Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ditch blocking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 13693 KB  
Article
Hydrological Response to Rewetting of Drained Peatlands—A Case Study of Three Raised Bogs in Norway
by Marta Stachowicz, Anders Lyngstad, Paweł Osuch and Mateusz Grygoruk
Land 2025, 14(1), 142; https://doi.org/10.3390/land14010142 - 11 Jan 2025
Cited by 3 | Viewed by 2153
Abstract
The proper functioning of peatlands depends on maintaining an adequate groundwater table, which is essential for ecosystem services beyond water retention. Most degraded peatlands have been drained for agriculture or forestry primarily through ditch construction. Rewetting through ditch blocking is the most common [...] Read more.
The proper functioning of peatlands depends on maintaining an adequate groundwater table, which is essential for ecosystem services beyond water retention. Most degraded peatlands have been drained for agriculture or forestry primarily through ditch construction. Rewetting through ditch blocking is the most common initial step in peatland restoration. This study analyzed the hydrological response to ditch blocking in three drained raised bogs in Norway (Aurstadmåsan, Midtfjellmåsan and Kaldvassmyra) using a Before–After–Control–Impact (BACI) design. Following rewetting, all sites demonstrated an average increase in groundwater levels of 6 cm across all piezometers affected by ditch blocking. The spatial influence of ditch blocking extended 12.7–24.8 m from the ditch with an average of 17.2 m. Additionally, rewetting increased the duration of favorable groundwater levels for peatland functioning by 27.7%. These findings highlight the effectiveness of ditch blocking in restoring hydrological conditions, although its impact is spatially limited. Future assessments should also address vegetation recovery and greenhouse gas emission reductions to ensure comprehensive restoration success. Full article
Show Figures

Figure 1

19 pages, 1890 KB  
Article
Study on Change of Landscape Pattern Characteristics of Comprehensive Land Improvement Based on Optimal Spatial Scale
by Baoping Feng, Hui Yang, Yarong Ren, Shanshan Zheng, Genxiang Feng and Yuwei Huang
Land 2025, 14(1), 135; https://doi.org/10.3390/land14010135 - 10 Jan 2025
Cited by 3 | Viewed by 1068
Abstract
Comprehensive land improvement causes strong disturbances of land use patterns in the short term, resulting in changes in landscape structure and function. This study adopts the moving window method and semi-variation function to explore the spatial scale effect of landscape pattern metrics in [...] Read more.
Comprehensive land improvement causes strong disturbances of land use patterns in the short term, resulting in changes in landscape structure and function. This study adopts the moving window method and semi-variation function to explore the spatial scale effect of landscape pattern metrics in the comprehensive land consolidation project area of Baimahu Farm, and the spatial variability and homologous ecological processes. The results showed that: (1) patch density, largest patch index, area-weighted average shape index, contagion, and division index all showed obvious scale effects, and the suitable first and second scale domains in the study area are 5–7 m and 35–40 m, respectively, and 5 m is the most suitable grain size for the study of landscape pattern change. (2) The block basis ratio of the semi-variogram of the six landscape level indices begins to stabilize at the window radius of 210 m. This scale can reflect the spatial variability of the landscape pattern in the study area and is the most suitable analysis range. (3) The fragmentation degree of paddy fields as landscape matrix decreased and the landscape dominance degree increased in the comprehensive land improvement; the degree of fragmentation of irrigated land and agricultural land for facilities increased, the aggregation of land for construction increased, the dominance degree of the pond surface decreased, and the overall landscape diversity of each mosaic decreased; the landscape heterogeneity of ditches, rural roads, forest and grassland corridors was weakened, and the ecosystem service function was weakened. (4) The trend of increased fragmentation, simplification of landscape types, and decreased diversity presented by the landscape pattern clearly indicates that the landscape pattern of the study area has been seriously damaged to some extent under the influence of human activities. This damage not only has a direct negative impact on the local ecological environment, but also poses a potential threat to the sustainable development of the region. Full article
Show Figures

