Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = division-of-focal-plane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4495 KiB  
Review
The Structural Types of the Polarization Detection Unit in Imaging Polarimeter Based on the Stokes Parameter Method
by Yuanhao Li, Xiaohan Guo, Kai Zhang, Xiaoyang Li, Fang Kong and Ziying Jia
Sensors 2025, 25(13), 4069; https://doi.org/10.3390/s25134069 - 30 Jun 2025
Viewed by 538
Abstract
Bio-inspired imaging polarimeters have significant applications in the field of detecting the polarization state of skylights. The polarization detection principle of polarization detection units in polarimeters is mostly based on the Stokes parameter method. Using the Stokes parameter method, multiple linearly polarized lights [...] Read more.
Bio-inspired imaging polarimeters have significant applications in the field of detecting the polarization state of skylights. The polarization detection principle of polarization detection units in polarimeters is mostly based on the Stokes parameter method. Using the Stokes parameter method, multiple linearly polarized lights modulated by the incident light need to be obtained. According to the polarization modulation method of the polarization detection unit, imaging polarimeters can be classified into time-division types, channel-division types, and division of focal-plane types. Different from the classification in previous studies, this review divides channel-division polarimeters into single-sensor channel-division and multi-sensor channel-division polarimeters, avoiding the confusion of concepts between aperture-sharing polarimeters and amplitude-sharing polarimeters in previous classifications. This review introduces the different ways of achieving polarization-state imaging through various bionic imaging polarimeters and expands on the advanced polarization detection unit structure design technologies based on the Stokes parameter method introduced in recent years, aiming to provide inspiration for bio-inspired imaging polarimeters used in navigation and positioning. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Graphical abstract

16 pages, 3791 KiB  
Article
Spindle Orientation Regulation Is Governed by Redundant Cortical Mechanosensing and Shape-Sensing Mechanisms
by Rania Hadjisavva and Paris A. Skourides
Int. J. Mol. Sci. 2025, 26(12), 5730; https://doi.org/10.3390/ijms26125730 - 15 Jun 2025
Viewed by 436
Abstract
Spindle orientation (SO) plays a critical role in tissue morphogenesis, homeostasis, and tumorigenesis by ensuring accurate division plane positioning in response to intrinsic and extrinsic cues. While SO has been extensively linked to cell shape sensing and cortical forces, the interplay between shape- [...] Read more.
Spindle orientation (SO) plays a critical role in tissue morphogenesis, homeostasis, and tumorigenesis by ensuring accurate division plane positioning in response to intrinsic and extrinsic cues. While SO has been extensively linked to cell shape sensing and cortical forces, the interplay between shape- and force-sensing mechanisms remains poorly understood. Here, we reveal that SO is governed by two parallel mechanisms that ensure redundancy and adaptability in diverse cellular environments. Using live-cell imaging of cultured cells, we demonstrate that the long prometaphase axis (LPA) is a superior predictor of SO compared to the long interphase axis, reflecting adhesive geometry and force distribution efficiently at prometaphase. Importantly, we uncover a pivotal role for focal adhesion kinase (FAK) in mediating cortical mechanosensing to regulate SO in cells undergoing complete metaphase rounding. We show that in cells with complete metaphase rounding, FAK-dependent force sensing aligns the spindle with the major force vector, ensuring accurate division. Conversely, in cells retaining shape anisotropy during mitosis, a FAK-independent shape-sensing mechanism drives SO. These findings highlight a dual regulatory system for SO, where shape sensing and force sensing operate in parallel to maintain division plane fidelity, shedding light on the mechanisms that enable cells to adapt to diverse physical and mechanical environments. Full article
(This article belongs to the Special Issue Cell Division: A Focus on Molecular Mechanisms)
Show Figures

