by Kimin Lee, Juneyoung Kil, JaeWoo Park, Sui Yang and Byoungchoo Park
Polymers 2025, 17(5), 689; https://doi.org/10.3390/polym17050689 - 4 Mar 2025
Viewed by 1630
Abstract
The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping [...] Read more.
The removal of surface residues from single-layer graphene (SLG), including poly(methyl methacrylate) (PMMA) polymers and Cl ions, during the transfer process remains a significant challenge with regard to preserving the intrinsic properties of SLG, with the process often leading to unintended doping and reduced electronic performance capabilities. This study presents a rapid and efficient surface treatment method that relies on an aqueous sodium nitrite (NaNO2) solution to remove such contaminants effectively. The NaNO2 solution rinse leverages reactive nitric oxide (NO) species to neutralize ionic contaminants (e.g., Cl) and partially oxidize polymer residues in less than 10 min, thereby facilitating a more thorough final cleaning while preserving the intrinsic properties of graphene. Characterization techniques, including atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), and X-ray photoelectron spectroscopy (XPS), demonstrated substantial reductions in the levels of surface residues. The treatment restored the work function of the SLG to approximately 4.79 eV, close to that of pristine graphene (~4.5–4.8 eV), compared to the value of nearly 5.09 eV for conventional SLG samples treated with deionized (DI) water. Raman spectroscopy confirmed the reduced doping effects and improved structural integrity of the rinsed SLG. This effective rinsing process enhances the reproducibility and performance of SLG, enabling its integration into advanced electronic devices such as organic light-emitting diodes (OLEDs), photovoltaic (PV) cells, and transistors. Furthermore, the technique is broadly applicable to other two-dimensional (2D) materials, paving the way for next-generation (opto)electronic technologies. Full article
(This article belongs to the Special Issue Graphene-Based Polymer Composites and Their Applications II)
Show Figures

Figure 1

10 pages, 441 KB  
Article
Cost-Effective, Ester-Based Molecular Doping in Silicon
by Anup Shrivastava, Jost Adam and Rosaria A. Puglisi
Int. J. Mol. Sci. 2025, 26(3), 1024; https://doi.org/10.3390/ijms26031024 - 25 Jan 2025
Viewed by 1066
Abstract
When fabricating Si-based devices, many process steps require the use of expensive, high-power consumption, environmentally unfriendly, operator-unsafe machines, and processes. Among the many involved process steps, the ones needed to fabricate the metallurgical junction make use of conventional doping methods, which do not [...] Read more.
When fabricating Si-based devices, many process steps require the use of expensive, high-power consumption, environmentally unfriendly, operator-unsafe machines, and processes. Among the many involved process steps, the ones needed to fabricate the metallurgical junction make use of conventional doping methods, which do not always represent optimal solutions. The high costs of the processing equipment and the use of hazardous materials, not to count the structural damage produced, intrinsically limit future developments towards nm-scaled and low cost approaches. Recently a chemistry-based method has been proposed to form the junction on Si, the so-called molecular doping. In this approach, the samples to be doped are subjected to a silylation process, during which a layer of dopant-containing molecules is deposited in a liquid bath kept at boiling temperature. After the coating, the samples are annealed to decompose the molecule and release the dopants inside the target. The peculiarity of using a liquid source allows for avoiding the structural damage. The entire doping procedure is simple and cost-effective, and it is based on the use of ester molecules, which are less harmful than the standard materials. In this work, we present experimental results on this chemistry-based technique, demonstrating its efficiency in creating the junction and demonstrate its feasibility in the fabrication of solar cells prototypes. Moreover, with respect to the literature, we show for the first time the effects of the protective layer presence over the dopant source molecules in the final solar cells electrical properties. As a proof of concept, we have numerically investigated the Si-based solar cell using the SCPAS-1D simulator. The finding claims that, the proposed samples have a good match in terms of the performance of the devices compared to the conventional Si-solar cells. Henceforth, the proposed work can provide a guideline to achieve less expensive, more environmentally friendly techniques for molecular doping in Si without affecting its performance in the metallurgical junction. Full article
Show Figures