Figure 1

14 pages, 4768 KB  
Article
The Quantification of the Ecosystem Services of Forming Ridges in No-Tillage Farming in the Purple Soil Region of China: A Meta-Analysis
by Lizhi Jia
Water 2024, 16(18), 2675; https://doi.org/10.3390/w16182675 - 20 Sep 2024
Viewed by 1264
Abstract
Forming ridges in no-tillage farming (FRNF) is an important conservation tillage practice in the purple soil region of China. Whether FRNF will enhance ecosystem services remains unclear. There is a lack of a systematic quantitative research about the effect of FRNF on ecosystem [...] Read more.
Forming ridges in no-tillage farming (FRNF) is an important conservation tillage practice in the purple soil region of China. Whether FRNF will enhance ecosystem services remains unclear. There is a lack of a systematic quantitative research about the effect of FRNF on ecosystem services. We collected 611 data entries from 21 previous publications to quantitatively evaluate the effects of FRNF on runoff and sediment loss, soil physicochemical properties and biomass. The results showed that compared with conventional tillage, (1) FRNF reduced runoff and sediment loss by 49% and 73%, respectively, due to the blocking effect of the ridge-ditch structure; (2) FRNF increased the concentrations of soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium by 15%, 14%, 30%, 58% and 17%, respectively; (3) FRNF decreased soil bulk density on the ridges by 11% and increased soil moisture content in the furrows by 28%, while it had insignificant effects on soil bulk density in the furrows and soil moisture content on the ridges; and (4) FRNF increased aboveground and belowground biomass (maize, oilseed rape, potato, sweet potato and wheat) by 23% and 63%, respectively. Overall, these results highlighted the importance of FRNF in regulating soil erosion, physicochemical properties and biomasses in the purple soil region of China. The implementation of FRNF in this region could significantly improve the ecosystem services in agro-ecosystems. Full article
Show Figures

Figure 1

16 pages, 8403 KB  
Article
The Impact of Beaver Dams on the Dynamic of Groundwater Levels at Łąki Soleckie
by Sławomir Bajkowski, Ryszard Oleszczuk, Janusz Urbański, Jan Jadczyszyn and Marta Kiraga
Sustainability 2024, 16(10), 4135; https://doi.org/10.3390/su16104135 - 15 May 2024
Cited by 1 | Viewed by 1610
Abstract
Areas excluded from agricultural production are susceptible to the presence of beaver families. The most significant changes occur during the initial period, when agricultural utilization is abandoned and beavers establish their presence on the land. During this period, some parcels remain uncultivated, while [...] Read more.
Areas excluded from agricultural production are susceptible to the presence of beaver families. The most significant changes occur during the initial period, when agricultural utilization is abandoned and beavers establish their presence on the land. During this period, some parcels remain uncultivated, while agricultural activities persist in neighboring areas. This situation is accompanied by the destruction of beaver dams, especially during periods of abundant water resources, and notably during intensive fieldwork. The article presents field studies aimed at determining the extent to which constructed and operational beaver dams contribute to changes in groundwater levels in drained peatland areas. In order to protect and sustainably use peat soils, it is necessary to maintain their high moisture content by ensuring a high groundwater level elevation. This can be achieved through the use of existing damming structures in the area (levees, weirs). Beaver dams can also serve a similar function, blocking the outflow of water from peat lands by raising the water level and consequently retaining it naturally. The specific objective was to develop principles for verifying factors influencing the effects of beaver dam construction on groundwater levels in fields within their range of influence. The water table levels within the study area during rainless periods were influenced by water levels in ditches, dependent on beaver activity in the nearby river. Beaver activities, manifested through dam construction, were influenced by periodic water resources in the river, defined by the cumulative monthly precipitation. Factors affecting groundwater levels in rainless periods on the plots also included the distance from the river cross-section and the permeability of soils expressed by the filtration coefficient of the active layer. Beaver dams had the greatest impact on stabilizing the water table in the soil profile closest to the river. Full article
Show Figures

Figure 1

16 pages, 1025 KB  
Article
Development and Application of an Integrated Site Remediation Technology Mix Method Based on Site Contaminant Distribution Characteristics
by Min Zhang, Shuai Yang, Zhifei Zhang, Caijuan Guo, Yan Xie, Xinzhe Wang, Lin Sun and Zhuo Ning
Appl. Sci. 2023, 13(19), 11076; https://doi.org/10.3390/app131911076 - 8 Oct 2023
Cited by 2 | Viewed by 1945
Abstract
Millions of contaminated sites worldwide need to be remediated to protect the environment and human health. Although numerous remediation technologies have been developed, selecting optimal technologies is challenging. Several multiple criteria decision-making methods for screening the optimal remediation technology have been proposed, but [...] Read more.
Millions of contaminated sites worldwide need to be remediated to protect the environment and human health. Although numerous remediation technologies have been developed, selecting optimal technologies is challenging. Several multiple criteria decision-making methods for screening the optimal remediation technology have been proposed, but they mostly focus on a specific area rather than the whole contaminated site. In recent years, the “contamination source control—process blocking—in situ remediation” technology mix model has gradually gained high appreciation. Nevertheless, the screening of technologies within each chain of this model relies heavily on arbitrary personal experience. To avoid such arbitrariness, a petroleum-contaminated site containing light non-aqueous phase liquids (LNAPLs) was used as an example, and a scientific screening and combination procedure was developed in this study by considering the distribution characteristics of contaminants. Through the procedure, a technology mix, which includes institutional control, risk monitoring, emergency response, multiphase extraction, interception ditch, monitoring of natural attenuation, hydrodynamic control, as well as some alternative technologies, was found, aiming at different locations and strata. The clear spatial relationship concept promises to enhance the effectiveness of contaminated site remediation. The proposed method only gave us a technical framework and should be tested and enriched in future studies. Full article
Show Figures

Figure 1

22 pages, 2719 KB  
Article
N2 Use in Perennial Swards Intercropped with Young Poplars, Clone I-214 (Populus × euramericana (Dode) Guinier), in the Mediterranean Area under Rainfed Conditions
by Lorenzo Gabriele Tramacere, Massimo Sbrana and Daniele Antichi
Agronomy 2023, 13(7), 1761; https://doi.org/10.3390/agronomy13071761 - 29 Jun 2023
Cited by 3 | Viewed by 2470
Abstract
Intercropping perennial legumes with trees can reduce Nitrogen (N) losses, due to the high amount of N accumulated in stable forms in the soil and permanent soil cover during the whole year. Although N cycling improvement in mature agroforestry systems (AFS) was well [...] Read more.
Intercropping perennial legumes with trees can reduce Nitrogen (N) losses, due to the high amount of N accumulated in stable forms in the soil and permanent soil cover during the whole year. Although N cycling improvement in mature agroforestry systems (AFS) was well documented, there is a lack of knowledge regarding systems in transition to AF. In this work, we studied the association of two perennial forage crops, namely ryegrass (Lolium multiflorum Lam.) and sulla (Hedysarum coronarium L.), with 1-year old poplars, to evaluate: (i) the agronomic performance of sulla and ryegrass with vs. without intercropped poplar trees; (ii) the N-fixing ability of sulla in association with trees; (iii) the N transfer effect from sulla and growth promoting effect on poplar; and finally (iv) the nitrate leaching reduction due to the presence of poplar trees associated to forage crops. The layout was arranged in a two-factor randomized complete blocks design (RCB) with three replicates. The first factor tested (crop species) implied two different swards, namely sulla and ryegrass. The second factor (cropping system) included two different systems: PAST i.e., a pastoral system without trees, and SIPAST, i.e., a silvo-pastoral system with one poplar tree row beside the sward. Sulla resulted more productive than ryegrass when associated with trees (+35%). No clear trend was observed about the tree influence on N-fixation in sulla, but the amount of N fixed resulted higher in in sulla grown in the SIPAST near the trees (+35%). Poplar plants, even in the first year after planting, resulted effective yet in reducing the nitrate flux from the crops towards ditches. Further investigations are needed to study other swards in young AF and better understand the N dynamics; in particular, it could be worth to assess the nutrient flux in the soil solution. Full article
(This article belongs to the Special Issue Smart Management of Sustainable and Conservation Agriculture)
Show Figures

Figure 1

12 pages, 28446 KB  
Article
Peat Drainage Ditch Mapping from Aerial Imagery Using a Convolutional Neural Network
by Ciaran Robb, Amy Pickard, Jennifer L. Williamson, Alice Fitch and Chris Evans
Remote Sens. 2023, 15(2), 499; https://doi.org/10.3390/rs15020499 - 14 Jan 2023
Cited by 11 | Viewed by 4817
Abstract
This study trialled a convolutional neural net (CNN)-based approach to mapping peat ditches from aerial imagery. Peat ditches were dug in the last century to improve peat moorland for agriculture and forestry at the expense of habitat health and carbon sequestration. Both the [...] Read more.
This study trialled a convolutional neural net (CNN)-based approach to mapping peat ditches from aerial imagery. Peat ditches were dug in the last century to improve peat moorland for agriculture and forestry at the expense of habitat health and carbon sequestration. Both the quantitative assessment of drained areas and restoration efforts to re-wet peatlands through ditch blocking would benefit from an automated method of mapping, as current efforts involve time-consuming field and desk-based efforts. The availability of LiDAR is still limited in many parts of the UK and beyond; hence, there is a need for an optical data-based approach. We employed a U-net-based CNN to segment peat ditches from aerial imagery. An accuracy of 79% was achieved on a field-based validation dataset indicating ditches were correctly segmented most of the time. The algorithm, when applied to an 802 km2 area of the Flow Country, an area of national significance for carbon storage, mapped a total of 27,905 drainage ditch features. The CNN-based approach has the potential to be scaled up nationally with further training and could streamline the mapping aspects of restoration efforts considerably. Full article
Show Figures

Figure 1

18 pages, 11352 KB  
Article
Design and Test of Seedbed Preparation Machine before Transplanting of Rapeseed Combined Transplanter
by Lan Jiang, Qing Tang, Jun Wu, Wenyi Yu, Min Zhang, Dong Jiang and Dexin Wei
Agriculture 2022, 12(9), 1427; https://doi.org/10.3390/agriculture12091427 - 9 Sep 2022
Cited by 6 | Viewed by 3870
Abstract
In order to satisfy the soil preparation requirements of a rapeseed combined transplanter in the middle-lower Yangtze River region in China where rice–rapeseed rotation cropping system was performed, a seedbed preparation machine composed of a rotary tillage device, ditch cleaning shovel, and soil [...] Read more.
In order to satisfy the soil preparation requirements of a rapeseed combined transplanter in the middle-lower Yangtze River region in China where rice–rapeseed rotation cropping system was performed, a seedbed preparation machine composed of a rotary tillage device, ditch cleaning shovel, and soil leveling auger was designed to realize the function of rotary tillage, stubble ploughing, ditching, and soil leveling. The seedbed preparation machine was designed as the two parts of the middle section and the left–right symmetrical section to realize the need for middle ditching. Based on the principle of active scraping and anti-blocking, the curves of the soil contact section, soil throwing section, and transition section of the ditch cleaning shovel were analyzed. The structure parameters of the soil leveling auger with end reversal structure were designed. In order to further improve the working performance of the seedbed preparation machine, the response surface tests were designed, selecting the forward speed(X1), the rotation speed of rotary tillage blade roller(X2), and the rotation speed of soil leveling auger(X3) as the main influencing factors, taking the soil breaking rate and the straw coverage rate and the soil flatness as the test indexes. The optimal parameter combination was obtained as a forward speed of 0.94 m/s, rotation speed of rotary blade roller of 268 rpm, and rotation speed of soil leveling auger of 204 rpm. Under the optimal parameters combination, the soil breaking rate, straw coverage rate, and soil flatness were 92.06%, 93.01%, and 8.35 mm respectively, which satisfied the agronomic requirements of rapeseed blanket seedling transplanting. This study can provide a reference for the design of a seedbed preparation machine of a rapeseed combined transplanter. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 10221 KB  
Article
Simulation and Experiment of Spiral Soil Separation Mechanism of Compound Planter Based on Discrete Element Method (DEM)
by Lianjie Han, Wei Yuan, Jinjin Yu, Jiajun Jin, Dongshen Xie, Xiaobo Xi, Yifu Zhang and Ruihong Zhang
Agriculture 2022, 12(4), 511; https://doi.org/10.3390/agriculture12040511 - 4 Apr 2022
Cited by 14 | Viewed by 3343
Abstract
In order to solve the problems of blocking the drainage ditch and reducing the soil flatness caused by soil accumulation when using compound planter with plowshare to ditch, a spiral soil separation mechanism (SSSM) is designed. The SSSM is analyzed. In order to [...] Read more.
In order to solve the problems of blocking the drainage ditch and reducing the soil flatness caused by soil accumulation when using compound planter with plowshare to ditch, a spiral soil separation mechanism (SSSM) is designed. The SSSM is analyzed. In order to obtain the optimal parameters of the SSSM, based on the discrete element method, the multifactor test is carried out with the embedded depth, pitch, and rotation speed of the spiral blade as the test factors and the soil separation distance and uniformity as the evaluation index. The optimal parameters are the embedded depth 49 mm, pitch 331 mm, and rotation speed of the spiral blade 318 r min−1. The field experiment is carried out with these parameters, with soil separation distance 900 mm and standard deviation of soil height 7.8 mm, which is consistent with the simulation results. No blockage of drainage ditch was found, which shows that this device can effectively solve the problem. This study can provide a reference for the design of soil separation equipment using spiral soil separation device. Full article
(This article belongs to the Special Issue Design and Application of Agricultural Equipment in Tillage System)
Show Figures

Figure 1

15 pages, 4233 KB  
Article
Modeling the Runoff Reduction Effect of Low Impact Development Installations in an Industrial Area, South Korea
by Jungho Kim, Jungho Lee, Yangho Song, Heechan Han and Jingul Joo
Water 2018, 10(8), 967; https://doi.org/10.3390/w10080967 - 24 Jul 2018
Cited by 16 | Viewed by 5484
Abstract
Low-impact development (LID) methods are an important approach to storm-water mitigation. Modeling the effects of these installations using rainfall-runoff simulations can provide useful data for future design and implementation. In this study, we used the Storm Water Management Model to assess seven types [...] Read more.
Low-impact development (LID) methods are an important approach to storm-water mitigation. Modeling the effects of these installations using rainfall-runoff simulations can provide useful data for future design and implementation. In this study, we used the Storm Water Management Model to assess seven types of LID installations (vegetated areas, garden pots, tree filter boxes, permeable pavement, infiltration ditches, rain barrels, and infiltration blocks) at a South Korean industrial site. Using both short- and long-term simulation periods and distinct sub-basins within the study site, we were able to assess LID performance at the combined watershed, as well as at one LID facility. All LID types showed reasonable performance for storm-water runoff reduction, though rain barrels were the least effective. The effect of rainfall runoff reduction on LID facilities is changed according to rainfall depth (annual precipitation, monthly rainfall), the ratio of drainage area and facility capacity. We concluded that SWMM-LID modeling can effectively support the management of LID installations by providing additional design and planning data to better mitigate the effects of storm-water runoff. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

18 pages, 5129 KB  
Article
Urban Floods Adaptation and Sustainable Drainage Measures
by Helena M. Ramos, Modesto Pérez-Sánchez, A. Bento Franco and P. Amparo López-Jiménez
Fluids 2017, 2(4), 61; https://doi.org/10.3390/fluids2040061 - 7 Nov 2017
Cited by 25 | Viewed by 7259
Abstract
Sustainability is crucial to the urban zones, especially related to the water management, which is vulnerable to flood occurrence. This research applies the procedure contemplated by the Soil Conservation Service (SCS) to determine the generated volumes when the impervious areas can exceed the [...] Read more.
Sustainability is crucial to the urban zones, especially related to the water management, which is vulnerable to flood occurrence. This research applies the procedure contemplated by the Soil Conservation Service (SCS) to determine the generated volumes when the impervious areas can exceed the drainage capacity of existing pluvial water networks. Several computational simulations were developed for the current scenario of an existing basin in Lisbon. Using CivilStorm software from Bentley Systems (Bentley EMEA, Bentley Systems International Limited, Dublin, Ireland), it enabled the evaluation of the volumes of flood peaks and the hydraulic behavior of a small hydrographic basin in the continuation of an urbanization process, considering the modification of its superficial impervious parts and the growth of the urbanized area. Several measures are suggested to solve the limited capacity of the existing drainage system. This study analyzes the efficiency of the application of constructive measures, pondering the viability of their effectiveness, individually and combined. The option that best minimizes the effects of the urbanization is the combination of different structural measures, in particular retention ponds, storage blocks, ditches and specific drainage interventions in some parts of the network. Full article
(This article belongs to the Special Issue Advances in Hydrodynamics)
Show Figures

Figure 1

12 pages, 4012 KB  
Article
Experimental Study on Wetland Hydraulic Characteristics of Vegetated Drainage Ditches
by Shujun Zhao, Yuanlai Cui, Yufeng Luo and Peifeng Li
Water 2017, 9(5), 311; https://doi.org/10.3390/w9050311 - 28 Apr 2017
Cited by 8 | Viewed by 6290
Abstract
Small vegetated drainage ditches play an important role in water and nutrient removal, but may cause water blocking problems. The aim of this study was to investigate vegetated drainage ditches’ hydraulic and wetland hydraulic characters. Field experiment were carried out, small drainage ditches [...] Read more.
Small vegetated drainage ditches play an important role in water and nutrient removal, but may cause water blocking problems. The aim of this study was to investigate vegetated drainage ditches’ hydraulic and wetland hydraulic characters. Field experiment were carried out, small drainage ditches with Juncus, Zizania latifolia, and Acorus calamus were selected under different water flows, and a tracer experiment was also conducted. Research findings suggested that with increased water flow, vegetation roughness coefficient declined, vegetation resistance rose, and drag coefficient declined. Small drainage ditches with emergent vegetation showed a high roughness coefficient value, which was most significant in Juncus, followed by Zizania latifolia, and Acorus calamus. Plants each took on a unique eigenvalue k that was a relative coefficient between the drag coefficient and stem Reynolds number. As small ditches for drainage showed longer residence time and smaller surface hydraulic loading, they featured excellent wetland hydraulic characteristics that could be weakened rapidly as rainfall or flood intensified. This study indicates that the small vegetated drainage ditch shows favorable wetland hydraulic characteristics with good discharge capacity and can be extensively used in irrigated districts. Full article
(This article belongs to the Special Issue Sustainable Water Management within Inland River Watershed)
Show Figures

Figure 1

24 pages, 2081 KB  
Article
Stormwater Field Evaluation and Its Challenges of a Sediment Basin with Skimmer and Baffles at a Highway Construction Site
by Xing Fang, Wesley C. Zech and Christopher P. Logan
Water 2015, 7(7), 3407-3430; https://doi.org/10.3390/w7073407 - 30 Jun 2015
Cited by 21 | Viewed by 28132
Abstract
A field-scale data collection plan to monitor and evaluate the performance of a sediment basin design was developed and implemented using portable automatic stormwater samplers, flow modules, a rain gauge, and inflow weirs. The design configuration consisted of a skimmer as the primary [...] Read more.
A field-scale data collection plan to monitor and evaluate the performance of a sediment basin design was developed and implemented using portable automatic stormwater samplers, flow modules, a rain gauge, and inflow weirs. The design configuration consisted of a skimmer as the primary dewatering device, three coir baffles installed inside the basin, polyacrylamide flocculant blocks and ditch checks in the inflow channel. A sediment basin built on a highway construction site in Franklin County, Alabama, U.S. using the aforementioned design configuration was monitored over 16 rainfall events from 15 November 2011 to 6 February 2012. The basin effectively removed sediments during the early stages of construction when the correct type of polyacrylamide flocculant blocks was used, e.g., 97.9% of sediment removal after a rainfall event on 16 November 2011. It is difficult and challenging to dose sediment-laden stormwater inflow with an exact amount of flocculating agent across all runoff producing events since rainfall is a stochastic variable. Based upon results from this study, it is recommended that a minimum volume of 251.9 m3/ha of contributing drainage area be used to sufficiently size a basin, which is still significantly under-designed for a 2-year, 24-h storm event in the southeast. This paper presents challenges and lessons learned regarding sediment basin design, monitoring, and performance that are beneficial to future studies. Full article
Show Figures

Figure 1

Back to TopTop