Figure 1

20 pages, 7366 KiB  
Article
Histogram of Polarization Gradient for Target Tracking in Infrared DoFP Polarization Thermal Imaging
by Jianguo Yang, Dian Sheng, Weiqi Jin and Li Li
Remote Sens. 2025, 17(5), 907; https://doi.org/10.3390/rs17050907 - 4 Mar 2025
Viewed by 695
Abstract
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram [...] Read more.
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram of polarization gradient (HPG) feature descriptor that enables efficient feature representation of polarization mosaic images. First, a polarization distance calculation model based on normalized cross-correlation (NCC) and local variance is constructed, which enhances the robustness of gradient feature extraction through dynamic weight adjustment. Second, a sparse Laplacian filter is introduced to achieve refined gradient feature representation. Subsequently, adaptive polarization channel correlation weights and the second-order gradient are utilized to reconstruct the degree of linear polarization (DoLP). Finally, the gradient and DoLP sign information are ingeniously integrated to enhance the capability of directional expression, thus providing a new theoretical perspective for polarization mosaic image structure analysis. The experimental results obtained using a self-developed long-wave infrared DoFP polarization thermal imaging system demonstrate that, within the same FBACF tracking framework, the proposed HPG feature descriptor significantly outperforms traditional grayscale {8.22%, 2.93%}, histogram of oriented gradient (HOG) {5.86%, 2.41%}, and mosaic gradient histogram (MGH) {27.19%, 18.11%} feature descriptors in terms of precision and success rate. The processing speed of approximately 20 fps meets the requirements for real-time tracking applications, providing a novel technical solution for polarization imaging applications. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Target Detection)
Show Figures

Figure 1

13 pages, 6504 KiB  
Article
Germanium Metasurface for the Polarization-Sensitive Stokes Thermal Imaging at a MWIR 4-Micron Wavelength
by Hosna Sultana
Photonics 2025, 12(2), 137; https://doi.org/10.3390/photonics12020137 - 7 Feb 2025
Viewed by 1344
Abstract
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive [...] Read more.
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive detection by integrating the metasurface of the subwavelength-scale structured interface to control light–matter interactions. To enforce the metasurface-enabled simultaneous detection and parallel analysis of polarization states in a compact footprint for 4-micron wavelength, we designed a high-contrast germanium metasurface with an axially asymmetric triangular nanoantenna with a height 0.525 times the working wavelength. First, we optimized linear polarization separation of a 52-degree angle with about 50% transmission efficiency, holding the meta-element aspect ratio within the 3.5–1.67 range. The transmission modulation in terms of periodicity and lattice resonance for the phase-gradient high-contrast dielectric metasurface in correlation with the scattering cross-section for both 1D and 2D cases has been discussed for reducing the aspect ratio to overcome the nanofabrication challenge. Furthermore, by employing the geometric phase, we achieved 40% and 60% transmission contrasts for the linear and circular polarization states, respectively, and reconstructed the Stokes vectors and output polarization states. Without any spatial multiplexing, this single metasurface unit cell can perform well in the division of focal plane Stokes thermal imaging, with an almost 10-degree field of view, and it has an excellent refractive index and height tolerance for nanofabrication. Full article
Show Figures

Figure 1

13 pages, 2724 KiB  
Article
Reverse Design of Pixel-Type Micro-Polarizer Arrays to Improve Polarization Image Contrast
by Yonggui Shi, Zhihai Lin, Tianran Wang, Chaokai Huang, Hui Chen, Jianxiong Chen and Yu Xie
Micromachines 2024, 15(10), 1251; https://doi.org/10.3390/mi15101251 - 12 Oct 2024
Cited by 2 | Viewed by 1259
Abstract
Micro-polarizer array (MPA) is the core optical component of the Division of Focal-Plane (DoFP) imaging system, and its design is very important to the system’s performance. Traditional design methods rely on theoretical analysis and simulation, which is complicated and requires designers to have [...] Read more.
Micro-polarizer array (MPA) is the core optical component of the Division of Focal-Plane (DoFP) imaging system, and its design is very important to the system’s performance. Traditional design methods rely on theoretical analysis and simulation, which is complicated and requires designers to have profound theoretical foundations. In order to simplify the design process and improve efficiency, this paper proposes a 2 × 2 MPA reverse-design strategy based on particle swarm optimization (PSO). This strategy uses intelligent algorithms to automatically explore the design space in order to discover MPA structures with optimal optical properties. In addition, the all-pass filter is introduced to the MPA superpixel unit in the design, which effectively reduces the crosstalk and frequency aliasing between pixels. In this study, two MPA models were designed: a traditional MPA and an MPA with an all-pass filter. The Degree of Linear Polarization (DOLP) image contrast is used as the evaluation standard and compared with the traditional MPA; the results show that the contrast of the newly designed traditional MPA image is increased by 21%, and the MPA image with the all-pass filter is significantly increased by 82%. Therefore, the reverse-design method proposed in this paper not only simplifies the design process but also can design an MPA with enhanced optical performance, which has obvious advantages over the traditional method. Full article
(This article belongs to the Special Issue Advanced Optical Manufacturing Technologies and Applications)
Show Figures

