Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = dipole beam pattern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2653 KB  
Article
Compact Microcontroller-Based LED-Driven Photoelectric System for Accurate Photoresponse Mapping Compatible with Internet of Things
by Bohdan Sus, Alexey Kozynets, Sergii Litvinenko, Alla Ivanyshyn, Tetiana Bubela, Mikołaj Skowron and Krzysztof Przystupa
Electronics 2025, 14(23), 4614; https://doi.org/10.3390/electronics14234614 - 24 Nov 2025
Viewed by 503
Abstract
A compact LED (light emission diode)-based illumination unit controlled by a microcontroller was developed for recombination-type silicon sensor structures. The system employs an 8 × 8 LED matrix that provides programmable spatial excitation patterns across a 2.2 × 2.2 mm sensor surface. Its [...] Read more.
A compact LED (light emission diode)-based illumination unit controlled by a microcontroller was developed for recombination-type silicon sensor structures. The system employs an 8 × 8 LED matrix that provides programmable spatial excitation patterns across a 2.2 × 2.2 mm sensor surface. Its operation is based on changes in the silicon surface recombination properties upon analyte interaction, producing photocurrent variations of 10–50 nA depending on the dipole moment. Compared with conventional laser-based systems, the proposed LED illumination significantly reduces cost, complexity, and power consumption while maintaining sufficient optical intensity for reliable photoresponse detection. The embedded controller enables precise timing, synchronization with the photocurrent acquisition unit, and flexible adaptation for various biological fluid analyses. This implementation demonstrates a scalable and cost-efficient alternative to stationary LBIC setups and supports integration into portable or IoT-compatible diagnostic systems. For comparative screening, the LED array was used instead of the focused laser beam typically employed in LBIC (laser beam-induced current) measurements. This paper substantially reduced the peak optical intensity at the sample surface, minimizing local thermal heating critical for enzyme-based or plasma samples sensitive to temperature fluctuations. Photocurrent mapping reveals charge-state modification of recombination centers at the SiOx/Si interface under optical excitation. Further optimization is expected for compact or simplified configurations, particularly those aimed at portable applications and automated physiological monitoring systems. Full article
Show Figures

Figure 1

18 pages, 10824 KB  
Article
Pattern-Reconfigurable, Vertically Polarized, Wideband Electrically Small Huygens Source Antenna
by Yunlu Duan, Ming-Chun Tang, Mei Li, Zhehao Zhang, Qingli Lin and Richard W. Ziolkowski
Electronics 2025, 14(3), 634; https://doi.org/10.3390/electronics14030634 - 6 Feb 2025
Viewed by 1563
Abstract
A pattern-reconfigurable, vertically polarized (VP), electrically small (ES), Huygens source antenna (HSA) is demonstrated. A custom-designed reconfigurable inverted-F structure is embedded in a hollowed-out cylindrical dielectric resonator (DR). It radiates VP electric dipole fields that excite the DR’s HEM11δ mode, which in [...] Read more.
A pattern-reconfigurable, vertically polarized (VP), electrically small (ES), Huygens source antenna (HSA) is demonstrated. A custom-designed reconfigurable inverted-F structure is embedded in a hollowed-out cylindrical dielectric resonator (DR). It radiates VP electric dipole fields that excite the DR’s HEM11δ mode, which in turn acts as an orthogonal magnetic dipole radiator. The HSA’s unidirectional properties are thus formed. It becomes low-profile and electrically small through a significant lowering of its operational frequency band by loading the DR’s top surface with a metallic disk. The entire 360° azimuth range is covered by each of the HSA’s four 90° reconfigurable states, emitting a unidirectional wide beam. A prototype was fabricated and tested. The measured results, which are in good agreement with their simulated values, demonstrate that the developed wideband Huygens source antenna, with its 0.085 λL low profile and its 0.20 λL × 0.20 λL compact transverse dimensions, hence, electrically small size with ka = 0.89, exhibits a wide 14.1% fractional impedance bandwidth and a 6.1 dBi peak realized gain in all four of its pattern-reconfigurable states. Full article
(This article belongs to the Special Issue Antennas for IoT Devices)
Show Figures