Figure 1

15 pages, 11178 KB  
Article
Temperature Influence on the Deposition of Nitrogen-Doped Silicon Carbide Polycrystalline Films
by Michail Gavalas, Scott Greenhorn, Frédéric Mercier and Konstantinos Zekentes
Coatings 2025, 15(1), 106; https://doi.org/10.3390/coatings15010106 - 18 Jan 2025
Cited by 2 | Viewed by 3450
Abstract
Polycrystalline nitrogen-doped cubic silicon carbide (3C-SiC) thin films are grown on 2″ Si wafers by a low-pressure chemical vapor deposition (LPCVD) technique with the aim for them to be used as support and active materials in microelectronic devices for neural interfaces. The effect [...] Read more.
Polycrystalline nitrogen-doped cubic silicon carbide (3C-SiC) thin films are grown on 2″ Si wafers by a low-pressure chemical vapor deposition (LPCVD) technique with the aim for them to be used as support and active materials in microelectronic devices for neural interfaces. The effect of deposition temperature on the structural, mechanical, and electrical properties is investigated. The growth rate is varying, from 1 μm/h to 14 μm/h, along with the deposition temperature. We show that the structural and electrical properties of polycrystalline SiC are modified when changing the deposition temperature. Films with resistivity as low as (10.0 ± 0.5) mΩ·cm, a low residual stress of (−397 ± 158) MPa, and a low root mean square surface roughness of (53 ± 19) nm are achieved. Accelerated aging tests in heated phosphate buffer solution (PBS) show an etching rate of less than 1 nm/day and a steady low electrical resistivity for 77 days, indicating that the nitrogen-doped polycrystalline SiC is a chemically stable material, capable of chronic stability in a saline electrolyte. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

11 pages, 4561 KB  
Article
Influence of Proton Irradiation on Thin Films of AZO and ITO Transparent Conductive Oxides—Simulation of Space Environment
by Katarzyna Ungeheuer, Janusz Rybak, Amelia E. Bocirnea, Denis A. Pikulski, Aurelian C. Galca and Konstanty W. Marszalek
Appl. Sci. 2025, 15(2), 754; https://doi.org/10.3390/app15020754 - 14 Jan 2025
Cited by 1 | Viewed by 1626
Abstract
Transparent conductive oxides are essential materials for many optoelectronic applications. For new devices for aerospace and space applications, it is crucial to know how they respond to the space environment. The most important issue in commonly used low-Earth orbits is proton radiation. This [...] Read more.
Transparent conductive oxides are essential materials for many optoelectronic applications. For new devices for aerospace and space applications, it is crucial to know how they respond to the space environment. The most important issue in commonly used low-Earth orbits is proton radiation. This study examines the effects of high-energy proton irradiation (226.5 MeV) on thin films of aluminium-doped zinc oxide (AZO) and indium tin oxide (ITO). We use X-ray diffraction and electron microscopy observations to see the changes in the structure and microstructure of the films. The optical properties and homogeneity of the materials are determined by spectrophotometry and spectroscopic ellipsometry (SE). Analysis of the chemical states of the elements with X-ray photoelectron spectroscopy (XPS) gives insight into what proton irradiation changes at the surface of the oxides. All measurements show that ITO is less influenced than AZO. The proton energy and fluence used in this study simulate about a hundred years in low Earth orbit. This research demonstrates that both transparent conductive oxide thin films can function under simulated space conditions, with ITO showing superior resilience. The ITO film was more homogenous in terms of the total thickness measured with SE, had fewer defects and adsorbates present on the surface, as XPS analysis proved, and did not show a difference after irradiation regarding its optical properties, transmission, refractive index, or extinction coefficient. Full article
(This article belongs to the Special Issue Materials and Coatings for Extreme Environments)
Show Figures

Graphical abstract

19 pages, 5506 KB  
Article
Binder-Less Molybdenum Doped CoO Based Integrated Electrodes Fabricated by Electric Discharge Corrosion for High-Efficiency Supercapacitors
by Ri Chen, Zehan Xu, Yunying Xu, Tujun Lei, Dawei Liu, Chunlong Chen, Wenxia Wang, Igor Zhitomirsky, Muchao Qu and Guoying Zhang
Materials 2025, 18(1), 80; https://doi.org/10.3390/ma18010080 - 27 Dec 2024
Viewed by 3896
Abstract
Due to its low cost, natural abundance, non-toxicity, and high theoretical capacitance, cobalt oxide (CoO) stands as a promising candidate electrode material for supercapacitors. In this study, binder-less molybdenum doped CoO (Mo@CoO) integrated electrodes were one-step fabricated using a simple electric discharge corrosion [...] Read more.
Due to its low cost, natural abundance, non-toxicity, and high theoretical capacitance, cobalt oxide (CoO) stands as a promising candidate electrode material for supercapacitors. In this study, binder-less molybdenum doped CoO (Mo@CoO) integrated electrodes were one-step fabricated using a simple electric discharge corrosion (EDC) method. This EDC method enables the direct synthesis of Mo@CoO active materials with oxygen vacancy on cobalt substrates, without any pre-made templates, conductive additives, or chemicals. Most importantly, the EDC method enables precise control over the discharge processing parameter of pulse width, which facilitates tailoring the surface morphologies of the as-prepared Mo@CoO active materials. It was found that the fabricated Mo@CoO based symmetric supercapacitor prepared by a pulse width of 24 μs (Mo@CoO-SCs24) achieved a maximum areal capacitance 36.0 mF cm−2 (0.15 mA cm−2), which is 1.83 and 1.97 times higher than that of Mo@CoO-SCs12 and Mo@CoO-SCs36. Moreover, the Mo@CoO-SCs24 devices could be worked at 10 V s−1, which demonstrates their fast charge/discharge characteristic. These results demonstrated the significant potential of the EDC strategy for efficiency fabricating various metal oxide binder-less integrated electrodes for various applications, like supercapacitors, batteries and sensors. Full article
Show Figures

