The Structural Types of the Polarization Detection Unit in Imaging Polarimeter Based on the Stokes Parameter Method
Abstract
1. Introduce
2. The Optical Polarization State Detection Principle Based on the Stokes Parameters Method
2.1. Stokes Vector and Mueller Matrix Overview
2.2. Four-Angle Measurement Method
2.3. Three-Angle Measurement Method
3. Design of Polarization Detection Unit Structure for Bionic Imaging Polarimeter
3.1. Time-Division Polarimeter
3.1.1. Rotating Polarization Device Technology
3.1.2. Electrically Controlled Phase Delay Technology
3.2. Channel-Division Polarimeter
3.2.1. Design of Multi-Sensor Channel-Division Polarimeter
3.2.2. Design of Single Sensor Channel-Division Polarimeter
3.3. Division-of-Focal-Plane Polarimeter
3.3.1. The Micro-Polarizer Array Front-Mounted Polarimeter
3.3.2. The Polarimeter with Integrated Polarizer and Pixel Array
4. Summary and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Guo, L.; Yu, W.B.; Chen, T.H.; Fang, S.X. Heading Determination of Bionic Polarization Sensor Based on Night Composite Light Field. IEEE Sens. J. 2024, 24, 909–919. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, P.W.; Yang, J.; Zhang, X.; Guo, L. Polarization Meridian Plane-Based 3-D Attitude Measurements: A Bio-Inspired Approach. IEEE Sens. J. 2023, 23, 599–608. [Google Scholar] [CrossRef]
- Takruri, M.; Abubakar, A.; Alnaqbi, N.; Al Shehhi, H.; Jallad, A.H.M.; Bermak, A. DoFP-ML: A Machine Learning Approach to Food Quality Monitoring Using a DoFP Polarization Image Sensor. IEEE Access 2020, 8, 150282–150290. [Google Scholar] [CrossRef]
- Li, M.K.; Yao, N.A.; Liu, S.; Li, S.Q.; Zhao, Y.Q.; Kong, S.G. Multisensor Image Fusion for Automated Detection of Defects in Printed Circuit Boards. IEEE Sens. J. 2021, 21, 23390–23399. [Google Scholar] [CrossRef]
- Li, Z.X.; Tang, F.; Shang, S.H.; Wu, J.J.; Shao, J.H.; Liao, W.; Kong, B.; Zeng, T.X.; Ye, X.; Jiang, X.D.; et al. Compact metalens-based integrated imaging devices for near-infrared microscopy. Opt. Express 2021, 29, 27041–27047. [Google Scholar] [CrossRef]
- Li, X.; Liu, F.; Han, P.L.; Zhang, S.C.; Shao, X.P. Near-infrared monocular 3D computational polarization imaging of surfaces exhibiting nonuniform reflectance. Opt. Express 2021, 29, 15616–15630. [Google Scholar] [CrossRef]
- Dacke, M.; Nilsson, D.E.; Scholtz, C.H.; Byrne, M.; Warrant, E.J. Insect orientation to polarized moonlight. Nature 2003, 424, 33. [Google Scholar] [CrossRef]
- Evangelista, C.; Kraft, P.; Dacke, M.; Labhart, T.; Srinivasan, M.V. Honeybee navigation: Critically examining the role of the polarization compass. Philos. Trans. R. Soc. B-Biol. Sci. 2014, 369, 12. [Google Scholar] [CrossRef]
- Jin, H.H.; Wang, X.Q.; Fan, Z.G.; Pan, N. Linear Solution Method of Solar Position for Polarized Light Navigation. IEEE Sens. J. 2021, 21, 15042–15052. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, K.; You, Z.; Huang, K. Real-time polarization imaging algorithm for camera-based polarization navigation sensors. Appl. Opt. 2017, 56, 3199–3205. [Google Scholar] [CrossRef]
- He, R.G.; Hu, X.P.; Zhang, L.L.; He, X.F.; Han, G.L. A Combination Orientation Compass Based on the Information of Polarized Skylight/Geomagnetic/MIMU. IEEE Access 2020, 8, 10879–10887. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.P.; Li, W.S.; Qiu, Z.B. A Multi-Mode Switching Variational Bayesian Adaptive Kalman Filter Algorithm for the SINS/PNS/GMNS Navigation System of Pelagic Ships. Sensors 2022, 22, 3372. [Google Scholar] [CrossRef]