Figure 1

13 pages, 3127 KB  
Article
Dual-Task Optimization Method for Inverse Design of RGB Micro-LED Light Collimator
by Liming Chen, Zhuo Li, Purui Wang, Sihan Wu, Wen Li, Jiechen Wang, Yue Cao, Masood Mortazavi, Liang Peng and Pingfan Wu
Nanomaterials 2025, 15(3), 190; https://doi.org/10.3390/nano15030190 - 25 Jan 2025
Viewed by 1814
Abstract
Miniaturized pixel sizes in near-eye digital displays lead to pixel emission patterns with large divergence angles, necessitating efficient beam collimation solutions to improve the light coupling efficiency. Traditional beam collimation optics, such as lenses and cavities, are wavelength-sensitive and cannot simultaneously collimate red [...] Read more.
Miniaturized pixel sizes in near-eye digital displays lead to pixel emission patterns with large divergence angles, necessitating efficient beam collimation solutions to improve the light coupling efficiency. Traditional beam collimation optics, such as lenses and cavities, are wavelength-sensitive and cannot simultaneously collimate red (R), green (G), and blue (B) light. In this work, we employed inverse design optimization and finite-difference time-domain (FDTD) simulation techniques to design a collimator comprised of nano-sized photonic structures. To alleviate the challenges of the spatial incoherence nature of micro-LED emission light, we developed a strategy called dual-task optimization. Specifically, the method models light collimation as a dual task of color routing. By optimizing a color router, which routes incident light within a small angular range to different locations based on its spectrum, we simultaneously obtained a beam collimator, which can restrict the output of the light emitted from the routing destination with a small divergence angle. We further evaluated the collimation performance for spatially incoherent RGB micro-LED light in an FDTD using a multiple-dipole simulation method, and the simulation results demonstrate that our designed collimator can increase the light coupling efficiency from approximately 30% to 60% within a divergence angle of ±20° for all R/G/B light under the spatially incoherent emission. Full article
Show Figures

Figure 1

11 pages, 2338 KB  
Communication
Optimization Tools for the Design of Meta-Covers for Linear Antenna with Beam- and Null-Steering Capabilities
by Michela Longhi, Stefano Vellucci, Mirko Barbuto, Alessio Monti, Filiberto Bilotti and Alessandro Toscano
Appl. Sci. 2025, 15(2), 553; https://doi.org/10.3390/app15020553 - 8 Jan 2025
Viewed by 1738
Abstract
This paper investigates the optimization of cylindrical metasurface meta-covers designed to enable beamforming capabilities in single linear antennas. This study focuses on the development and application of advanced optimization tools to tailor the electromagnetic response of these metasurfaces, enabling precise control over the [...] Read more.
This paper investigates the optimization of cylindrical metasurface meta-covers designed to enable beamforming capabilities in single linear antennas. This study focuses on the development and application of advanced optimization tools to tailor the electromagnetic response of these metasurfaces, enabling precise control over the radiation patterns of the antenna. In particular, we develop a genetic algorithm-based optimization tool, which achieves precise manipulation of the main beam direction and null placement in the radiation pattern. The results further expand the applications of metasurface-based meta-covers in enhancing the functionality of dipole antennas in various communication and sensing systems. Full article
Show Figures

Figure 1

12 pages, 2147 KB  
Article
Two-Dimensional Scanning of Circularly Polarized Beams via Array-Fed Fabry–Perot Cavity Antennas
by Mikhail Madji, Edoardo Negri, Walter Fuscaldo, Davide Comite, Alessandro Galli and Paolo Burghignoli
Appl. Sci. 2024, 14(24), 12058; https://doi.org/10.3390/app142412058 - 23 Dec 2024
Cited by 1 | Viewed by 1399
Abstract
In this paper, we present an array-fed Fabry–Perot cavity antenna (FPCA) based on a partially reflecting sheet (PRS) capable of generating a circularly polarized (CP), highly directive, far-field radiation pattern in the 27–28.5 GHz frequency range. The PRS, the cavity, and the array [...] Read more.
In this paper, we present an array-fed Fabry–Perot cavity antenna (FPCA) based on a partially reflecting sheet (PRS) capable of generating a circularly polarized (CP), highly directive, far-field radiation pattern in the 27–28.5 GHz frequency range. The PRS, the cavity, and the array of feeders serve to different purposes in this original structure. The PRS is engineered to produce a circular polarization from a linearly polarized source placed inside the cavity. The cavity is optimized to obtain a directive conical beam from the dipole-like pattern of the simple source, and allows for a frequency scan of the beam along the elevation plane. The array of feeders is designed to obtain a pencil beam whose azimuthal pointing direction can be controlled by properly phasing the sources. The radiation performance is studied with a specific application of the reciprocity theorem in a full-wave solver along with the pattern multiplication principle. A number of array-pattern configurations in terms of operation frequency and phase shift are investigated and presented to show the potential of the proposed solution in terms of design flexibility and radiation performance. Full article
Show Figures

