# Converging Proton Minibeams with Magnetic Fields for Optimized Radiation Therapy: A Proof of Concept

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## Simple Summary

## Abstract

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Monte Carlo Simulations

^{9}proton histories were simulated for each setup to obtain a level of relative statistical uncertainty of less than 1% at each voxel throughout the distribution. The dose is scored in a water phantom of 10 × 10 × 30 cm

^{3}with a pixel dimension of 0.1 × 2 × 1 mm

^{3}.

#### 2.2. Simulation Geometry and Configurations

^{2}with a center-to-center (ctc) distance of 4 mm and with a slit tilt increasing linearly with the off-axis distance (0.025 degree per millimeter) to fit the beam divergence. In Configuration #2, a collimator with the same slit dimension, but with a larger ctc distance of 6 mm, is coupled with a 5-cm thick dipole placed after it to deviate the minibeams and ensure the same transverse dose distribution at the Bragg peak. The magnetic field in the dipole is uniform in space and directed towards the y direction. To converge the minibeams, the field intensity is increased with the off-axis distance of the irradiated slit (x1 in Figure 1) by correlating the dipole field value with the pencil beam spot x coordinate in TOPAS simulations. The minibeams are, thus, deflected towards the central z-axis with an angle at the dipole exit that increases with their off-axis distance. In Configuration #3, we used the same collimator as in Configuration #2, but we deflected the minibeams by applying a homogeneous magnetic field to the water phantom, in the same manner as with an MRI-guided treatment. As in Configuration #2, the magnetic field is directed in the y direction and its intensity increases with the x-position of the pencil beam spots.

#### 2.3. Magnetic Field Optimization

#### 2.4. SOBP Optimization

## 3. Results

#### 3.1. Monoenergetic Beams

#### 3.2. Spread-Out Bragg Peak

## 4. Discussion

^{3}[40]. However, fringe fields outside the deflection region were not taken into account in this study. Magnetic field in fringe field regions can produce additional proton deflection not only along the desired direction but also along the perpendicular direction, since other components of the magnetic field might not be negligible in this region [40]. For a more in-depth investigation of these approaches, future studies should integrate real field maps and assess to what extent fringe fields affect the proton trajectories and the magnetic field optimization strategy.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Tian, X.; Liu, K.; Hou, Y.; Cheng, J.; Zhang, J. The Evolution of Proton Beam Therapy: Current and Future Status (Review). Mol. Clin. Oncol.
**2017**, 8, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version] - De Marzi, L.; Nauraye, C.; Lansonneur, P.; Pouzoulet, F.; Patriarca, A.; Schneider, T.; Guardiola, C.; Mammar, H.; Dendale, R.; Prezado, Y. Spatial Fractionation of the Dose in Proton Therapy: Proton Minibeam Radiation Therapy. Cancer/Radiothérapie
**2019**, 23, 677–681. [Google Scholar] [CrossRef] - Wilson, J.D.; Hammond, E.M.; Higgins, G.S.; Petersson, K. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? Front. Oncol.
**2020**, 9, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Barkova, A.M.; Kholin, V.V. Theoretical calculation of the spatial distribution of a Co 60 gamma radiation dose field under a grid. Med. Radiol.
**1971**, 16, 64–70. [Google Scholar] - Mohiuddin, M.; Curtis, D.L.; Grizos, W.T.; Komarnicky, L. Palliative Treatment of Advanced Cancer Using Multiple Nonconfluent Pencil Beam Radiation: A Pilot Study. Cancer
**1990**, 66, 114–118. [Google Scholar] [CrossRef] - Slatkin, D.N.; Spanne, P.; Dilmanian, F.A.; Sandborg, M. Microbeam Radiation Therapy. Med. Phys.
**1992**, 19, 1395–1400. [Google Scholar] [CrossRef] [PubMed] - Yan, W.; Khan, M.K.; Wu, X.; Simone, C.B.; Fan, J.; Gressen, E.; Zhang, X.; Limoli, C.L.; Bahig, H.; Tubin, S.; et al. Spatially Fractionated Radiation Therapy: History, Present and the Future. Clin. Transl. Radiat. Oncol.
**2020**, 20, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Prezado, Y.; Fois, G.R. Proton-Minibeam Radiation Therapy: A Proof of Concept: Proton-Minibeam Radiation Therapy: A Proof of Concept. Med. Phys.
**2013**, 40, 031712. [Google Scholar] [CrossRef] - Martínez-Rovira, I.; Fois, G.; Prezado, Y. Dosimetric Evaluation of New Approaches in GRID Therapy Using Nonconventional Radiation Sources: Dosimetric Evaluation of New Approaches in GRID Therapy. Med. Phys.
**2015**, 42, 685–693. [Google Scholar] [CrossRef] [PubMed] - Peucelle, C.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.; Martínez-Rovira, I.; Prezado, Y. Proton Minibeam Radiation Therapy: Experimental Dosimetry Evaluation: Proton Minibeam Radiation Therapy: Experimental Evaluation. Med. Phys.
**2015**, 42, 7108–7113. [Google Scholar] [CrossRef] - De Marzi, L.; Patriarca, A.; Nauraye, C.; Hierso, E.; Dendale, R.; Guardiola, C.; Prezado, Y. Implementation of Planar Proton Minibeam Radiation Therapy Using a Pencil Beam Scanning System: A Proof of Concept Study. Med. Phys.
**2018**, 45, 5305–5316. [Google Scholar] [CrossRef] - Girst, S.; Greubel, C.; Reindl, J.; Siebenwirth, C.; Zlobinskaya, O.; Walsh, D.W.M.; Ilicic, K.; Aichler, M.; Walch, A.; Wilkens, J.J.; et al. Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model. Int. J. Radiat. Oncol. Biol. Phys.
**2016**, 95, 234–241. [Google Scholar] [CrossRef] [Green Version] - Prezado, Y.; Jouvion, G.; Hardy, D.; Patriarca, A.; Nauraye, C.; Bergs, J.; González, W.; Guardiola, C.; Juchaux, M.; Labiod, D.; et al. Proton Minibeam Radiation Therapy Spares Normal Rat Brain: Long-Term Clinical, Radiological and Histopathological Analysis. Sci. Rep.
**2017**, 7, 14403. [Google Scholar] [CrossRef] [PubMed] - Lamirault, C.; Doyère, V.; Juchaux, M.; Pouzoulet, F.; Labiod, D.; Dendale, R.; Patriarca, A.; Nauraye, C.; Le Dudal, M.; Jouvion, G.; et al. Short and Long-Term Evaluation of the Impact of Proton Minibeam Radiation Therapy on Motor, Emotional and Cognitive Functions. Sci. Rep.
**2020**, 10, 13511. [Google Scholar] [CrossRef] [PubMed] - Lamirault, C.; Brisebard, E.; Patriarca, A.; Juchaux, M.; Crepin, D.; Labiod, D.; Pouzoulet, F.; Sebrie, C.; Jourdain, L.; Le Dudal, M.; et al. Spatially Modulated Proton Minibeams Results in the Same Increase of Lifespan as a Uniform Target Dose Coverage in F98-Glioma-Bearing Rats. Radiat. Res.
**2020**, 194, 715–723. [Google Scholar] [CrossRef] [PubMed] - Prezado, Y.; Jouvion, G.; Patriarca, A.; Nauraye, C.; Guardiola, C.; Juchaux, M.; Lamirault, C.; Labiod, D.; Jourdain, L.; Sebrie, C.; et al. Proton Minibeam Radiation Therapy Widens the Therapeutic Index for High-Grade Gliomas. Sci. Rep.
**2018**, 8, 16479. [Google Scholar] [CrossRef] [PubMed] - Prezado, Y.; Jouvion, G.; Guardiola, C.; Gonzalez, W.; Juchaux, M.; Bergs, J.; Nauraye, C.; Labiod, D.; De Marzi, L.; Pouzoulet, F.; et al. Tumor Control in RG2 Glioma-Bearing Rats: A Comparison Between Proton Minibeam Therapy and Standard Proton Therapy. Int. J. Radiat. Oncol. Biol. Phys.
**2019**, 104, 266–271. [Google Scholar] [CrossRef] - Lansonneur, P.; Mammar, H.; Nauraye, C.; Patriarca, A.; Hierso, E.; Dendale, R.; Prezado, Y.; De Marzi, L. First Proton Minibeam Radiation Therapy Treatment Plan Evaluation. Sci. Rep.
**2020**, 10, 7025. [Google Scholar] [CrossRef] [PubMed] - Kurz, C.; Buizza, G.; Landry, G.; Kamp, F.; Rabe, M.; Paganelli, C.; Baroni, G.; Reiner, M.; Keall, P.J.; van den Berg, C.A.T.; et al. Medical Physics Challenges in Clinical MR-Guided Radiotherapy. Radiat. Oncol.
**2020**, 15, 93. [Google Scholar] [CrossRef] [PubMed] - Schellhammer, S.M.; Hoffmann, A.L. Prediction and Compensation of Magnetic Beam Deflection in MR-Integrated Proton Therapy: A Method Optimized Regarding Accuracy, Versatility and Speed. Phys. Med. Biol.
**2017**, 62, 1548–1564. [Google Scholar] [CrossRef] - Schellhammer, S.M.; Gantz, S.; Lühr, A.; Oborn, B.M.; Bussmann, M.; Hoffmann, A.L. Technical Note: Experimental Verification of Magnetic Field-induced Beam Deflection and Bragg Peak Displacement for MR-integrated Proton Therapy. Med. Phys.
**2018**, 45, 3429–3434. [Google Scholar] [CrossRef] - Padilla-Cabal, F.; Georg, D.; Fuchs, H. A Pencil Beam Algorithm for Magnetic Resonance Image-Guided Proton Therapy. Med. Phys.
**2018**, 45, 2195–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Padilla-Cabal, F.; Alejandro Fragoso, J.; Franz Resch, A.; Georg, D.; Fuchs, H. Benchmarking a GATE/Geant4 Monte Carlo Model for Proton Beams in Magnetic Fields. Med. Phys.
**2020**, 47, 223–233. [Google Scholar] [CrossRef] [Green Version] - Wolf, R.; Bortfeld, T. An Analytical Solution to Proton Bragg Peak Deflection in a Magnetic Field. Phys. Med. Biol.
**2012**, 57, N329–N337. [Google Scholar] [CrossRef] - Moteabbed, M.; Schuemann, J.; Paganetti, H. Dosimetric Feasibility of Real-Time MRI-Guided Proton Therapy: Dosimetric Feasibility of Real-Time MRI-Guided Proton Therapy. Med. Phys.
**2014**, 41, 111713. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kurz, C.; Landry, G.; Resch, A.F.; Dedes, G.; Kamp, F.; Ganswindt, U.; Belka, C.; Raaymakers, B.W.; Parodi, K. A Monte-Carlo Study to Assess the Effect of 1.5 T Magnetic Fields on the Overall Robustness of Pencil-Beam Scanning Proton Radiotherapy Plans for Prostate Cancer. Phys. Med. Biol.
**2017**, 62, 8470–8482. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kokurewicz, K.; Brunetti, E.; Curcio, A.; Gamba, D.; Garolfi, L.; Gilardi, A.; Senes, E.; Sjobak, K.N.; Farabolini, W.; Corsini, R.; et al. An Experimental Study of Focused Very High Energy Electron Beams for Radiotherapy. Commun. Phys.
**2021**, 4, 33. [Google Scholar] [CrossRef] - Schneider, T.; De Marzi, L.; Patriarca, A.; Prezado, Y. Advancing Proton Minibeam Radiation Therapy: Magnetically Focussed Proton Minibeams at a Clinical Centre. Sci. Rep.
**2020**, 10, 1384. [Google Scholar] [CrossRef] - Schneider, T.; Patriarca, A.; Degiovanni, A.; Gallas, M.; Prezado, Y. Conceptual Design of a Novel Nozzle Combined with a Clinical Proton Linac for Magnetically Focussed Minibeams. Cancers
**2021**, 13, 4657. [Google Scholar] [CrossRef] - Perl, J.; Shin, J.; Schümann, J.; Faddegon, B.; Paganetti, H. TOPAS: An Innovative Proton Monte Carlo Platform for Research and Clinical Applications: TOPAS: An Innovative Proton Monte Carlo Platform. Med. Phys.
**2012**, 39, 6818–6837. [Google Scholar] [CrossRef] [PubMed] - De Marzi, L.; Da Fonseca, A.; Moignier, C.; Patriarca, A.; Goudjil, F.; Mazal, A.; Buvat, I.; Hérault, J. Experimental Characterisation of a Proton Kernel Model for Pencil Beam Scanning Techniques. Phys. Medica
**2019**, 64, 195–203. [Google Scholar] [CrossRef] - Peterson, S.W.; Polf, J.; Bues, M.; Ciangaru, G.; Archambault, L.; Beddar, S.; Smith, A. Experimental Validation of a Monte Carlo Proton Therapy Nozzle Model Incorporating Magnetically Steered Protons. Phys. Med. Biol.
**2009**, 54, 3217–3229. [Google Scholar] [CrossRef] - Sotiropoulos, M.; Prezado, Y. A Scanning Dynamic Collimator for Spot-Scanning Proton Minibeam Production. Sci. Rep.
**2021**, 11, 18321. [Google Scholar] [CrossRef] - McCall, J. Genetic Algorithms for Modelling and Optimisation. J. Comput. Appl. Math.
**2005**, 184, 205–222. [Google Scholar] [CrossRef] - Smyth, L.M.L.; Senthi, S.; Crosbie, J.C.; Rogers, P.A.W. The Normal Tissue Effects of Microbeam Radiotherapy: What Do We Know, and What Do We Need to Know to Plan a Human Clinical Trial? Int. J. Radiat. Biol.
**2016**, 92, 302–311. [Google Scholar] [CrossRef] [PubMed] - Meyer, J.; Eley, J.; Schmid, T.E.; Combs, S.E.; Dendale, R.; Prezado, Y. Spatially Fractionated Proton Minibeams. BJR
**2019**, 92, 20180466. [Google Scholar] [CrossRef] - Rivera, J.N.; Kierski, T.M.; Kasoji, S.K.; Abrantes, A.S.; Dayton, P.A.; Chang, S.X. Conventional Dose Rate Spatially-Fractionated Radiation Therapy (SFRT) Treatment Response and Its Association with Dosimetric Parameters—A Preclinical Study in a Fisher 344 Rat Model. PLoS ONE
**2020**, 6, e0229053. [Google Scholar] [CrossRef] - Raaymakers, B.W.; Lagendijk, J.J.W.; Overweg, J.; Kok, J.G.M.; Raaijmakers, A.J.E.; Kerkhof, E.M.; van der Put, R.W.; Meijsing, I.; Crijns, S.P.M.; Benedosso, F.; et al. Integrating a 1.5 T MRI Scanner with a 6 MV Accelerator: Proof of Concept. Phys. Med. Biol.
**2009**, 54, N229–N237. [Google Scholar] [CrossRef] [PubMed] - Lagendijk, J.J.W.; Raaymakers, B.W.; van Vulpen, M. The Magnetic Resonance Imaging–Linac System. Semin. Radiat. Oncol.
**2014**, 24, 207–209. [Google Scholar] [CrossRef] - Oborn, B.M.; Dowdell, S.; Metcalfe, P.E.; Crozier, S.; Mohan, R.; Keall, P.J. Proton Beam Deflection in MRI Fields: Implications for MRI-Guided Proton Therapy: Beam Delivery in MRI-Guided Proton Beam Therapy. Med. Phys.
**2015**, 42, 2113–2124. [Google Scholar] [CrossRef] [PubMed] - Tahmasebi Birgani, M.J.; Chegeni, N.; Zabihzadeh, M.; Tahmasbi, M. Analytical Investigation of Magnetic Field Effects on Proton Lateral Deflection and Penetrating Depth in the Water Phantom: A Relativistic Approach. Electron. Physician
**2017**, 9, 5932–5939. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**Schematic drawing of the configurations of magnetic field and collimator used in the study.

**Figure 2.**Dose maps for a 150 MeV beam in the five analyzed configurations and the corresponding transverse profiles at the Bragg peak (bottom-right figure).

**Figure 3.**Transverse profile of the central minibeam for 150 MeV protons at the entrance of the water phantom and at a 7 cm depth.

**Figure 4.**(

**a**) Peak-to-Valley Dose Ratio (PVDR) as a function of depth and (

**b**) depth dose of the first central valley in the five analyzed configurations for three different proton energies.

**Figure 5.**Optimized spread-out Bragg peak in the three configurations. The figure shows the contributions of the individual Bragg peaks (colored continuous lines) to the total peak dose (black continuous line) on the central minibeam axis as well as the valley dose on the first central valley (dashed black line).

**Figure 6.**Peak-to-valley dose ratio as a function of depth (

**left image**) and depth-dose of the first central valley (

**right image**) in the three configurations.

**Table 1.**Intensity of the magnetic field optimized for the two configurations as a function of the slit off-axis distance and the beam energy.

Magnetic Field | Slit Off-Axis Distance (mm) | 100 MeV Beam | 150 MeV Beam | 200 MeV Beam |
---|---|---|---|---|

Configuration #2 | 6 | 0.5 T | 0.37 T | 0.279 T |

12 | 1 T | 0.74 T | 0.558 T | |

18 | 1.5 T | 1.105 T | 0.837 T | |

24 | 2 T | 1.475 T | 1.116 T | |

30 | 2.5 T | 1.84 T | 1.395 T | |

36 | 2.99 T | 2.21 T | 1.674 T | |

42 | 3.48 T | 2.575 T | 1.953 T | |

Configuration #3 | 6 | 0.883 T | 0.274 T | 0.121 T |

12 | 1.766 T | 0.548 T | 0.243 T | |

18 | 2.649 T | 0.822 T | 0.364 T | |

24 | 3.532 T | 1.096 T | 0.486 T | |

30 | 4.415 T | 1.37 T | 0.607 T | |

36 | 5.298 T | 1.644 T | 0.728 T | |

42 | 6.181 T | 1.918 T | 0.85 T |

Depth in Phantom | Configuration #1 | Configuration #2′ | Configuration #3′ | |
---|---|---|---|---|

100 MeV | Phantom entrance | 12.5 ± 0.1 | 15.6 ± 0.1 | 22.3 ± 0.2 |

3.8 cm | 5.07 ± 0.05 | 6.35 ± 0.06 | 9.18 ± 0.09 | |

7.5 cm (BP) | 1.22 ± 0.01 | 1.26 ± 0.01 | 1.30 ± 0.01 | |

150 MeV | Phantom entrance | 11.6 ± 0.1 | 15.1 ± 0.1 | 18.2 ± 0.2 |

3.8 cm | 6.42 ± 0.06 | 8.59 ± 0.09 | 10.4 ± 0.1 | |

7.5 cm | 2.20 ± 0.02 | 3.10 ± 0.03 | 4.09 ± 0.04 | |

12.5 cm | 1.03 ± 0.01 | 1.07 ± 0.01 | 1.12 ± 0.01 | |

200 MeV | Phantom entrance | 6.98 ± 0.07 | 9.22 ± 0.09 | 10.3 ± 0.1 |

3.8 cm | 5.91 ± 0.06 | 7.77 ± 0.08 | 8.71 ± 0.09 | |

7.5 cm | 3.24 ± 0.03 | 4.45 ± 0.04 | 5.21 ± 0.05 | |

12.5 cm | 1.21 ± 0.01 | 1.58 ± 0.02 | 1.89 ± 0.02 | |

15 cm | 1.05 ± 0.01 | 1.14 ± 0.01 | 1.27 ± 0.01 |

**Table 3.**Normalized weights ${w}_{i}$ obtained with genetic optimization of the 3 cm wide SOBP in the reference Configuration #1 and in the two configurations with magnetic fields and a dynamic aperture.

Weights w_{i} | 150 MeV | 154 MeV | 158 MeV | 162 MeV | 166 MeV |
---|---|---|---|---|---|

Configuration #1 | 0.104 | 0.140 | 0.202 | 0.263 | 1 |

Configuration #2′ | 0.141 | 0.171 | 0.210 | 0.275 | 1 |

Configuration #3′ | 0.167 | 0.190 | 0.248 | 0.338 | 1 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cavallone, M.; Prezado, Y.; De Marzi, L.
Converging Proton Minibeams with Magnetic Fields for Optimized Radiation Therapy: A Proof of Concept. *Cancers* **2022**, *14*, 26.
https://doi.org/10.3390/cancers14010026

**AMA Style**

Cavallone M, Prezado Y, De Marzi L.
Converging Proton Minibeams with Magnetic Fields for Optimized Radiation Therapy: A Proof of Concept. *Cancers*. 2022; 14(1):26.
https://doi.org/10.3390/cancers14010026

**Chicago/Turabian Style**

Cavallone, Marco, Yolanda Prezado, and Ludovic De Marzi.
2022. "Converging Proton Minibeams with Magnetic Fields for Optimized Radiation Therapy: A Proof of Concept" *Cancers* 14, no. 1: 26.
https://doi.org/10.3390/cancers14010026