- Chu, J.K.; Chen, J.H.; Li, J.S.; Tong, K.; Li, J.; Hu, H.P. Polarized Light/binocular Vision Bionic Integrated Navigation Method. Acta Photonica Sin. 2021, 50, 10. [Google Scholar] [CrossRef]
- Atalar, O.; Arbabian, A. Birefringence-free photoelastic modulator with centimeter-square aperture operating at 2.7 MHz with sub-watt drive power. Opt. Lett. 2024, 49, 5051–5054. [Google Scholar] [CrossRef] [PubMed]
- Sasagawa, K.; Okada, R.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. Polarization Image Sensor for Highly Sensitive Polarization Modulation Imaging Based on Stacked Polarizers. IEEE Trans. Electron. Devices 2022, 69, 2924–2931. [Google Scholar] [CrossRef]
- Yadav, P.; Shein-Idelson, M. Polarization vision in invertebrates: Beyond the boundaries of navigation. Curr. Opin. Insect Sci. 2021, 48, 50–56. [Google Scholar] [CrossRef]
- Li, Q.H.; Dong, L.Q.; Hu, Y.; Hao, Q.; Wang, W.L.; Cao, J.; Cheng, Y. Polarimetry for Bionic Geolocation and Navigation Applications: A Review. Remote Sens. 2023, 15, 26. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Zhang, R.; Chu, J.K.; Zhang, Z.C.; Yu, H. High-precision measurement on the extinction ratio of linear polarizers. J. Mod. Opt. 2022, 69, 1142–1148. [Google Scholar] [CrossRef]
- Chen, Y.-t.; Zhang, R.; Lin, W.; Chu, J.-k. Design and construction of real-time all-polarization imaging detector for skylight. Opt. Precis. Eng. 2018, 26, 816–824. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E.; Hecht, E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. Phys. Today 1999, 53, 77–78. [Google Scholar] [CrossRef]
- Lambrinos, D.; Kobayashi, H.; Pfeifer, R.; Maris, M.; Labhart, T.; Wehner, R. An Autonomous Agent Navigating with a Polarized Light Compass. Adapt. Behav. 1997, 6, 131–161. [Google Scholar] [CrossRef]
- Lambrinos, D.; Möller, R.; Labhart, T.; Pfeifer, R.; Wehner, R. A mobile robot employing insect strategies for navigation. Robot. Auton. Syst. 2000, 30, 39–64. [Google Scholar] [CrossRef]
- Du, T.; Zeng, Y.H.; Yang, J.; Tian, C.Z.; Bai, P.F. Multi-sensor fusion SLAM approach for the mobile robot with a bio-inspired polarised skylight sensor. IET Radar Sonar Navig. 2020, 14, 1950–1957. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chu, J.K.; Zhang, R.; Li, J.S.; Guo, X.Q.; Lin, M.Y. A Bio-Inspired Polarization Sensor with High Outdoor Accuracy and Central-Symmetry Calibration Method with Integrating Sphere. Sensors 2019, 19, 28. [Google Scholar] [CrossRef]
- Fan, C.; Hu, X.P.; Lian, J.X.; Zhang, L.L.; He, X.F. Design and Calibration of a Novel Camera-Based Bio-Inspired Polarization Navigation Sensor. IEEE Sens. J. 2016, 16, 3640–3648. [Google Scholar] [CrossRef]
- Stürzl, W.; Carey, N. A Fisheye Camera System for Polarisation Detection on UAVs. In Proceedings of the ECCV Workshops, Florence, Italy, 7–13 October 2012. [Google Scholar]
- Kong, F.; Guo, Y.J.; Zhang, J.H.; Fan, X.J.; Guo, X.H. Review on bio-inspired polarized skylight navigation. Chin. J. Aeronaut. 2023, 36, 14–37. [Google Scholar] [CrossRef]
- Wang, Y.J.; Hu, X.P.; Lian, J.X.; Zhang, L.L.; Xian, Z.W.; Ma, T. Design of a Device for Sky Light Polarization Measurements. Sensors 2014, 14, 14916–14931. [Google Scholar] [CrossRef]
- Liu, Q.; Bai, C.X.; Liu, J.; He, J.L.; Li, J.X. Fourier transform imaging spectropolarimeter using ferroelectric liquid crystals and Wollaston interferometer. Opt. Express 2017, 25, 19904–19922. [Google Scholar] [CrossRef]