Figure 1

11 pages, 2775 KB  
Communication
Dual-Polarized Dipole Antenna with Wideband Stable Radiation Patterns Using Artificial Magnetic Conductor Reflector
by Xianjing Lin, Jielin Mai, Hongjun He and Yao Zhang
Sensors 2024, 24(12), 3911; https://doi.org/10.3390/s24123911 - 17 Jun 2024
Cited by 1 | Viewed by 3368
Abstract
This paper presents a wideband dual-polarized dipole antenna structure operating at 1.7–3.8 GHz (76.4%). For a traditional 4G dipole antenna that covers the band 1.71–2.69 GHz, it is difficult to maintain the satisfactory impedance matching and normal stable radiation patterns within the 5G [...] Read more.
This paper presents a wideband dual-polarized dipole antenna structure operating at 1.7–3.8 GHz (76.4%). For a traditional 4G dipole antenna that covers the band 1.71–2.69 GHz, it is difficult to maintain the satisfactory impedance matching and normal stable radiation patterns within the 5G sub-6 GHz band 3.3–3.8 GHz, mainly due to the fixed antenna height no longer being a quarter-wavelength. To solve this, a connected-ring-shaped metasurface structure is proposed and deployed to operate as an artificial magnetic conductor (AMC). As a result, stable antenna radiation patterns are obtained within the whole band 1.7–3.8 GHz. For verification, this wideband dipole antenna using AMC is implemented and tested. The measured results show that the proposed antenna has an impedance bandwidth of 80.7% (1.7–4.0 GHz). It has an average measured in-band realized gain of 7.0±1.0 dBi and a stable 70±5 half power beam width (HPBW) within the 4G/5G-sub 6GHz bands 1.71–2.69 GHz and 3.3–3.8 GHz. Full article
(This article belongs to the Special Issue Antenna Design and Optimization for 5G, 6G, and IoT)
Show Figures

Figure 1

22 pages, 5575 KB  
Article
Advancing into Millimeter Wavelengths for IoT: Multibeam Modified Planar Luneburg Lens Antenna with Porous Plastic Material
by Javad Pourahmadazar, Bal S. Virdee and Tayeb A. Denidni
Electronics 2024, 13(9), 1605; https://doi.org/10.3390/electronics13091605 - 23 Apr 2024
Cited by 1 | Viewed by 3855
Abstract
This paper introduces an innovative antenna design utilizing a cylindrical dielectric Luneburg lens tailored for 60 GHz Internet of Things (IoT) applications. To optimize V-band communications, the permittivity of the dielectric medium is strategically adjusted by precisely manipulating the physical porosity. In IoT [...] Read more.
This paper introduces an innovative antenna design utilizing a cylindrical dielectric Luneburg lens tailored for 60 GHz Internet of Things (IoT) applications. To optimize V-band communications, the permittivity of the dielectric medium is strategically adjusted by precisely manipulating the physical porosity. In IoT scenarios, employing a microstrip dipole antenna with an emission pattern resembling cos10 enhances beam illumination within the waveguide, thereby improving communication and sensing capabilities. The refractive index gradient of the Luneburg lens is modified by manipulating the material’s porosity using air holes, prioritizing signal accuracy and reliability. Fabricated with polyimide using 3D printing, the proposed antenna features a slim profile ideal for IoT applications with space constraints, such as smart homes and unmanned aerial vehicles. Its innovative design is underscored by selective laser sintering (SLS), offering scalable and cost-effective production. Measured results demonstrate the antenna’s exceptional performance, surpassing IoT deployment standards. This pioneering approach to designing multibeam Luneburg lens antennas, leveraging 3D printing’s porosity control for millimeter-wave applications, represents a significant advancement in antenna technology with scanning ability between −67 and 67 degrees. It paves the way for enhanced IoT infrastructure characterized by advanced sensing capabilities and improved connectivity. Full article
(This article belongs to the Special Issue Antennas for IoT Devices)
Show Figures