Figure 1

13 pages, 6926 KB  
Article
Annealing Study on Praseodymium-Doped Indium Zinc Oxide Thin-Film Transistors and Fabrication of Flexible Devices
by Zhenyu Wu, Honglong Ning, Han Li, Xiaoqin Wei, Dongxiang Luo, Dong Yuan, Zhihao Liang, Guoping Su, Rihui Yao and Junbiao Peng
Micromachines 2025, 16(1), 17; https://doi.org/10.3390/mi16010017 - 26 Dec 2024
Cited by 2 | Viewed by 1356
Abstract
The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. [...] Read more.
The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. In this work, we first optimized the annealing-process parameters on the glass substrate. As the annealing temperature rises, the film tends to be denser and obtains a lower surface roughness, a narrower optical-band gap and less oxygen-vacancy content. However, the μ-PCD test shows the 250 °C-annealed film obtains the least defects. And the PrIZO TFT annealed at 250 °C exhibited a desired performance with a saturation mobility (μsat) of 14.26 cm2·V−1·s−1, a subthreshold swing (SS) of 0.14 V·dec−1, an interface trap density (Dit) of 3.17 × 1011, an Ion/Ioff ratio of 1.83 × 108 and a threshold voltage (Vth) of −1.15 V. The flexible devices were prepared using the optimized parameters on the Polyimide (PI) substrate and subjected to static bending tests. After bending at a radius of 5 mm, the mobility of devices decreases slightly from 12.48 to 10.87 cm2·V−1·s−1, demonstrating the great potential of PrIZO for flexible displays. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits)
Show Figures

Figure 1

33 pages, 6495 KB  
Review
A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications
by Jessica Patel, Razia Khan Sharme, Manuel A. Quijada and Mukti M. Rana
Nanomaterials 2024, 14(24), 2013; https://doi.org/10.3390/nano14242013 - 14 Dec 2024
Cited by 5 | Viewed by 3615
Abstract
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays [...] Read more.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p–n junction diodes, etc. are a few of the best uses for this material. Other conductive metals that show a lot of promise as substitutes for traditional conductive materials include copper, zinc oxide, aluminum, silver, gold, and tin. These metals are also utilized in AR coatings. The optimal deposition techniques for creating ITO films under the current conditions have been determined to be DC (direct current) and RF (radio frequency) MS (magnetron sputtering) deposition, both with and without the introduction of Ar gas. When producing most types of AR coatings, it is necessary to obtain thicknesses of at least 100 nm and minimum resistivities on the order of 10−4 Ω cm. For AR coatings, issues related to less-conductive materials than ITO have been considered. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

13 pages, 8819 KB  
Article
Optimized Drop-Casted Polyaniline Thin Films for High-Sensitivity Electrochemical and Optical pH Sensors
by Bruna Eduarda Darolt Mücke, Beatriz Cotting Rossignatti, Luis Miguel Gomes Abegão, Martin Schwellberger Barbosa and Hugo José Nogueira Pedroza Dias Mello
Polymers 2024, 16(19), 2789; https://doi.org/10.3390/polym16192789 - 1 Oct 2024
Cited by 2 | Viewed by 2556
Abstract
Conducting polymers used in chemical sensors are attractive because of their ability to confer reversible properties controlled by the doping/de-doping process. Polyaniline (PANI) is one of the most prominent materials used due to its ease of synthesis, tailored properties, and higher stability. Here, [...] Read more.
Conducting polymers used in chemical sensors are attractive because of their ability to confer reversible properties controlled by the doping/de-doping process. Polyaniline (PANI) is one of the most prominent materials used due to its ease of synthesis, tailored properties, and higher stability. Here, PANI thin films deposited by the drop-casting method on fluorine-doped tin oxide (FTO) substrates were used in electrochemical and optical sensors for pH measurement. The response of the devices was correlated with the deposition parameters; namely, the volume of deposition solution dropped on the substrate and the concentration of the solution, which was determined by the weight ratio of polymer to solvent. The characterisation of the samples aimed to determine the structure–property relationship of the films and showed that the chemical properties, oxidation states, and protonation level are similar for all samples, as concluded from the cyclic voltammetry and UV–VIS spectroscopic analysis. The sensing performance of the PANI film is correlated with its relative physical properties, thickness, and surface roughness. The highest electrochemical sensitivity obtained was 127.3 ± 6.2 mV/pH, twice the Nernst limit—the highest pH sensitivity reported to our knowledge—from the thicker and rougher sample. The highest optical sensitivity, 0.45 ± 0.05 1/pH, was obtained from a less rough sample, which is desirable as it reduces light scattering and sample oxidation. The results presented demonstrate the importance of understanding the structure–property relationship of materials for optimised sensors and their potential applications where high-sensitivity pH measurement is required. Full article
(This article belongs to the Special Issue Polymer Materials for Sensors and Actuators)
Show Figures