Figure 1

13 pages, 5257 KiB  
Article
Method of Directly Writing MPA on Photosensitive Surface of Detector Based on FIB
by Anran Nie, Zhenwei Qiu, Xiaobing Sun, Jun Zhu and Jin Hong
Sensors 2024, 24(12), 3769; https://doi.org/10.3390/s24123769 - 10 Jun 2024
Cited by 1 | Viewed by 1315
Abstract
The division of focal plane (DoFP) polarization detector has great potential for the development of aerospace polarimeters, but the existing commercial DoFP polarization detector cannot satisfy all the missions due to the diversity of satellite payloads. Here, we propose a method of directly [...] Read more.
The division of focal plane (DoFP) polarization detector has great potential for the development of aerospace polarimeters, but the existing commercial DoFP polarization detector cannot satisfy all the missions due to the diversity of satellite payloads. Here, we propose a method of directly writing a micro-polarizer array (MPA) on the detector surface based on focused ion beams (FIB) and fabricating a push-broom scanning DoFP polarization detector. The feasibility and low crosstalk of the solution were proved through testing, and the reasons for the low extinction ratio caused by oxidation were explained through characterization and numerical calculations. This scheme is not only applicable to DoFP polarization detectors but also provides ideas for the integration of other metasurface structures and detectors. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 124335 KiB  
Article
Low-Light Sparse Polarization Demosaicing Network (LLSPD-Net): Polarization Image Demosaicing Based on Stokes Vector Completion in Low-Light Environment
by Guangqiu Chen, Youfei Hao, Jin Duan, Ju Liu, Linfeng Jia and Jingyuan Song
Sensors 2024, 24(11), 3299; https://doi.org/10.3390/s24113299 - 22 May 2024
Cited by 2 | Viewed by 1356
Abstract
Polarization imaging has achieved a wide range of applications in military and civilian fields such as camouflage detection and autonomous driving. However, when the imaging environment involves a low-light condition, the number of photons is low and the photon transmittance of the conventional [...] Read more.
Polarization imaging has achieved a wide range of applications in military and civilian fields such as camouflage detection and autonomous driving. However, when the imaging environment involves a low-light condition, the number of photons is low and the photon transmittance of the conventional Division-of-Focal-Plane (DoFP) structure is small. Therefore, the traditional demosaicing methods are often used to deal with the serious noise and distortion generated by polarization demosaicing in low-light environment. Based on the aforementioned issues, this paper proposes a model called Low-Light Sparse Polarization Demosaicing Network (LLSPD-Net) for simulating a sparse polarization sensor acquisition of polarization images in low-light environments. The model consists of two parts: an intensity image enhancement network and a Stokes vector complementation network. In this work, the intensity image enhancement network is used to enhance low-light images and obtain high-quality RGB images, while the Stokes vector is used to complement the network. We discard the traditional idea of polarization intensity image interpolation and instead design a polarization demosaicing method with Stokes vector complementation. By using the enhanced intensity image as a guide, the completion of the Stokes vector is achieved. In addition, to train our network, we collected a dataset of paired color polarization images that includes both low-light and regular-light conditions. A comparison with state-of-the-art methods on both self-constructed and publicly available datasets reveals that our model outperforms traditional low-light image enhancement demosaicing methods in both qualitative and quantitative experiments. Full article
(This article belongs to the Special Issue AI-Driven Sensing for Image Processing and Recognition)
Show Figures