Figure 1

15 pages, 10042 KB  
Article
The Influence of PE Initial Field Construction Method on Radio Wave Propagation Loss and Tropospheric Duct Inversion
by Run-Sheng Cheng, Cheng-Guo Liu, Li-Feng Cao, Tong Xiao, Guang-Pu Tang, Li-Feng Huang and Hong-Guang Wang
Atmosphere 2024, 15(1), 46; https://doi.org/10.3390/atmos15010046 - 29 Dec 2023
Cited by 1 | Viewed by 2155
Abstract
Parabolic equations (PE) are commonly employed for calculating the spatial propagation loss of wireless signals. The initial field is a crucial factor. To investigate the impact of construction accuracy on the calculation of radio wave propagation loss, we selected the half-wave dipole antenna [...] Read more.
Parabolic equations (PE) are commonly employed for calculating the spatial propagation loss of wireless signals. The initial field is a crucial factor. To investigate the impact of construction accuracy on the calculation of radio wave propagation loss, we selected the half-wave dipole antenna and its Gaussian approximation to examine the influence of wide-angle PE modeling. We analyzed the disparities between the actual antenna pattern and the Gaussian beam approximation, as well as the discrepancies in the corresponding initial field and the calculation of radio wave propagation loss in PE modeling. The simulation results indicate that the error of the Gaussian approximation increases as the angle of departure from the antenna main beam increases, with a relative error of approximately 30% in the initial field. A comparison between the experimental test of the broadcast signal and the simulation calculation reveals that the model based on the actual antenna aligns more closely with the measured value on a flat underlying surface. However, in mountainous areas with significant fluctuations, the simulation results are consistent with each other and higher than the measured value. The inversion results obtained through the particle swarm optimization algorithm demonstrate that the model based on the actual antenna exhibits superior inversion accuracy for the tropospheric atmospheric duct structure. Full article
Show Figures

Figure 1

24 pages, 9163 KB  
Article
Multifunctional THz Graphene Antenna with 360 Continuous ϕ-Steering and θ-Control of Beam
by Victor Dmitriev, Rodrigo M. S. de Oliveira, Rodrigo R. Paiva and Nilton R. N. M. Rodrigues
Sensors 2023, 23(15), 6900; https://doi.org/10.3390/s23156900 - 3 Aug 2023
Cited by 7 | Viewed by 3071
Abstract
A novel graphene antenna composed of a graphene dipole and four auxiliary graphene sheets oriented at 90 to each other is proposed and analyzed. The sheets play the role of reflectors. A detailed group-theoretical analysis of symmetry properties of the discussed antennas [...] Read more.
A novel graphene antenna composed of a graphene dipole and four auxiliary graphene sheets oriented at 90 to each other is proposed and analyzed. The sheets play the role of reflectors. A detailed group-theoretical analysis of symmetry properties of the discussed antennas has been completed. Through electric field control of the chemical potentials of the graphene elements, the antenna can provide a quasi-omnidirectional diagram, a one- or two-directional beam regime, dynamic control of the beam width and, due to the vertical orientation of the dipole with respect to the base substrate, a 360 beam steering in the azimuth plane. An additional graphene layer on the base permits control of the radiation pattern in the θ-direction. Radiation patterns in different working states of the antenna are considered using symmetry arguments. We discuss the antenna parameters such as input reflection coefficient, total efficiency, front-to-back ratio, and gain. An equivalent circuit of the antenna is suggested. The proposed antenna operates at frequencies between 1.75 THz and 2.03 THz. Depending on the active regime defined by the chemical potentials set on the antenna graphene elements, the maximum gain varies from 0.86 to 1.63. Full article
(This article belongs to the Special Issue Antenna Design and Optimization for 5G, 6G, and IoT)
Show Figures