- Wang, D.B.; Liang, H.W.; Zhu, H.; Zhang, S. A Bionic Camera-Based Polarization Navigation Sensor. Sensors 2014, 14, 13006–13023. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, Y.; Li, Y.C.; Liu, Y.; Yang, Y.N.; Zhang, X.M.; Wang, L.X.; Tai, Y.; Liu, J.Z.; Liu, Z.; et al. Analysis of infrared polarization imaging characteristics based on long wave infrared zoom system. Front. Phys. 2023, 11, 12. [Google Scholar] [CrossRef]
- Ohfuchi, T.; Sakakura, M.; Yamada, Y.; Fukuda, N.; Takiya, T.; Shimotsuma, Y.; Miura, K. Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass. Opt. Express 2017, 25, 23738–23754. [Google Scholar] [CrossRef] [PubMed]
- Gecevicius, M.; Beresna, M.; Kazansky, P.G. Polarization sensitive camera by femtosecond laser nanostructuring. Opt. Lett. 2013, 38, 4096–4099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Zhang, X.Z.; Cao, Y.; Liu, H.B.; Liu, Z.J. Robust sky light polarization detection with an S-wave plate in a light field camera. Appl. Opt. 2016, 55, 3518–3525. [Google Scholar] [CrossRef] [PubMed]
- Stürzl, W. A Lightweight Single-Camera Polarization Compass with Covariance Estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5363–5371. [Google Scholar]
- Zhang, W.J.; Cao, Y.; Zhang, X.Z.; Liu, Z.J. Sky light polarization detection with linear polarizer triplet in light field camera inspired by insect vision. Appl. Opt. 2015, 54, 8962–8970. [Google Scholar] [CrossRef]
- Yang, Y.R.; Huang, L.H.; Xiao, Y.W.; Gu, N.T. Polarized Shack-Hartmann wavefront sensor. Front. Phys. 2023, 11, 1091848. [Google Scholar] [CrossRef]
- Taddese, A.M.; Verrier, N.; Lo, M.H.M.; Debailleul, M.; Haeberle, O. Jones tomographic diffractive microscopy with a polarized array sensor. Opt. Express 2023, 31, 9034–9051. [Google Scholar] [CrossRef]
- Han, G.L.; Hu, X.P.; Lian, J.X.; He, X.F.; Zhang, L.L.; Wang, Y.J.; Dong, F.L. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass. Sensors 2017, 17, 2623. [Google Scholar] [CrossRef]
- Maruyama, Y.; Terada, T.; Yamazaki, T.; Uesaka, Y.; Nakamura, M.; Matoba, Y.; Komori, K.; Ohba, Y.; Arakawa, S.; Hirasawa, Y.; et al. 3.2-MP Back-Illuminated Polarization Image Sensor With Four-Directional Air-Gap Wire Grid and 2.5-μm Pixels. IEEE Trans. Electron. Devices 2018, 65, 2544–2551. [Google Scholar] [CrossRef]
- Chu, J.K.; Wang, Z.W.; Guan, L.; Liu, Z.; Wang, Y.L.; Zhang, R. Integrated Polarization Dependent Photodetector and Its Application for Polarization Navigation. IEEE Photonics Technol. Lett. 2014, 26, 469–472. [Google Scholar] [CrossRef]
- Gao, S.; Njuguna, R.; Gruev, V. Fabrication and Performance Evaluation of Pixelated Nano-Wire Grid Polarizer. SPIE: Bellingham, WA, USA, 2013; Volume 8873. [Google Scholar]
- Li, J.Y.; Li, J.Z.; Yi, F. Particle Swarm Optimization of Multilayer Multi-Sized Metamaterial Absorber for Long-Wave Infrared Polarimetric Imaging. Micromachines 2024, 15, 319. [Google Scholar] [CrossRef]
- Guan, L.; Li, S.Q.; Zhai, L.Y.; Liu, S.; Liu, H.; Lin, W.; Cui, Y.; Chu, J.K.; Xie, H.K. Study on skylight polarization patterns over the ocean for polarized light navigation application. Appl. Opt. 2018, 57, 6243–6251. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, Y.Q.; Sun, X.Y.; Hao, X.R.; Liu, Y.P.; Zhao, X.L.; Li, H.S.; Zhang, X.S.; Xu, J.; Tian, J.J.; et al. Principle and Implementation of Stokes Vector Polarization Imaging Technology. Appl. Sci. 2022, 12, 13. [Google Scholar] [CrossRef]