Figure 1

35 pages, 14744 KB  
Review
Review of the Properties of GaN, InN, and Their Alloys Obtained in Cubic Phase on MgO Substrates by Plasma-Enhanced Molecular Beam Epitaxy
by Edgar López Luna and Miguel Ángel Vidal
Crystals 2024, 14(9), 801; https://doi.org/10.3390/cryst14090801 - 11 Sep 2024
Cited by 1 | Viewed by 2898
Abstract
Gallium nitride (GaN) semiconductors and their broadband InGaN alloys in their hexagonal phase have been extensively studied over the past 30 years and have allowed the development of blue-ray lasers, which are essential disruptive developments. In addition to high-efficiency white light-emitting diodes, which [...] Read more.
Gallium nitride (GaN) semiconductors and their broadband InGaN alloys in their hexagonal phase have been extensively studied over the past 30 years and have allowed the development of blue-ray lasers, which are essential disruptive developments. In addition to high-efficiency white light-emitting diodes, which have revolutionized lighting technologies and generated a great industry around these semiconductors, several transistors have been developed that take advantage of the characteristics of these semiconductors. These include power transistors for high-frequency applications and high-power transistors for power electronics, among other devices, which have far superior achievements. However, less effort has been devoted to studying GaN and InGaN alloys grown in the cubic phase. The metastable or cubic phase of III-N alloys has superior characteristics compared to the hexagonal phase, mainly because of the excellent symmetry. It can be used to improve lighting technologies and develop other devices. Indium gallium nitride, InxGa1−xN alloy, has a variable band interval of 0.7 to 3.4 eV that covers almost the entire solar spectrum, making it a suitable material for increasing the efficiencies of photovoltaic devices. In this study, we successfully synthesized high-quality cubic InGaN films on MgO (100) substrates using plasma-assisted molecular beam epitaxy (PAMBE), demonstrating tunable emissions across the visible spectrum by varying the indium concentration. We significantly reduced the defect density and enhanced the crystalline quality by using an intermediate cubic GaN buffer layer. We not only developed a heterostructure with four GaN/InGaN/GaN quantum wells, achieving violet, blue, yellow, and red emissions, but also highlighted the immense potential of cubic InGaN films for high-efficiency light-emitting diodes and photovoltaic devices. Achieving better p-type doping levels is crucial for realizing diodes with excellent performance, and our findings will pave the way for this advancement. Full article
(This article belongs to the Special Issue Reviews of Crystal Engineering)
Show Figures

Figure 1

13 pages, 4206 KB  
Article
Physics-Based Artificial Neural Network Assisting in Extracting Transient Properties of Extrinsically Triggering Photoconductive Semiconductor Switches
by Zhong Zheng, Huiyong Hu, Yutian Wang, Tianlong Zhao, Qian Sun and Hui Guo
Micromachines 2024, 15(8), 1003; https://doi.org/10.3390/mi15081003 - 1 Aug 2024
Viewed by 1277
Abstract
In this paper, a physics-based ANN assisting method for extracting transient properties of extrinsically triggering photoconductive semiconductor switches (ET-PCSSs) is proposed. It exploits the nonlinear mapping of ANN between transient current (input) and doping concentration (output). According to the basic laws of photoelectric [...] Read more.
In this paper, a physics-based ANN assisting method for extracting transient properties of extrinsically triggering photoconductive semiconductor switches (ET-PCSSs) is proposed. It exploits the nonlinear mapping of ANN between transient current (input) and doping concentration (output). According to the basic laws of photoelectric device operating, two types of ANN models are constructed by gaussian and polynomial fitting. The mean absolute error (MAE) of forecasting transient photocurrent can be less than 10 A under low triggering optical powers, which verifies the feasibility of ANN assisting TCAD applied to PCSSs. The results are comparable to computation by Mixed-Mode simulation, yet even thousands of seconds of CPU runtime cost are saved in every period. To improve the robustness of the Poly-ANN predictor, Bayesian optimization (BO) is implemented for minimizing the curl deviation of photocurrent-time curves. Full article
Show Figures

Figure 1

Back to TopTop