Figure 1

15 pages, 3466 KB  
Article
A New Generation of Fast and Low-Memory Smart Digital/Geometrical Beamforming MIMO Antenna
by Kandasamy Pirapaharan, W. H. Sasinda C. Prabhashana, S. P. Pramuka Medaranga, Paul R. P. Hoole and Xavier Fernando
Electronics 2023, 12(7), 1733; https://doi.org/10.3390/electronics12071733 - 5 Apr 2023
Cited by 9 | Viewed by 3477
Abstract
Smart multiple-input multiple-output (MIMO) antennas with advanced signal processing algorithms are necessary in future wireless networks, such as 6G and beyond, for accurate space division multiplexing and beamforming. Such a MIMO antenna will yield better network coverage and tracking. This paper presents a [...] Read more.
Smart multiple-input multiple-output (MIMO) antennas with advanced signal processing algorithms are necessary in future wireless networks, such as 6G and beyond, for accurate space division multiplexing and beamforming. Such a MIMO antenna will yield better network coverage and tracking. This paper presents a smart MIMO antenna configuration with a highly innovative beamforming technique using several nonlinear configurations of dipole arrays. Phase delay factors are optimized at the transmitter to form a single beam and then to steer the beam towards a particular direction. A number of phase shifters are added in order to obtain maximum directional gain. This configuration also significantly increases the power gain of the MIMO antenna at a low cost and with operational simplicity. The paper also demonstrates how the beam width and beamsteering can be effectively controlled. Wolfram Mathematica software was used to generate the three-dimensional radiated beam patterns of the transmitter antenna. There are two approaches to configure the receiver antenna. In the first approach, the received signal magnitude is maximized by aligning the contribution of all elements of the receiver antenna to the same phase. With this approach, the field gain of the proposed system is 25.52 (14.07 dBi). The signal processing gain at the receiver is 64 (18.06 dBi). Therefore, the overall power gain for this proposed new digital/geometrical smart MIMO system is 32.13 dBi. In the second approach, the receiver beam is directed towards the transmitter by optimizing the phase delay coefficients of the receiver. Here, the overall gain of the system is found to be 134.56 (21.28 dBi). Even though the system gain in the second approach is lower, it has the advantage of low interference at the receiver side. Full article
(This article belongs to the Special Issue State-of-the-Art of Smart MIMO Antennas)
Show Figures

Figure 1

18 pages, 9553 KB  
Article
Smart, Fast, and Low Memory Beam-Steering Antenna Configurations for 5G and Future Wireless Systems
by Kandasamy Pirapaharan, Nagananthakumaran Ajithkumar, Konesamoorthy Sarujan, Xavier Fernando and Paul R. P. Hoole
Electronics 2022, 11(17), 2658; https://doi.org/10.3390/electronics11172658 - 25 Aug 2022
Cited by 14 | Viewed by 4582
Abstract
Smart Antennas are important to provide mobility support for many enhanced 5G and future wireless applications and services, such as energy harvesting, virtual reality, Voice over 5G (Vo5G), connected vehicles, Machine-to-Machine Communication (M2M), and Internet of Things (IoT). Smart antenna technology enables us [...] Read more.
Smart Antennas are important to provide mobility support for many enhanced 5G and future wireless applications and services, such as energy harvesting, virtual reality, Voice over 5G (Vo5G), connected vehicles, Machine-to-Machine Communication (M2M), and Internet of Things (IoT). Smart antenna technology enables us to reduce interference and multipath problems and increase the quality in communication signals. This paper presents a number of nonlinear configurations of dipole arrays for forming a single beam in any desired direction. We propose three, four, six, and eight-element array structures to perform this single beam-steering functionality. The proposed array configurations with multiple axes of symmetry (in the azimuthal plane) decrease the computational repetitions in optimizing respective weight factors for beam-steering. The optimized weight factors are obtained through the Least Mean Square (LMS) method. MATLABTM is used to calculate optimized weight factors as well as to determine the resulting radiation patterns. Since antennas are bidirectional elements, beamforming in one direction means that the antenna will also have high receiving gain in that direction. Performances of differently configured models are compared in terms of their directivity, sidelobe reduction, and computational complexities for beam-steering. Full article
(This article belongs to the Special Issue Numerical Electromagnetic Problems Involving Antennas)
Show Figures