- Li, X.B.; Le Teurnier, B.; Boffety, M.; Liu, T.G.; Hu, H.F.; Goudail, F. Theory of autocalibration feasibility and precision in full Stokes polarization imagers. Opt. Express 2020, 28, 15268–15283. [Google Scholar] [CrossRef] [PubMed]
- Chipman, R.A.; Lam, W.-S.T.; Young, G. Polarized Light and Optical Systems; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Yang, J.P.; Tang, A.; Lian, B.W.; Xiong, Z.J.; Ma, Z.B.; Gu, N.T. Optimal multi-spectrum polarization detection with full-Stokes in a single channel by using standard retarders. Measurement 2025, 242, 116052. [Google Scholar] [CrossRef]
- Yadav, K.; Pathak, G.; Agarwal, S.; Tripathi, S.; Kumar, S.; Srivastava, A.; Manohar, R. C-Dots dispersed nematic liquid crystal as tunable retarder. J. Mater. Sci.-Mater. Electron. 2023, 34, 9. [Google Scholar] [CrossRef]
- Hassan, F.; Yang, D.H.; Saadaoui, L.; Wang, Y.; Drevensek-Olenik, I.; Qiu, Z.Y.; Shao, J.B.; Zhang, Y.M.; Gao, S.H.; Li, Y.G.; et al. Bulk photovoltaic effect in ferroelectric nematic liquid crystals. Opt. Lett. 2024, 49, 4662–4665. [Google Scholar] [CrossRef]
- Wang, B.; List, J. Basic optical properties of the photoelastic modulator: Part I. Useful aperture and acceptance angle. Polariz. Sci. Remote Sens. II 2005, 5888, 436–443. [Google Scholar]
- Voss, K.J.; Liu, Y. Polarized radiance distribution measurements of skylight. I. System description and characterization. Appl. Opt. 1997, 36, 6083–6094. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, K.-C.; You, Z. Developement of rapid rotary polarization imaging detection devices. Opt. Precis. Eng. 2018, 26, 2345–2354. [Google Scholar] [CrossRef]
- Gu, N.T.; Xiao, Y.W.; Huang, L.H.; Rao, C.H. Polarization imaging based on time-integration by a continuous rotating polarizer. Opt. Express 2022, 30, 3497–3515. [Google Scholar] [CrossRef]
- Lian, B.W.; Gu, N.T.; Xiao, Y.W.; Tang, A.; Huang, L.H.; Rao, C.H. Accurate calibration on optical axis of polarizer in a polarization imaging system. Opt. Rev. 2024, 31, 17–27. [Google Scholar] [CrossRef]
- Kong, F.; Fan, X.J.; Guo, X.H.; Deng, X.H.; Chen, X.L.; Guo, Y.J. Design of an Imaging Polarized Skylight Compass Using Mechanical Rotation. IEEE Sens. J. 2024, 24, 37809–37821. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, R.L.; Lyu, X.; Cui, X.; Kong, F.; Guo, X.H.; Sun, H.Y. A Measurement Angle Error Correction Method for Polarized Images Based on Levenberg-Marquardt. IEEE Trans. Instrum. Meas. 2024, 73, 8. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Nasir, A.; Ni, B.; Xu, B.; Xue, L.; Liu, X.F.; Xiong, J.C. Portable PIMI polarization imaging device based on automatic polarization recognition. Appl. Opt. 2023, 62, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Gu, N.T.; Lian, B.W.; Xiao, Y.W.; Huang, L.H. Full-Stokes Retrieving and Configuration Optimization in a Time-Integration Imaging Polarimeter. Sensors 2022, 22, 4733. [Google Scholar] [CrossRef]
- López-Téllez, J.M.; Bruce, N.C. Mueller-matrix polarimeter using analysis of the nonlinear voltage-retardance relationship for liquid-crystal variable retarders. Appl. Opt. 2014, 53, 5359–5366. [Google Scholar] [CrossRef]
- Pust, N.J.; Shaw, J.A. Dual-field imaging polarimeter using liquid crystal variable retarders. Appl. Opt. 2006, 45, 5470–5478. [Google Scholar] [CrossRef]