Figure 1

12 pages, 12604 KiB  
Article
A New Method for Ground-Based Optical Polarization Observation of the Moon
by Weinan Wang, Jinsong Ping, Wenzhao Zhang, Mingyuan Wang, Hanlin Ye, Xingwei Han and Songfeng Kou
Sensors 2024, 24(8), 2580; https://doi.org/10.3390/s24082580 - 18 Apr 2024
Cited by 2 | Viewed by 1507
Abstract
As a natural satellite of the Earth, the moon is a prime target for planetary remote sensing exploration. However, lunar polarization studies are not popular in the planetary science community. Polarimetry of the lunar surface had not been carried out from a spacecraft [...] Read more.
As a natural satellite of the Earth, the moon is a prime target for planetary remote sensing exploration. However, lunar polarization studies are not popular in the planetary science community. Polarimetry of the lunar surface had not been carried out from a spacecraft until the Korean lunar exploration program was initiated. In previous polarization observations of the moon, images of different polarization states were obtained by a rotating linear polarizer. This method is not well suited for future polarization observations from space-based spacecraft. To this end, we present a new kind of polarized observation of the moon using a division of a focal-plane polarization camera and propose a pipeline on the processing method of the polarization observation of the moon. We obtain a map of the degree of white-light polarization on the nearside of the moon through polarization observation, data processing, and correction. The observation and data processing methods presented in this study have the potential to serve as a reference for analyzing polarization observation data from future orbiting spacecraft. These are expected to lead to new discoveries in the fields of astronomy and planetary science. Full article
(This article belongs to the Special Issue Feature Papers in Remote Sensors 2023)
Show Figures

Figure 1

19 pages, 5515 KiB  
Article
Particle Swarm Optimization of Multilayer Multi-Sized Metamaterial Absorber for Long-Wave Infrared Polarimetric Imaging
by Junyu Li, Jinzhao Li and Fei Yi
Micromachines 2024, 15(3), 319; https://doi.org/10.3390/mi15030319 - 25 Feb 2024
Cited by 2 | Viewed by 1939
Abstract
Infrared polarization imaging holds significant promise for enhancing target recognition in both civil and defense applications. The Division of Focal Plane (DoFP) scheme has emerged as a leading technology in the field of infrared polarization imaging due to its compact design and absence [...] Read more.
Infrared polarization imaging holds significant promise for enhancing target recognition in both civil and defense applications. The Division of Focal Plane (DoFP) scheme has emerged as a leading technology in the field of infrared polarization imaging due to its compact design and absence of moving parts. However, traditional DoFP solutions primarily rely on micro-polarizer arrays, necessitating precise alignment with the focal plane array and leading to challenges in alignment and the introduction of optical crosstalk. Recent research has sought to augment the performance of infrared detectors and enable polarization and spectral selection by integrating metamaterial absorbers with the pixels of the detector. Nevertheless, the results reported so far exhibit shortcomings, including low polarization absorption rates and inadequate polarization extinction ratios. Furthermore, there is a need for a comprehensive figure of merit to systematically assess the performance of polarization-selective thermal detectors. In this study, we employ the particle swarm optimization algorithm to present a multilayer, multi-sized metamaterial absorber capable of achieving a remarkable polarization-selective absorption rate of up to 87.2% across the 8–14 μm spectral range. Moreover, we attain a polarization extinction ratio of 38.51. To elucidate and predict the resonant wavelengths of the structure, we propose a modified equivalent circuit model. Our analysis employs optical impedance matching to unveil the underlying mechanisms responsible for the high absorption. We also introduce a comprehensive figure of merit to assess the efficacy of infrared polarization detection through the integration of metamaterials with microbolometers. Finally, drawing on the proposed figure of merit, we suggest future directions for improving integrated metamaterial absorber designs, with the potential to advance practical mid-infrared polarization imaging technologies. Full article
(This article belongs to the Special Issue Metamaterials for Sensing Applications)
Show Figures