Figure 1

23 pages, 9495 KB  
Article
Super Directional Antenna—3D Phased Array Antenna Based on Directional Elements
by Benzion Levy, Ely Levine and Yosef Pinhasi
Electronics 2022, 11(14), 2233; https://doi.org/10.3390/electronics11142233 - 17 Jul 2022
Cited by 1 | Viewed by 5593
Abstract
This paper describes an antenna design approach for achieving super directivity in an AESA (Active Electronic Scanned Array) radar using an unconventional 3D phased array (PA) antenna concept based on directional Yagi–Uda elements. The proposed scheme is shown to have a wider scanning [...] Read more.
This paper describes an antenna design approach for achieving super directivity in an AESA (Active Electronic Scanned Array) radar using an unconventional 3D phased array (PA) antenna concept based on directional Yagi–Uda elements. The proposed scheme is shown to have a wider scanning feature, with higher directivity in comparison to the same geometry dipole array without increasing the element number. The antenna’s microwave design includes an antipodal Yagi–Uda antenna element that is implemented efficiently on a microstrip PCB using a balun (balance–unbalance)-fed network. This type of antenna is valuable in restricted aperture scans for achieving a narrow antenna beam that increases the angular resolution and measurement precision of tracked targets and also enlarges the detection range or, alternatively, achieves the same performance with a lower number of elements—meeting the goal of low-cost production. The notable result of the high antenna directivity was obtained by both the element and the array architecture, which allowed for improvements in the Array Factor (AF) directivity by increasing the element’s spacing and broadening the scan sector, achieved via the suppression of the element’s Grating Lobe (GL). Another important benefit of this antenna design is the superior coupling reduction caused by its enlarged element distances, which are very significant in electronic scans. An outstanding opportunity to exploit this low coupling can be found in separated MIMO radar architecture. Other benefits of this design’s architecture are the support of a combined module and antenna on a unified board thanks to the End-Fire radiation pattern, its low frequency sensitivity, and its low-cost manufacturing. Full article
Show Figures

Figure 1

14 pages, 2327 KB  
Article
Converging Proton Minibeams with Magnetic Fields for Optimized Radiation Therapy: A Proof of Concept
by Marco Cavallone, Yolanda Prezado and Ludovic De Marzi
Cancers 2022, 14(1), 26; https://doi.org/10.3390/cancers14010026 - 22 Dec 2021
Cited by 6 | Viewed by 3935
Abstract
Proton MiniBeam Radiation Therapy (pMBRT) is a novel strategy that combines the benefits of minibeam radiation therapy with the more precise ballistics of protons to further optimize the dose distribution and reduce radiation side effects. The aim of this study is to investigate [...] Read more.
Proton MiniBeam Radiation Therapy (pMBRT) is a novel strategy that combines the benefits of minibeam radiation therapy with the more precise ballistics of protons to further optimize the dose distribution and reduce radiation side effects. The aim of this study is to investigate possible strategies to couple pMBRT with dipole magnetic fields to generate a converging minibeam pattern and increase the center-to-center distance between minibeams. Magnetic field optimization was performed so as to obtain the same transverse dose profile at the Bragg peak position as in a reference configuration with no magnetic field. Monte Carlo simulations reproducing realistic pencil beam scanning settings were used to compute the dose in a water phantom. We analyzed different minibeam generation techniques, such as the use of a static multislit collimator or a dynamic aperture, and different magnetic field positions, i.e., before or within the water phantom. The best results were obtained using a dynamic aperture coupled with a magnetic field within the water phantom. For a center-to-center distance increase from 4 mm to 6 mm, we obtained an increase of peak-to-valley dose ratio and decrease of valley dose above 50%. The results indicate that magnetic fields can be effectively used to improve the spatial modulation at shallow depth for enhanced healthy tissue sparing. Full article
(This article belongs to the Special Issue Research in Spatially Fractionated Radiation Therapies for Cancers)
Show Figures