- Zhao, H.J.; Xu, W.J.; Zhang, Y.; Li, X.D.; Zhang, H.; Xuan, J.B.; Jia, B. Polarization patterns under different sky conditions and a navigation method based on the symmetry of the AOP map of skyligh. Opt. Express 2018, 26, 28589–28603. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.J.; Song, P.; Shi, S.G.; Xu, W.J.; Liang, X. Ground-based full-sky imaging polarimeter based on liquid crystal variable retarders. Opt. Express 2014, 22, 8749–8764. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Jiang, H.; Gu, H.G.; Chen, X.G.; Zhang, C.W.; Liu, S.Y. Dynamic characteristics of nematic liquid crystal variable retarders investigated by a high-speed polarimetry. J. Opt. 2019, 21, 20. [Google Scholar] [CrossRef]
- Sakamoto, M.; Nhan, H.T.; Noda, K.; Sasaki, T.; Tanaka, M.; Kawatsuki, N.; Ono, H. Polarization-probe polarization-imaging system in near-infrared regime using a polarization grating. Sci. Rep. 2022, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Jiang, L.N.; Pau, S. Generalized elliptical retarder design and construction using nematic and cholesteric phase liquid crystal polymers. Opt. Express 2022, 30, 16734–16747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, L.L.; Yi, A.Z.; Gu, H.G.; Chen, X.G.; Jiang, H.; Liu, S.Y. Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization. Front. Mech. Eng. 2020, 15, 256–264. [Google Scholar] [CrossRef]
- Li, K.; Wang, S.; Han, X.; Wang, Z. Dispersion Measurement of Electro-Optic Coefficient γ22 of Lithium Niobate Based on Photoelastic Modulation. Appl. Sci. 2020, 10, 395. [Google Scholar] [CrossRef]
- Alali, S.; Yang, T.Y.; Vitkin, I.A. Rapid time-gated polarimetric Stokes imaging using photoelastic modulators. Opt. Lett. 2013, 38, 2997–3000. [Google Scholar] [CrossRef]
- Arteaga, O.; Freudenthal, J.; Wang, B.L.; Kahr, B. Mueller matrix polarimetry with four photoelastic modulators: Theory and calibration. Appl. Opt. 2012, 51, 6805–6817. [Google Scholar] [CrossRef]
- Han, C.Y.; Chen, M.T.; Lai, H.B.; Lai, S.H.; Lin, S.C. Dynamic Stokes polarimetric imaging system with dual-wavelength operation. J. Vac. Sci. Technol. B 2020, 38, 9. [Google Scholar] [CrossRef]
- Daskalopoulou, V.; Raptis, P.I.; Tsekeri, A.; Amiridis, V.; Kazadzis, S.; Ulanowski, Z.; Charmandaris, V.; Tassis, K.; Martin, W. Linear polarization signatures of atmospheric dust with the SolPol direct-sun polarimeter. Atmos. Meas. Tech. 2023, 16, 4529–4550. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.S.; Huang, P.P.; Yang, Y.T.; Yang, J.; Guo, L. An Extended Polarization Sensor Model Considering the Influence of Obliquely Incident Direct Sunlight. IEEE Sens. J. 2022, 22, 18580–18590. [Google Scholar] [CrossRef]
- Pu, X.K.; Wang, X.; Gao, X.J.; Wei, C.F.; Gao, J. Sky Polarization Pattern Reconstruction and Neutral Line Detection Based on Adversarial Learning. IEEE Trans. Instrum. Meas. 2023, 72, 13. [Google Scholar] [CrossRef]
- Serres, J.R.; Lapray, P.J.; Viollet, S.; Kronland-Martinet, T.; Moutenet, A.; Morel, O.; Bigué, L. Passive Polarized Vision for Autonomous Vehicles: A Review. Sensors 2024, 24, 3312. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.G.; Wang, X.Q.; Jin, H.H.; Wang, C.; Pan, N.; Hua, D. Neutral point detection using the AOP of polarized skylight patterns. Opt. Express 2021, 29, 5665–5676. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Chu, J.K.; Zhang, R.; Liu, R.; Fu, J.X. Wide field of view and full Stokes polarization imaging using metasurfaces inspired by the stomatopod eye. Nanophotonics 2023, 12, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Zhang, R.; Fan, Y.Y.; Cheng, H.Y.; Guan, C.L.; Chu, J.K. A novel method for the design of a full Stokes polarimeter based on dielectric metasurfaces. Optik 2022, 261, 169198. [Google Scholar] [CrossRef]
- Horváth, G.; Barta, A.; Gál, J.; Suhai, B.; Haiman, O. Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection. Appl. Opt. 2002, 41, 543–559. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, N.; Li, D.L.; Wang, F.; Zhang, B.Z.; Wang, C.G.; Shen, C.; Ren, J.B.; Xue, C.Y.; Liu, J. Novel robust skylight compass method based on full-sky polarization imaging under harsh conditions. Opt. Express 2016, 24, 15834–15844. [Google Scholar] [CrossRef]
- Fan, C.; Hu, X.P.; He, X.F.; Zhang, L.L.; Lian, J.X. Integrated Polarized Skylight Sensor and MIMU With a Metric Map for Urban Ground Navigation. IEEE Sens. J. 2018, 18, 1714–1722. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Lian, J.; Zhang, L.; He, X.; Fan, C. Geometric Calibration Algorithm of Polarization Camera Using Planar Patterns. J. Shanghai Jiaotong Univ. Sci. 2017, 22, 55–059. [Google Scholar] [CrossRef]
- Qin, X.; Huang, W.; Xu, M.F.; Jia, S.Q. Error analysis and calibration based on division-of-aperture bionic polarization navigation systems. Opt. Commun. 2024, 569, 130844. [Google Scholar] [CrossRef]
- Cui, Y.; Azzam, R.M.A. Sixteen-beam grating-based division-of-amplitude photopolarimeter. Opt. Lett. 1996, 21, 89–91. [Google Scholar] [CrossRef]
- Mazumder, N.; Qiu, J.J.; Foreman, M.R.; Romero, C.M.; Török, P.; Kao, F.J. Stokes vector based polarization resolved second harmonic microscopy of starch granules. Biomed. Opt. Express 2013, 4, 538–547. [Google Scholar] [CrossRef] [PubMed]
- de Leon, E.E.; Brandt, R.; Phenis, A.M.; Virgen, M. Initial results of a simultaneous Stokes imaging polarimeter. Proc. SPIE Opt. Eng. Appl. 2007, 6682, 359–367. [Google Scholar]
- Pezzaniti, J.L.; Chenault, D.B.; Roche, M.; Reinhardt, J.; Schultz, H.J. Wave slope measurement using imaging polarimetry. Proc. Def. Commer. Sens. 2009, 7317, 60–72. [Google Scholar]
- Fujita, K.; Itoh, Y.; Mukai, T. Development of simultaneous imaging polarimeter for asteroids. Adv. Space Res. 2009, 43, 325–327. [Google Scholar] [CrossRef]
- Niu, B.; Yang, J.; Du, T.; Wang, G.-L.; Guo, L. Polarization angle measurement by polarizing beam splitter-based sensor. In Proceedings of the Cybersecurity and Cyberforensics Conference, Amman, Jordan, 2–4 August 2016. [Google Scholar]
- Yang, J.; Du, T.; Niu, B.; Li, C.Y.; Qian, J.Q.; Guo, L. Y A Bionic Polarization Navigation Sensor Based on Polarizing Beam Splitter. IEEE Access 2018, 6, 11472–11481. [Google Scholar] [CrossRef]
- Farlow, C.A.; Chenault, D.B.; Pezzaniti, J.L.; Spradley, K.D.; Gulley, M.G. Imaging polarimeter development and applications. Polariz. Anal. Meas. IV 2002, 4481, 118–125. [Google Scholar]
- Ramella-Roman, J.C.; Saytashev, I.; Piccini, M. A review of polarization-based imaging technologies for clinical and preclinical applications. J. Opt. 2020, 22, 18. [Google Scholar] [CrossRef]
- Ono, S. Snapshot multispectral imaging using a pixel-wise polarization color image sensor. Opt. Express 2020, 28, 34536–34573. [Google Scholar] [CrossRef]
- Xue, J.A.; Qiu, S.; Jin, W.Q.; Wang, X. Self-calibration algorithm for installation angle deviation of bionic polarization compound eyes. Opt. Express 2023, 31, 25446–25466. [Google Scholar] [CrossRef]