Figure 1

19 pages, 13613 KiB  
Article
A Super-Resolution Reconstruction Method for Infrared Polarization Images with Sparse Representation of Over-Complete Basis Sets
by Yizhe Ma, Teng Lei, Shiyong Wang, Zhengye Yang, Linhan Li, Weidong Qu and Fanming Li
Appl. Sci. 2024, 14(2), 825; https://doi.org/10.3390/app14020825 - 18 Jan 2024
Cited by 3 | Viewed by 1875
Abstract
The spatial resolution of an infrared focal plane polarization detection system is limited by the structure of the detector, resulting in lower resolution than the actual array size. To overcome this limitation and improve imaging resolution, we propose an infrared polarization super-resolution reconstruction [...] Read more.
The spatial resolution of an infrared focal plane polarization detection system is limited by the structure of the detector, resulting in lower resolution than the actual array size. To overcome this limitation and improve imaging resolution, we propose an infrared polarization super-resolution reconstruction model based on sparse representation, optimized using Stokes vector images. This model forms the basis for our method aimed at achieving super-resolution reconstruction of infrared polarization images. In this method, we utilize the proposed model to initially reconstruct low-resolution images in blocks. Subsequently, we perform a division by weight, followed by iterative back projection to enhance details and achieve high-resolution reconstruction results. As a supplement, we establish a near-real-time short-wave infrared time-sharing polarization system for data collection. The dataset was acquired to gather prior knowledge of the over-complete basis set and to generate a series of simulated focal plane images. Simulation experimental results demonstrate the superiority of our method over several advanced methods in objective evaluation indexes, exhibiting strong noise robustness in quantitative experiments. Finally, to validate the practical application of our method, we establish a split-focal plane polarization short-wave infrared system for scene testing. Experimental results confirm the effective processing of actual captured data by our method. Full article
(This article belongs to the Special Issue Advanced Image Analysis and Processing Technologies and Applications)
Show Figures

Figure 1

11 pages, 3834 KiB  
Article
Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings
by Huijuan Huang, Yizhen Yu, Xue Li, Duo Sun, Guixue Zhang, Tao Li, Xiumei Shao and Bo Yang
Nanomaterials 2023, 13(18), 2512; https://doi.org/10.3390/nano13182512 - 7 Sep 2023
Cited by 5 | Viewed by 2400
Abstract
Shortwave infrared polarization imaging can increase the contrast of the target to the background to improve the detection system’s recognition ability. The division of focal plane polarization indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice due to the [...] Read more.
Shortwave infrared polarization imaging can increase the contrast of the target to the background to improve the detection system’s recognition ability. The division of focal plane polarization indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice due to the advantages of compact structure, real-time imaging, and high stability. However, because of the mismatch between nanostructures and photosensitive pixels as well as the crosstalk among the different polarization directions, the currently reported extinction ratio (ER) of superpixel-polarization-integrated detectors cannot meet the needs of high-quality imaging. In this paper, a 1024 × 4 InGaAs FPA detector on-chip integrated with a linear polarization grating (LPG) was realized and tested. The detector displayed good performance throughout the 0.9–1.7 um band, and the ERs at 1064 nm, 1310 nm and 1550 nm reached up to 22:1, 29:1 and 46:1, respectively. For the crosstalk investigation, the optical simulation of the grating-integrated InGaAs pixel was carried out, and the limitation of the ER was calculated. The result showed that the scattering of incident light in the InP substrate led to the crosstalk. Moreover, the deviation of the actual grating morphology from the designed structure caused a further reduction in the ER. Full article
Show Figures

Figure 1

15 pages, 4141 KiB  
Article
Automatic Suppression Method for Water Surface Glints Using a Division of Focal Plane Visible Polarimeter
by Meishu Wang, Su Qiu, Weiqi Jin and Jie Yang
Sensors 2023, 23(17), 7446; https://doi.org/10.3390/s23177446 - 26 Aug 2023
Cited by 7 | Viewed by 1641
Abstract
To address the problem of water surface detection imaging equipment being susceptible to water surface glints, this study demonstrates a method called De-Glints for suppressing glints and obtaining clear underwater images using a division of focal plane (DoFP) polarimeter. Based on the principle [...] Read more.
To address the problem of water surface detection imaging equipment being susceptible to water surface glints, this study demonstrates a method called De-Glints for suppressing glints and obtaining clear underwater images using a division of focal plane (DoFP) polarimeter. Based on the principle of polarization imaging, the best polarization angle and the image corresponding to the minimal average gray level of each pixel are calculated. To evaluate the improvement in image quality, the index E was designed. The results of indoor and outdoor experiments show that the error of the angle calculation of this method is within 10%, and the minimum error is only 3%. The E index is positively improved and can be relatively improved by 8.00 under the interference of strong outdoor glints, and the method proposed in this paper shows a good adaptive ability to the dynamic scene. Full article
(This article belongs to the Special Issue Optical Imaging and Sensing)
Show Figures