Figure 1

12 pages, 3258 KB  
Communication
Design of a Novel Wideband Leaf-Shaped Printed Dipole Array Antenna Using a Parasitic Loop for High-Power Jamming Applications
by Eunjung Kang, Tae Heung Lim, Seulgi Park and Hosung Choo
Sensors 2021, 21(20), 6882; https://doi.org/10.3390/s21206882 - 17 Oct 2021
Cited by 5 | Viewed by 3721
Abstract
This paper proposes a novel wideband leaf-shaped printed dipole antenna sensor that uses a parasitic element to improve the impedance matching bandwidth characteristics for high-power jamming applications. The proposed antenna sensor consists of leaf-shaped dipole radiators, matching posts, rectangular slots, and a parasitic [...] Read more.
This paper proposes a novel wideband leaf-shaped printed dipole antenna sensor that uses a parasitic element to improve the impedance matching bandwidth characteristics for high-power jamming applications. The proposed antenna sensor consists of leaf-shaped dipole radiators, matching posts, rectangular slots, and a parasitic loop element. The leaf-shaped dipole radiators are designed with exponential curves to obtain a high directive pattern and are printed on a TLY-5 substrate for high-power durability. The matching posts, rectangular slots, and a parasitic loop element are used to enhance the impedance matching characteristics. The proposed antenna sensor has a measured fractional bandwidth of 66.7% at a center frequency of 4.5 GHz. To confirm the array antenna sensor characteristics, such as its active reflection coefficients (ARCs) and beam steering gains, the proposed single antenna sensor is extended to an 11 × 1 uniform linear array. The average values of the simulated and measured ARCs from 4.5 to 6 GHz are −13.4 dB and −14.7 dB. In addition, the measured bore-sight array gains of the co-polarization are 13.4 dBi and 13.7 dBi at 4 GHz and 5 GHz, while those of the cross-polarizations are −4.9 dBi and −3.4 dBi, respectively. When the beam is steered at a steering angle, θ0, of 15°, the maximum measured array gains of the co-polarization are 12.2 dBi and 10.3 dBi at 4 GHz and 5 GHz, respectively. Full article
(This article belongs to the Collection RF and Microwave Communications)
Show Figures

Figure 1

11 pages, 4830 KB  
Article
Antenna-Coupled Titanium Microbolometers: Application for Precise Control of Radiation Patterns in Terahertz Time-Domain Systems
by Liang Qi, Linas Minkevičius, Andrzej Urbanowicz, Andrej Švigelj, Ignas Grigelionis, Irmantas Kašalynas, Janez Trontelj and Gintaras Valušis
Sensors 2021, 21(10), 3510; https://doi.org/10.3390/s21103510 - 18 May 2021
Cited by 8 | Viewed by 3624
Abstract
An ability of lensless titanium-based antenna coupled microbolometers (Ti-μbolometers) operating at room temperature to monitor precisely radiation patterns in terahertz time-domain spectroscopy (THz-TDS) systems are demonstrated. To provide comprehensive picture, two different THz-TDS systems and Ti-μbolometers coupled with three [...] Read more.
An ability of lensless titanium-based antenna coupled microbolometers (Ti-μbolometers) operating at room temperature to monitor precisely radiation patterns in terahertz time-domain spectroscopy (THz-TDS) systems are demonstrated. To provide comprehensive picture, two different THz-TDS systems and Ti-μbolometers coupled with three different antennas—narrowband dipole antennas for 0.3 THz, 0.7 THz and a log-periodic antenna for wideband detection—were selected for experiments. Radiation patterns, spatial beam profiles and explicit beam evolution along the propagation axis are investigated; polarization-sensitive properties under various THz emitter power ranges are revealed. It was found that the studied Ti-μbolometers are convenient lensless sensors suitable to discriminate and control THz radiation pattern features in various wideband THz-TDS systems. Full article
(This article belongs to the Special Issue Terahertz Imaging and Sensors)
Show Figures

Figure 1

Back to TopTop