- Pezzaniti, J.L.; Chenault, D.B. A division of aperture MWIR imaging polarimeter. Polariz. Sci. Remote Sens. II 2005, 5888, 239–250. [Google Scholar]
- Arbabi, E.; Kamali, S.M.; Arbabi, A.; Faraon, A. Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces. Acs Photonics 2018, 5, 3132–3140. [Google Scholar] [CrossRef]
- Rubin, N.A.; D’Aversa, G.; Chevalier, P.; Shi, Z.J.; Chen, W.T.; Capasso, F. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 2019, 365, eaax1839. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.Z.; Guo, S.H.; Zhu, W.Q.; Huo, P.C.; Liu, S.J.; Zhang, S.; Chen, P.; Chen, L.; Lezec, H.J.; Agrawal, A.; et al. Full-Stokes Polarimetry for Visible Light Enabled by an All-Dielectric Metasurface. Adv. Photon. Res. 2022, 3, 8. [Google Scholar] [CrossRef]
- Liu, L.P.; Li, X.; Yang, J.M.; Tian, X.L.; Liu, L. Three-Stage Interpolation Method for Demosaicking Monochrome Polarization DoFP Images. Sensors 2024, 24, 3018. [Google Scholar] [CrossRef]
- Chenault, D.B.; Pezzaniti, J.L.; Vaden, J.P. Pyxis handheld polarimetric imager. Infrared Technol. Appl. XLII 2016, 9819, 158–168. [Google Scholar]
- Yang, Y.T.; Wang, Y.; Yu, X.; Huang, P.P.; Liu, X.; Dou, Q.F.; Yang, J.; Guo, L. Moonlit polarized skylight-aided INS/CNS: An enhanced attitude determination method. Control Eng. Pract. 2023, 132, 105408. [Google Scholar] [CrossRef]
- Li, Q.H.; Dong, L.Q.; Hu, Y.; Hao, Q.; Lv, J.H.; Cao, J.; Cheng, Y. Skylight Polarization Pattern Simulator Based on a Virtual-Real-Fusion Framework for Urban Bionic Polarization Navigation. Sensors 2023, 23, 6906. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Chu, J.K.; Yu, H.; Zhang, R.; Liu, S.Y. A Nonideal Measurement Error Model of Polarized Skylight for Model-Based Orientation Determination. IEEE Trans. Instrum. Meas. 2023, 72, 11. [Google Scholar] [CrossRef]
- Han, G.L.; Zhang, L.L.; He, X.F.; He, R.G.; Mao, J.; Wu, X.S.; Hu, X.P. A Novel Orientation Method for Polarized Light Compass Under Tilted Conditions. IEEE Sens. J. 2020, 20, 10554–10563. [Google Scholar] [CrossRef]
- Zhou, W.Z.; Fan, C.; He, X.F.; Hu, X.P.; Fan, Y.; Wu, X.S.; Shang, H. Integrated Bionic Polarized Vision/VINS for Goal-Directed Navigation and Homing in Unmanned Ground Vehicle. IEEE Sens. J. 2021, 21, 11232–11241. [Google Scholar] [CrossRef]
- Fan, C.; Zhou, Z.W.; He, X.F.; Fan, Y.; Zhang, L.L.; Wu, X.S.; Hu, X.P. Bio-Inspired Multisensor Navigation System Based on the Skylight Compass and Visual Place Recognition for Unmanned Aerial Vehicles. IEEE Sens. J. 2022, 22, 15419–15428. [Google Scholar] [CrossRef]
- Garcia, M.; Edmiston, C.; Marinov, R.; Vail, A.; Gruev, V. Bio-inspired color-polarization imager for real-time in situ imaging. Optica 2017, 4, 1263–1271. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, C.Q.; Fan, Y.Y.; Liu, Z.; Chu, J.K. Modular division of focal plane polarimeter system. Opt. Commun. 2019, 446, 162–170. [Google Scholar] [CrossRef]
- Hu, P.W.; Yang, J.; Guo, L.; Yu, X.; Li, W.S. Solar-tracking methodology based on refraction-polarization in Snell’s window for underwater navigation. Chin. J. Aeronaut. 2022, 35, 380–389. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, R.; Li, Y.H.; Guan, C.A.L.; Liu, R.; Fu, J.X.; Chu, J.K. A bio-inspired polarization navigation sensor based on artificial compound eyes. Bioinspir. Biomim. 2022, 17, 10. [Google Scholar] [CrossRef]
- Ren, H.N.; Yang, J.; Liu, X.; Huang, P.P.; Guo, L. Sensor Modeling and Calibration Method Based on Extinction Ratio Error for Camera-Based Polarization Navigation Sensor. Sensors 2020, 20, 3779. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, S.; Jin, W.Q.; Xue, F.D. Temporal and spatial error model for estimating the measurement precision of the division of focal plane polarimeters. Opt. Express 2021, 29, 20808–20828. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, L.L.; Fan, C.; He, X.F.; Hu, X.P. Measurement Error Model and Compensation Algorithm for Bionic Polarization Orientation. IEEE Trans. Instrum. Meas. 2023, 72, 14. [Google Scholar] [CrossRef]
- Li, G.M.; Zhang, Y.; Fan, S.W.; Wang, Y.Y.; Yu, F. Robust Heading Measurement Based on Improved Berry Model for Bionic Polarization Navigation. IEEE Trans. Instrum. Meas. 2023, 72, 11. [Google Scholar] [CrossRef]
- Sasagawa, K.; Shishido, S.; Ando, K.; Matsuoka, H.; Noda, T.; Tokuda, T.; Kakiuchi, K.; Ohta, J. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology. Opt. Express 2013, 21, 11132–11140. [Google Scholar] [CrossRef]
- Guan, C.A.L.; Zhang, R.; Chu, J.K.; Liu, Z.; Fan, Y.Y.; Liu, J.Y.; Yi, Z.M. Integrated Real-Time Polarization Image Sensor Based on UV-NIL and Calibration Method. IEEE Sens. J. 2022, 22, 3157–3163. [Google Scholar] [CrossRef]
- Liu, Z.; Chu, J.K.; Zhang, R.; Guan, C.L.; Fan, Y.Y. Preparation of an Integrated Polarization Navigation Sensor via a Nanoimprint Photolithography Process. Photonics 2022, 9, 806. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.H.; Zou, N.Y.; Wu, J.S.; Bo, X.T.; Chu, J.K. A linearly polarized light emission with a composite nanowire grating in whole white band. Phys. Scr. 2024, 99, 11. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Chu, J.K.; Zhang, R.; Guan, C.L.; Liu, J.Y. Large-area ultracompact pixelated aluminum- wire-grid-based metamaterials for Vis-NIR full-Stokes polarization imaging. Photonics Res. 2023, 11, 1975–1986. [Google Scholar] [CrossRef]
- Fan, Q.B.; Xu, W.Z.; Hu, X.M.; Zhu, W.Q.; Yue, T.; Zhang, C.; Yan, F.; Chen, L.; Lezec, H.J.; Lu, Y.Q.; et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nat. Commun. 2022, 13, 2130. [Google Scholar] [CrossRef]
- Ou, K.; Yu, F.L.; Li, G.H.; Wang, W.J.; Miroshnichenko, A.E.; Huang, L.J.; Wang, P.; Li, T.X.; Li, Z.F.; Chen, X.S.; et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv. 2020, 6, eabc0711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Guo, X.; Zhang, K.; Li, X.; Kong, F.; Jia, Z. The Structural Types of the Polarization Detection Unit in Imaging Polarimeter Based on the Stokes Parameter Method. Sensors 2025, 25, 4069. https://doi.org/10.3390/s25134069
Li Y, Guo X, Zhang K, Li X, Kong F, Jia Z. The Structural Types of the Polarization Detection Unit in Imaging Polarimeter Based on the Stokes Parameter Method. Sensors. 2025; 25(13):4069. https://doi.org/10.3390/s25134069
Chicago/Turabian StyleLi, Yuanhao, Xiaohan Guo, Kai Zhang, Xiaoyang Li, Fang Kong, and Ziying Jia. 2025. "The Structural Types of the Polarization Detection Unit in Imaging Polarimeter Based on the Stokes Parameter Method" Sensors 25, no. 13: 4069. https://doi.org/10.3390/s25134069
APA StyleLi, Y., Guo, X., Zhang, K., Li, X., Kong, F., & Jia, Z. (2025). The Structural Types of the Polarization Detection Unit in Imaging Polarimeter Based on the Stokes Parameter Method. Sensors, 25(13), 4069. https://doi.org/10.3390/s25134069