Figure 1

18 pages, 7029 KiB  
Article
Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging
by Haibo Tu, Xingying Bu, Ran Liao, Hailong Zhang, Guoliang Ma, Hening Li, Jiachen Wan and Hui Ma
Materials 2023, 16(13), 4733; https://doi.org/10.3390/ma16134733 - 30 Jun 2023
Cited by 1 | Viewed by 1498
Abstract
Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess [...] Read more.
Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window’s creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as t1, R, r, R′, are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window’s creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as ψ, A and D, are given from the Mueller matrix images and discussed to illustrate the method’s potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows. Full article
Show Figures

Graphical abstract

16 pages, 28493 KiB  
Article
Single-Layer Transmissive Chiral Plasma Metasurface with High Circular Polarization Extinction Ratio in Visible Wavelength
by Ran Zhang, Zhichao Zhang, Yuanyi Fan, Hao Zhang and Jinkui Chu
Nanomaterials 2023, 13(5), 813; https://doi.org/10.3390/nano13050813 - 22 Feb 2023
Cited by 7 | Viewed by 2402
Abstract
Chiral metamaterials are extensively applied in the fields of photoelectric detection, biomedical diagnostics and micro-nano polarization imaging. Currently, single-layer chiral metamaterials are unfortunately limited by several issues, such as a weaker circular polarization extinction ratio and circular polarization transmittance difference. To tackle these [...] Read more.
Chiral metamaterials are extensively applied in the fields of photoelectric detection, biomedical diagnostics and micro-nano polarization imaging. Currently, single-layer chiral metamaterials are unfortunately limited by several issues, such as a weaker circular polarization extinction ratio and circular polarization transmittance difference. To tackle these issues, a single-layer transmissive chiral plasma metasurface (SCPMs) suitable for visible wavelength is proposed in this paper. Its basic unit is composed of double orthogonal rectangular slots and a spatial π/4 inclined arrangement of the rectangular slot to constitute a chiral structure. Each rectangular slot structure has characteristics that enable the SCPMs to easily achieve a high circular polarization extinction ratio and strong circular polarization transmittance difference. Both the circular polarization extinction ratio and circular polarization transmittance difference of the SCPMs reach over 1000 and 0.28 at a wavelength of 532 nm, respectively. In addition, the SCPMs is fabricated via the thermally evaporated deposition technique and focused ion beam system. This compact structure coupled with a simple process and excellent properties enhances its applicability for the control and detection of polarization, especially during integration with linear polarizers, to achieve the fabrication of a division-of-focal-plane full-Stokes polarimeter. Full article
(This article belongs to the Special Issue Nanophotonics: Lasers, Gratings and Localized Surface Plasmons)
Show Figures

Figure 1

18 pages, 8247 KiB  
Article
Polarization Super-Resolution Imaging Method Based on Deep Compressed Sensing
by Miao Xu, Chao Wang, Kaikai Wang, Haodong Shi, Yingchao Li and Huilin Jiang
Sensors 2022, 22(24), 9676; https://doi.org/10.3390/s22249676 - 10 Dec 2022
Cited by 8 | Viewed by 3543
Abstract
The division of focal plane (DoFP) polarization imaging sensors, which can simultaneously acquire the target’s two-dimensional spatial information and polarization information, improves the detection resolution and recognition capability by capturing the difference in polarization characteristics between the target and the background. In this [...] Read more.
The division of focal plane (DoFP) polarization imaging sensors, which can simultaneously acquire the target’s two-dimensional spatial information and polarization information, improves the detection resolution and recognition capability by capturing the difference in polarization characteristics between the target and the background. In this paper, we propose a novel polarization imaging method based on deep compressed sensing (DCS) by adding digital micromirror devices (DMD) to an optical system and simulating the polarization transmission model of the optical system to reconstruct high-resolution images under low sampling rate conditions. By building a simulated dataset, training a polarization super-resolution imaging network, and showing excellent reconstructions on real shooting scenes, compared to current algorithms, our model has a higher peak signal-to-noise ratio (PSNR), which validates the feasibility of our approach. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop