Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = dimethylarginine dimethylaminohydrolase (DDAH)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4251 KiB  
Article
Asymmetric Dimethylaminohydrolase Gene Polymorphisms Associated with Preeclampsia Comorbid with HIV Infection in Pregnant Women of African Ancestry
by Mbuso Herald Mthembu, Samukelisiwe Sibiya, Zinhle Pretty Mlambo, Nompumelelo P. Mkhwanazi and Thajasvarie Naicker
Int. J. Mol. Sci. 2025, 26(7), 3271; https://doi.org/10.3390/ijms26073271 - 1 Apr 2025
Viewed by 561
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor associated with vascular disease, which is prevalent in human plasma. Two isoforms of the enzyme dimethylarginine dimethylaminohydrolase (DDAH), DDAH 1 and 2, degrade ADMA. This study investigates the association of DDAH 1 [...] Read more.
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor associated with vascular disease, which is prevalent in human plasma. Two isoforms of the enzyme dimethylarginine dimethylaminohydrolase (DDAH), DDAH 1 and 2, degrade ADMA. This study investigates the association of DDAH 1 (rs669173, rs7521189) and DDAH 2 gene polymorphisms (rs805305, rs3131383) with the risk of preeclampsia (PE) comorbidity with human immunodeficiency virus (HIV) infection in pregnant women of African ancestry. A total of 405 women were enrolled in this study: 204 were PE, 201 were normotensive pregnant, and 202 were HIV positive. DNA was extracted from whole blood, and SNPs (rs669173, rs7521189, rs805305, and rs3131383) were amplified to detect single-nucleotide polymorphisms (SNPs). After PCR amplification, allelic discrimination was examined. Comparisons were conducted utilizing the Chi-squared test. Our findings indicated that preeclamptic women displayed a greater prevalence of the three variants compared to those with both PE and HIV infection. There is an association between the rs669173 and rs7521189 SNPs of the DDAH 1 gene and rs3131383 of the DDAH 2 gene, which could play a role in reducing the bioavailability of nitric oxide (NO), which affects endothelial function, leading to the development of PE in pregnant women of African ancestry. In contrast, the rs805305 variant of the DDAH 2 gene was not significantly associated with PE development. Interestingly, none of the SNPs investigated correlated with HIV infection or could be attributed to the human allelic variant influence on HIV infection outcome. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
Show Figures

Figure 1

15 pages, 4417 KiB  
Article
Aerobic Exercise Protects against Cardiotoxin-Induced Skeletal Muscle Injury in a DDAH1-Dependent Manner
by Fei Feng, Kai Luo, Xinyi Yuan, Ting Lan, Siyu Wang, Xin Xu and Zhongbing Lu
Antioxidants 2024, 13(9), 1069; https://doi.org/10.3390/antiox13091069 - 1 Sep 2024
Viewed by 1641
Abstract
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme that regulates nitric oxide (NO) signaling through the degradation of asymmetric dimethylarginine (ADMA). Previous studies have revealed a link between the beneficial effects of aerobic exercise and the upregulation of DDAH1 in bones and hearts. [...] Read more.
Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme that regulates nitric oxide (NO) signaling through the degradation of asymmetric dimethylarginine (ADMA). Previous studies have revealed a link between the beneficial effects of aerobic exercise and the upregulation of DDAH1 in bones and hearts. We previously reported that skeletal muscle DDAH1 plays a protective role in cardiotoxin (CTX)-induced skeletal muscle injury and regeneration. To determine the effects of aerobic exercise on CTX-induced skeletal muscle injury and the role of DDAH1 in this process, wild-type (WT) mice and skeletal muscle-specific Ddah1-knockout (Ddah1MKO) mice were subjected to swimming training for 8 weeks and then injected with CTX. In WT mice, swimming training for 8 weeks significantly promoted skeletal muscle regeneration and attenuated inflammation, oxidative stress, and apoptosis in the gastrocnemius (GA) muscle after CTX injection. These phenomena were associated with increases in the protein expression of PAX7, myogenin, MEF2A, eNOS, SOD2, and peroxiredoxin 5 and decreases in iNOS expression in GA muscles. Swimming training also decreased serum ADMA levels and increased serum nitrate/nitrite (NOx) levels and skeletal muscle DDAH1 expression. Interestingly, swimming training in Ddah1MKO mice had no obvious effect on CTX-induced skeletal muscle injury or regeneration and did not repress the CTX-induced inflammatory response, superoxide generation, or apoptosis. In summary, our data suggest that DDAH1 is important for the protective effect of aerobic exercise on skeletal muscle injury and regeneration. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

15 pages, 2367 KiB  
Article
Development of a HPLC-MS/MS Method to Assess the Pharmacokinetics and Tumour Distribution of the Dimethylarginine Dimethylaminohydrolase 1 Inhibitors ZST316 and L-257 in a Xenograft Model of Triple-Negative Breast Cancer in Mice
by Tommaso Ceruti, Roberta Frapolli, Carmen Ghilardi, Alessandra Decio, Giulia Dellavedova, Sara Tommasi, Massimo Zucchetti and Arduino A. Mangoni
Molecules 2023, 28(24), 8056; https://doi.org/10.3390/molecules28248056 - 13 Dec 2023
Cited by 2 | Viewed by 1770
Abstract
We describe the development and validation of an HPLC-MS/MS method to assess the pharmacokinetics and tumour distribution of ZST316, an arginine analogue with inhibitory activity towards dimethylarginine dimethylaminohydrolase 1 (DDAH1) and vasculogenic mimicry, and its active metabolite L-257 in a xenograft model of [...] Read more.
We describe the development and validation of an HPLC-MS/MS method to assess the pharmacokinetics and tumour distribution of ZST316, an arginine analogue with inhibitory activity towards dimethylarginine dimethylaminohydrolase 1 (DDAH1) and vasculogenic mimicry, and its active metabolite L-257 in a xenograft model of triple-negative breast cancer (TNBC). The method proved to be reproducible, precise, and highly accurate for the measurement of both compounds in plasma and tumour tissue following acute and chronic (five days) intraperitoneal administration of ZST316 (30 mg/Kg daily) in six-week-old severe combined immunodeficiency disease (SCID) mice inoculated with MDA-MB-231 TNBC cells. ZST316 was detected in tumour tissue and plasma after 1 h (6.47 and 9.01 μM, respectively) and 24 h (0.13 and 0.16 μM, respectively) following acute administration, without accumulation during chronic treatment. Similarly, the metabolite L-257 was found in tumour tissue and plasma after 1 h (15.06 and 8.72 μM, respectively) and 24 h (0.17 and 0.17 μM, respectively) following acute administration of ZST316, without accumulation during chronic treatment. The half-life after acute and chronic treatment ranged between 4.4–7.1 h (plasma) and 4.5–5.0 h (tumour) for ZST316, and 4.2–5.3 h (plasma) and 3.6–4.9 h (tumour) for L-257. The results of our study demonstrate the (a) capacity to accurately measure ZST316 and L-257 concentrations in plasma and tumour tissue in mice using the newly developed HPLC-MS/MS method, (b) rapid conversion of ZST316 into L-257, (c) good intra-tumour penetration of both compounds, and (d) lack of accumulation of both ZST316 and L-257 in plasma and tumour tissue during chronic administration. Compared to a previous method developed by our group to investigate ZST316 in plasma, the main advantages of the new method include a wider range of linearity which reduces the need for dilutions and the combined assessment of ZST316 and L-257 in plasma and tumour tissue which limits the required amount of matrix. The new HPLC-MS/MS method is useful to investigate the in vivo effects of ZST316 and L-257 on vasculogenic mimicry, tumour mass, and metastatic burden in xenograft models of TNBC. Full article
(This article belongs to the Special Issue Identification of Biomolecules by Mass Spectrometry)
Show Figures

Figure 1

9 pages, 2196 KiB  
Communication
Systemic Effects of Homoarginine Supplementation on Arginine Metabolizing Enzymes in Rats with Heart Failure with Preserved Ejection Fraction
by Petra Büttner, Sarah Werner, Julia Böttner, Susann Ossmann, Edzard Schwedhelm and Holger Thiele
Int. J. Mol. Sci. 2023, 24(19), 14782; https://doi.org/10.3390/ijms241914782 - 30 Sep 2023
Cited by 2 | Viewed by 1692
Abstract
A restoration of low homoarginine (hArg) levels in obese ZSF1 rats (O-ZSF1) before (S1-ZSF1) and after (S2-ZSF1) the manifestation of heart failure with preserved ejection fraction (HFpEF) did not affect the worsening of cardiac HFpEF characteristics. Here, potential regulation of key enzymes of [...] Read more.
A restoration of low homoarginine (hArg) levels in obese ZSF1 rats (O-ZSF1) before (S1-ZSF1) and after (S2-ZSF1) the manifestation of heart failure with preserved ejection fraction (HFpEF) did not affect the worsening of cardiac HFpEF characteristics. Here, potential regulation of key enzymes of arginine metabolism in other organs was analyzed. Arginase 2 (ARG2) was reduced >35% in the kidney and small intestine of hArg-supplemented rats compared to O-ZSF1. Glycine amidinotransferase (GATM) was 29% upregulated in the kidneys of S1-ZSF1. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) levels were reduced >50% in the livers of O-ZSF1 but restored in S2-ZSF1 compared to healthy rats (L-ZSF1). In the skeletal muscle, iNOS was lower in O-ZSF1 and further decreased in S1-ZSF1 and S2-ZSF1 compared to L-ZSF1. iNOS levels were lower in the liver of the S2-ZSF1 group but higher in the kidneys of S1-ZSF1 compared to L-ZSF1. Supplementation with hArg in an in vivo HFpEF model resulted in the inhibition of renal ARG2 and an increase in GATM expression. This supplementation might contribute to the stabilization of intestinal iNOS and ARG2 imbalances, thereby enhancing barrier function. Additionally, it may offer protective effects in skeletal muscle by downregulating iNOS. In the conceptualization of hArg supplementation studies, the current disease progression stage as well as organ-specific enzyme regulation should be considered. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Molecular Mechanisms and Potential Therapy)
Show Figures

Figure 1

14 pages, 4160 KiB  
Article
DDAH1 Protects against Cardiotoxin-Induced Muscle Injury and Regeneration
by Fei Feng, Bingqing Cui, Li Fang, Ting Lan, Kai Luo, Xin Xu and Zhongbing Lu
Antioxidants 2023, 12(9), 1754; https://doi.org/10.3390/antiox12091754 - 13 Sep 2023
Cited by 4 | Viewed by 2757
Abstract
Nitric oxide (NO) is an important biological signaling molecule affecting muscle regeneration. The activity of NO synthase (NOS) is regulated by dimethylarginine dimethylaminohydrolase 1 (DDAH1) through degradation of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA). To investigate the role of DDAH1 in muscle [...] Read more.
Nitric oxide (NO) is an important biological signaling molecule affecting muscle regeneration. The activity of NO synthase (NOS) is regulated by dimethylarginine dimethylaminohydrolase 1 (DDAH1) through degradation of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA). To investigate the role of DDAH1 in muscle injury and regeneration, muscle-specific Ddah1-knockout mice (Ddah1MKO) and their littermates (Ddah1f/f) were used to examine the progress of cardiotoxin (CTX)-induced muscle injury and subsequent muscle regeneration. After CTX injection, Ddah1MKO mice developed more severe muscle injury than Ddah1f/f mice. Muscle regeneration was also delayed in Ddah1MKO mice on Day 5 after CTX injection. These phenomena were associated with higher serum ADMA and LDH levels as well as a great induction of inflammatory response, oxidative stress and cell apoptosis in the gastrocnemius (GA) muscle of Ddah1MKO mice. In the GA muscle of CTX-treated mice, Ddah1 deficiency decreased the protein expression of M-cadherin, myogenin, Bcl-2, peroxiredoxin 3 (PRDX3) and PRDX5, and increased the protein expression of MyoD, TNFα, Il-6, iNOS and Bax. In summary, our data suggest that DDAH1 exerts a protective role in muscle injury and regeneration. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

16 pages, 4044 KiB  
Article
Sulfated Polysaccharide from Caulerpa racemosa Attenuates the Obesity-Induced Cardiometabolic Syndrome via Regulating the PRMT1-DDAH-ADMA with mTOR-SIRT1-AMPK Pathways and Gut Microbiota Modulation
by Nelly Mayulu, William Ben Gunawan, Moon Nyeo Park, Sanghyun Chung, Jin Young Suh, Hangyul Song, Rio Jati Kusuma, Nurpudji Astuti Taslim, Rudy Kurniawan, Felicia Kartawidjajaputra, Fahrul Nurkolis and Bonglee Kim
Antioxidants 2023, 12(8), 1555; https://doi.org/10.3390/antiox12081555 - 3 Aug 2023
Cited by 6 | Viewed by 2998
Abstract
Our investigation intended to analyze the effects of sulfated polysaccharides from Caulerpa racemosa (SPCr) in attenuating obesity-induced cardiometabolic syndrome via regulating the protein arginine N-methyltransferase 1-asymmetric dimethylarginine-dimethylarginine dimethylamino-hydrolase (PRMT1-DDAH-ADMA) with the mammalian target of rapamycin-Sirtuin 1–5′ AMP-activated protein kinase (mTOR-SIRT1-AMPK) pathways and gut [...] Read more.
Our investigation intended to analyze the effects of sulfated polysaccharides from Caulerpa racemosa (SPCr) in attenuating obesity-induced cardiometabolic syndrome via regulating the protein arginine N-methyltransferase 1-asymmetric dimethylarginine-dimethylarginine dimethylamino-hydrolase (PRMT1-DDAH-ADMA) with the mammalian target of rapamycin-Sirtuin 1–5′ AMP-activated protein kinase (mTOR-SIRT1-AMPK) pathways and gut microbiota modulation. This is a follow-up study that used SPs from previous in vitro studies, consisting of 2,3-di-O-methyl-1,4,5-tri-O-acetylarabinitol, 2,3,4,6-tetra-O-methyl-D-mannopyranose, and type B ulvanobiuronicacid 3-sulfate. A total of forty rats were randomly divided into four treatment groups: Group A received a standard diet; Group B was provided with a diet enriched in cholesterol and fat (CFED); and Groups C and D were given the CFED along with ad libitum water, and daily oral supplementation of 65 or 130 mg/kg of body weight (BW) of SPCr, respectively. Group D showed the lowest low-density lipoprotein, triglyceride, total cholesterol, and blood glucose levels, and the highest HDL level compared to the other groups in this study. These results in the group fed high-dose SPCr demonstrated a significant effect compared to the group fed low-dose SPCr (p < 0.0001), as well as in total cholesterol and blood glucose (p < 0.05). Supplementation with SPCr was also observed to have an upregulation effect on peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, interleukin 10, Sirtuin 1, DDAH-II, superoxide dismutase (SOD) cardio, and AMPK, which was also followed by a downregulation of PRMT-1, TNF-α, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, and mTOR. Interestingly, gut microbiota modulation was also observed; feeding the rats with a cholesterol-enriched diet shifted the gut microbiota composition toward the Firmicutes level, lowered the Bacteroidetes level, and increased the Firmicutes level. A dose of 130 mg/kg BW of SPCr is the recommended dose, and investigation still needs to be continued in clinical trials with humans to see its efficacy at an advanced level. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Figure 1

25 pages, 6334 KiB  
Article
Effects of Physiological and Pathological Urea Concentrations on Human Microvascular Endothelial Cells
by Graziano Colombo, Alessandra Altomare, Emanuela Astori, Lucia Landoni, Maria Lisa Garavaglia, Ranieri Rossi, Daniela Giustarini, Maria Chiara Lionetti, Nicoletta Gagliano, Aldo Milzani and Isabella Dalle-Donne
Int. J. Mol. Sci. 2023, 24(1), 691; https://doi.org/10.3390/ijms24010691 - 30 Dec 2022
Cited by 14 | Viewed by 4443
Abstract
Urea is the uremic toxin accumulating with the highest concentration in the plasma of chronic kidney disease (CKD) patients, not being completely cleared by dialysis. Urea accumulation is reported to exert direct and indirect side effects on the gastrointestinal tract, kidneys, adipocytes, and [...] Read more.
Urea is the uremic toxin accumulating with the highest concentration in the plasma of chronic kidney disease (CKD) patients, not being completely cleared by dialysis. Urea accumulation is reported to exert direct and indirect side effects on the gastrointestinal tract, kidneys, adipocytes, and cardiovascular system (CVS), although its pathogenicity is still questioned since studies evaluating its side effects lack homogeneity. Here, we investigated the effects of physiological and pathological urea concentrations on a human endothelial cell line from the microcirculation (Human Microvascular Endothelial Cells-1, HMEC-1). Urea (5 g/L) caused a reduction in the proliferation rate after 72 h of exposure and appeared to be a potential endothelial-to-mesenchymal transition (EndMT) stimulus. Moreover, urea induced actin filament rearrangement, a significant increase in matrix metalloproteinases 2 (MMP-2) expression in the medium, and a significant up- or down-regulation of other EndMT biomarkers (keratin, fibrillin-2, and collagen IV), as highlighted by differential proteomic analysis. Among proteins whose expression was found to be significantly dysregulated following exposure of HMEC-1 to urea, dimethylarginine dimethylaminohydrolase (DDAH) and vasorin turned out to be down-regulated. Both proteins have been directly linked to cardiovascular diseases (CVD) by in vitro and in vivo studies. Future experiments will be needed to deepen their role and investigate the signaling pathways in which they are involved to clarify the possible link between CKD and CVD. Full article
(This article belongs to the Special Issue Cellular and Molecular Research of Kidney Diseases)
Show Figures

Figure 1

18 pages, 2527 KiB  
Article
Assessment of DDAH1 and DDAH2 Contributions to Psychiatric Disorders via In Silico Methods
by Alena A. Kozlova, Anastasia N. Vaganova, Roman N. Rodionov, Raul R. Gainetdinov and Nadine Bernhardt
Int. J. Mol. Sci. 2022, 23(19), 11902; https://doi.org/10.3390/ijms231911902 - 7 Oct 2022
Cited by 3 | Viewed by 2296
Abstract
The contribution of nitric oxide synthases (NOSs) to the pathophysiology of several neuropsychiatric disorders is recognized, but the role of their regulators, dimethylarginine dimethylaminohydrolases (DDAHs), is less understood. This study’s objective was to estimate DDAH1 and DDAH2 associations with biological processes implicated in [...] Read more.
The contribution of nitric oxide synthases (NOSs) to the pathophysiology of several neuropsychiatric disorders is recognized, but the role of their regulators, dimethylarginine dimethylaminohydrolases (DDAHs), is less understood. This study’s objective was to estimate DDAH1 and DDAH2 associations with biological processes implicated in major psychiatric disorders using publicly accessible expression databases. Since co-expressed genes are more likely to be involved in the same biologic processes, we investigated co-expression patterns with DDAH1 and DDAH2 in the dorsolateral prefrontal cortex in psychiatric patients and control subjects. There were no significant differences in DDAH1 and DDAH2 expression levels in schizophrenia or bipolar disorder patients compared to controls. Meanwhile, the data suggest that in patients, DDAH1 and DDHA2 undergo a functional shift mirrored in changes in co-expressed gene patterns. This disarrangement appears in the loss of expression level correlations between DDAH1 or DDAH2 and genes associated with psychiatric disorders and reduced functional similarity of DDAH1 or DDAH2 co-expressed genes in the patient groups. Our findings evidence the possible involvement of DDAH1 and DDAH2 in neuropsychiatric disorder development, but the underlying mechanisms need experimental validation. Full article
(This article belongs to the Special Issue Nitric Oxide Synthases: Function and Regulation)
Show Figures

Figure 1

11 pages, 1562 KiB  
Article
DDAH1 Protects against Acetaminophen-Induced Liver Hepatoxicity in Mice
by Xiyue Shen, Saddam Muhammad Ishaq, Qiao’e Wang, Juntao Yuan, Junling Gao and Zhongbing Lu
Antioxidants 2022, 11(5), 880; https://doi.org/10.3390/antiox11050880 - 29 Apr 2022
Cited by 9 | Viewed by 3129
Abstract
In many developed countries, acetaminophen (APAP) overdose-induced acute liver injury is a significant therapeutic problem. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme for asymmetric dimethylarginine (ADMA) metabolism. Growing evidence suggests that liver dysfunction is associated with increased plasma ADMA levels and reduced [...] Read more.
In many developed countries, acetaminophen (APAP) overdose-induced acute liver injury is a significant therapeutic problem. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme for asymmetric dimethylarginine (ADMA) metabolism. Growing evidence suggests that liver dysfunction is associated with increased plasma ADMA levels and reduced hepatic DDAH1 activity/expression. The purpose of this study was to investigate the involvement of DDAH1 in APAP-mediated hepatotoxicity using Ddah1-/- and DDAH1 transgenic mice. After APAP challenge, Ddah1-/- mice developed more severe liver injury than wild type (WT) mice, which was associated with a greater induction of fibrosis, oxidative stress, inflammation, cell apoptosis and phosphorylation of JNK. In contrast, overexpression of DDAH1 attenuated APAP-induced liver injury. RNA-seq analysis showed that DDAH1 affects xenobiotic metabolism and glutathione metabolism pathways in APAP-treated livers. Furthermore, we found that DDAH1 knockdown aggravated APAP-induced cell death, oxidative stress, phosphorylation of JNK and p65, upregulation of CYP2E1 and downregulation of GSTA1 in HepG2 cells. Collectively, our data suggested that DDAH1 has a marked protective effect against APAP-induced liver oxidative stress, inflammation and injury. Strategies to increase hepatic DDAH1 expression/activity may be novel approaches for drug-induced acute liver injury therapy. Full article
Show Figures

Graphical abstract

15 pages, 2587 KiB  
Article
Pharmacokinetic Characterization of the DDAH1 Inhibitors ZST316 and ZST152 in Mice Using a HPLC-MS/MS Method
by Arduino A. Mangoni, Tommaso Ceruti, Roberta Frapolli, Massimo Russo, Stefania Fichera, Massimo Zucchetti and Sara Tommasi
Molecules 2022, 27(3), 1017; https://doi.org/10.3390/molecules27031017 - 2 Feb 2022
Cited by 6 | Viewed by 2364
Abstract
The pharmacokinetic profile of ZST316 and ZST152, arginine analogues with inhibitory activity towards human dimethylarginine dimethylaminohydrolase-1 (DDAH1), was investigated in mice using a newly developed HPLC-MS/MS method. The method proved to be reproducible, precise, and accurate for the measurement of the compounds in [...] Read more.
The pharmacokinetic profile of ZST316 and ZST152, arginine analogues with inhibitory activity towards human dimethylarginine dimethylaminohydrolase-1 (DDAH1), was investigated in mice using a newly developed HPLC-MS/MS method. The method proved to be reproducible, precise, and accurate for the measurement of the compounds in plasma and urine. Four-week-old female FVB mice received a single dose of ZST316 and ZST152 by intravenous bolus (30 mg/Kg) and oral gavage (60 mg/Kg). ZST316 Cmax was 67.4 µg/mL (intravenous) and 1.02 µg/mL (oral), with a half-life of 6 h and bioavailability of 4.7%. ZST152 Cmax was 24.9 µg/mL (intravenous) and 1.65 µg/mL (oral), with a half-life of 1.2 h and bioavailability of 33.3%. Urinary excretion of ZST152 and ZST316 was 12.5%–22.2% and 2.3%–7.5%, respectively. At least eight urinary metabolites were identified. After chronic intraperitoneal treatment with the more potent DDAH1 inhibitor, ZST316 (30 mg/Kg/day for three weeks), the bioavailability was 59% and no accumulation was observed. Treatment was well tolerated with no changes in body weight vs. untreated animals and no clinical signs of toxicity or distress. The results of this study show that ZST316 has a favorable pharmacokinetic profile, following intraperitoneal administration, to investigate the effects of DDAH1 inhibition in mice. Full article
Show Figures

Figure 1

11 pages, 1261 KiB  
Article
Association of Genes of the NO Pathway with Altitude Disease and Hypoxic Pulmonary Hypertension
by Juliane Hannemann, Patricia Siques, Lena Schmidt-Hutten, Julia Zummack, Julio Brito and Rainer Böger
J. Clin. Med. 2021, 10(24), 5761; https://doi.org/10.3390/jcm10245761 - 9 Dec 2021
Cited by 9 | Viewed by 3082
Abstract
Chronic intermittent hypoxia leads to high-altitude pulmonary hypertension, which is associated with high asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthesis. Therefore, we aimed to understand the relation of single nucleotide polymorphisms in this pathway to high-altitude pulmonary hypertension (HAPH). We [...] Read more.
Chronic intermittent hypoxia leads to high-altitude pulmonary hypertension, which is associated with high asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthesis. Therefore, we aimed to understand the relation of single nucleotide polymorphisms in this pathway to high-altitude pulmonary hypertension (HAPH). We genotyped 69 healthy male Chileans subjected to chronic intermittent hypoxia. Acclimatization to altitude was determined using the Lake Louise Score and the presence of acute mountain sickness. Echocardiography was performed after six months in 24 individuals to estimate pulmonary arterial pressure. The minor allele of dimethylarginine dimethylaminohydrolase (DDAH)1 rs233112 was associated with high-baseline plasma ADMA concentration, while individuals homozygous for the major allele of DDAH2 rs805304 had a significantly greater increase in ADMA during chronic intermittent hypoxia. The major allele of alanine glyoxylate aminotransferase-2 (AGXT2) rs37369 was associated with a greater reduction of plasma symmetric dimethylarginine (SDMA). Several genes were associated with high-altitude pulmonary hypertension, and the nitric oxide synthase (NOS)3 and DDAH2 genes were related to acute mountain sickness. In conclusion, DDAH1 determines baseline plasma ADMA, while DDAH2 modulates ADMA increase in hypoxia. AGXT2 may be up-regulated in hypoxia. Genomic variation in the dimethylarginine pathway affects the development of HAPH and altitude acclimatization. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

28 pages, 2976 KiB  
Article
L-Arginine/Nitric Oxide Pathway Is Altered in Colorectal Cancer and Can Be Modulated by Novel Derivatives from Oxicam Class of Non-Steroidal Anti-Inflammatory Drugs
by Małgorzata Krzystek-Korpacka, Berenika Szczęśniak-Sięga, Izabela Szczuka, Paulina Fortuna, Marek Zawadzki, Agnieszka Kubiak, Magdalena Mierzchała-Pasierb, Mariusz G. Fleszar, Łukasz Lewandowski, Paweł Serek, Natalia Jamrozik, Katarzyna Neubauer, Jerzy Wiśniewski, Radosław Kempiński, Wojciech Witkiewicz and Iwona Bednarz-Misa
Cancers 2020, 12(9), 2594; https://doi.org/10.3390/cancers12092594 - 11 Sep 2020
Cited by 23 | Viewed by 5979
Abstract
L-arginine/nitric oxide pathway metabolites are altered in colorectal cancer (CRC). We evaluated underlying changes in pathway enzymes in 55 paired tumor/tumor-adjacent samples and 20 normal mucosa using quantitative-PCR and assessed the impact of classic and novel oxicam analogues on enzyme expression and intracellular [...] Read more.
L-arginine/nitric oxide pathway metabolites are altered in colorectal cancer (CRC). We evaluated underlying changes in pathway enzymes in 55 paired tumor/tumor-adjacent samples and 20 normal mucosa using quantitative-PCR and assessed the impact of classic and novel oxicam analogues on enzyme expression and intracellular metabolite concentration (LC-MS/MS) in Caco-2, HCT116, and HT-29 cells. Compared to normal mucosa, ARG1, PRMT1, and PRMT5 were overexpressed in both tumor and tumor-adjacent tissue and DDAH2 solely in tumor-adjacent tissue. Tumor-adjacent tissue had higher expression of ARG1, DDAH1, and DDAH2 and lower NOS2 than patients-matched tumors. The ARG1 expression in tumors increased along with tumor grade and reflected lymph node involvement. Novel oxicam analogues with arylpiperazine moiety at the thiazine ring were more effective in downregulating DDAHs and PRMTs and upregulating ARG2 than piroxicam and meloxicam. An analogue distinguished by propylene linker between thiazine’s and piperazine’s nitrogen atoms and containing two fluorine substituents was the strongest inhibitor of DDAHs and PRMTs expression, while an analogue containing propylene linker but no fluorine substituents was the strongest inhibitor of ARG2 expression. Metabolic reprogramming in CRC includes overexpression of DDAHs and PRMTs in addition to ARG1 and NOS2 and is not restricted to tumor tissue but can be modulated by novel oxicam analogues. Full article
(This article belongs to the Collection Drug Resistance and Novel Therapies in Cancers)
Show Figures

Figure 1

26 pages, 3313 KiB  
Article
Esophageal Squamous Cell Carcinoma Is Accompanied by Local and Systemic Changes in L-arginine/NO Pathway
by Iwona Bednarz-Misa, Paulina Fortuna, Mariusz G. Fleszar, Łukasz Lewandowski, Dorota Diakowska, Joanna Rosińczuk and Małgorzata Krzystek-Korpacka
Int. J. Mol. Sci. 2020, 21(17), 6282; https://doi.org/10.3390/ijms21176282 - 30 Aug 2020
Cited by 11 | Viewed by 4417
Abstract
The L-arginine/NO pathway holds promise as a source of potential therapy target and biomarker; yet, its status and utility in esophageal squamous cell carcinoma (ESCC) is unclear. We aimed at quantifying pathway metabolites in sera from patients with ESCC (n = 61) [...] Read more.
The L-arginine/NO pathway holds promise as a source of potential therapy target and biomarker; yet, its status and utility in esophageal squamous cell carcinoma (ESCC) is unclear. We aimed at quantifying pathway metabolites in sera from patients with ESCC (n = 61) and benign conditions (n = 62) using LC-QTOF-MS and enzyme expression in esophageal tumors and matched noncancerous samples (n = 40) using real-time PCR with reference to ESCC pathology and circulating immune/inflammatory mediators, quantified using Luminex xMAP technology. ESCC was associated with elevated systemic arginine and asymmetric dimethylarginine. Citrulline decreased and arginine bioavailability increased along with increasing ESCC advancement. Compared to adjacent tissue, tumors overexpressed ODC1, NOS2, PRMT1, and PRMT5 but had downregulated ARG1, ARG2, and DDAH1. Except for markedly higher NOS2 and lower ODC1 in tumors from M1 patients, the pathology-associated changes in enzyme expression were subtle and present also in noncancerous tissue. Both the local enzyme expression level and systemic metabolite concentration were related to circulating inflammatory and immune mediators, particularly those associated with eosinophils and those promoting viability and self-renewal of cancer stem cells. Metabolic reprogramming in ESCC manifests itself by the altered L-arginine/NO pathway. Upregulation of PRMTs in addition to NOS2 and ODC1 and the pathway link with stemness-promoting cytokines warrants further investigation. Full article
(This article belongs to the Special Issue Amino Acids Transport and Metabolism 3.0)
Show Figures

Figure 1

19 pages, 2491 KiB  
Review
Urinary Dimethylamine (DMA) and Its Precursor Asymmetric Dimethylarginine (ADMA) in Clinical Medicine, in the Context of Nitric Oxide (NO) and Beyond
by Dimitrios Tsikas
J. Clin. Med. 2020, 9(6), 1843; https://doi.org/10.3390/jcm9061843 - 12 Jun 2020
Cited by 39 | Viewed by 5055
Abstract
Asymmetric protein-arginine dimethylation is a major post-translational modification (PTM) catalyzed by protein-arginine methyltransferase (PRMT). Regular proteolysis releases asymmetric dimethylarginine (ADMA). Of the daily produced ADMA, about 10% are excreted unchanged in the urine. The remaining 90% are hydrolyzed by dimethylarginine dimethylaminohydrolase (DDAH) to [...] Read more.
Asymmetric protein-arginine dimethylation is a major post-translational modification (PTM) catalyzed by protein-arginine methyltransferase (PRMT). Regular proteolysis releases asymmetric dimethylarginine (ADMA). Of the daily produced ADMA, about 10% are excreted unchanged in the urine. The remaining 90% are hydrolyzed by dimethylarginine dimethylaminohydrolase (DDAH) to L-citrulline and dimethylamine (DMA), which is readily excreted in the urine. The PRMT/DDAH pathway is almost the exclusive origin of urinary ADMA and the major source of urinary DMA. Dietary fish and seafood represent additional abundant sources of urinary DMA. The present article provides an overview of urinary ADMA and DMA reported thus far in epidemiological, clinical and pharmacological studies, in connection with the L-arginine/nitric oxide (NO) pathway and beyond, in neonates, children and adolescents, young and elderly subjects, males and females. Discussed diseases mainly include those relating to the renal and cardiovascular systems such as peripheral arterial occlusive disease, coronary artery disease, chronic kidney disease, rheumatoid arthritis, Becker muscular disease, Duchenne muscular disease (DMD), attention deficit hyperactivity disorder (ADHD), and type I diabetes. Under standardized conditions involving the abstinence of DMA-rich fresh and canned fish and seafood, urinary DMA and ADMA are useful as measures of whole-body asymmetric arginine-dimethylation in health and disease. The creatinine-corrected excretion rates of DMA range from 10 to 80 µmol/mmol in adults and up to 400 µmol/mmol in children and adolescents. The creatinine-corrected excretion rates of ADMA are on average 10 times lower. In general, diseases are associated with higher urinary DMA and ADMA excretion rates, and pharmacological treatment, such as with steroids and creatine (in DMD), decreases their excretion rates, which may be accompanied by a decreased urinary excretion of nitrate, the major metabolite of NO. In healthy subjects and in rheumatoid arthritis patients, the urinary excretion rate of DMA correlates positively with the excretion rate of dihydroxyphenylglycol (DHPG), the major urinary catecholamines metabolite, suggesting a potential interplay in the PRMT/DDAH/NO pathway. Full article
(This article belongs to the Special Issue Atherosclerosis: Endothelial Dysfunction and Beyond)
Show Figures

Figure 1

28 pages, 3653 KiB  
Article
Transcriptional and Metabolomic Analysis of L-Arginine/Nitric Oxide Pathway in Inflammatory Bowel Disease and Its Association with Local Inflammatory and Angiogenic Response: Preliminary Findings
by Małgorzata Krzystek-Korpacka, Mariusz G. Fleszar, Iwona Bednarz-Misa, Łukasz Lewandowski, Izabela Szczuka, Radosław Kempiński and Katarzyna Neubauer
Int. J. Mol. Sci. 2020, 21(5), 1641; https://doi.org/10.3390/ijms21051641 - 28 Feb 2020
Cited by 37 | Viewed by 5220
Abstract
L-arginine/nitric oxide pathway in Crohn’s disease (CD) and ulcerative colitis (UC) is poorly investigated. The aim of current study is to quantify pathway serum metabolites in 52 CD (40 active), 48 UC (33 active), and 18 irritable bowel syndrome patients and 40 controls [...] Read more.
L-arginine/nitric oxide pathway in Crohn’s disease (CD) and ulcerative colitis (UC) is poorly investigated. The aim of current study is to quantify pathway serum metabolites in 52 CD (40 active), 48 UC (33 active), and 18 irritable bowel syndrome patients and 40 controls using mass spectrometry and at determining mRNA expression of pathway-associated enzymes in 91 bowel samples. Arginine and symmetric dimethylarginine decreased (p < 0.05) in active-CD (129 and 0.437 µM) compared to controls (157 and 0.494 µM) and active-UC (164 and 0.52 µM). Citrulline and dimethylamine increased (p < 0.05) in active-CD (68.7 and 70.9 µM) and active-UC (65.9 and 73.9 µM) compared to controls (42.7 and 50.4 µM). Compared to normal, CD-inflamed small bowel had downregulated (p < 0.05) arginase-2 by 2.4-fold and upregulated dimethylarginine dimethylaminohydrolase (DDAH)-2 (1.5-fold) and arginine N-methyltransferase (PRMT)-2 (1.6-fold). Quiescent-CD small bowel had upregulated (p < 0.05) arginase-2 (1.8-fold), DDAH1 (2.9-fold), DDAH2 (1.5-fold), PRMT1 (1.5-fold), PRMT2 (1.7-fold), and PRMT5 (1.4-fold). Pathway enzymes were upregulated in CD-inflamed/quiescent and UC-inflamed colon as compared to normal. Compared to inflamed, quiescent CD-colon had upregulated DDAH1 (5.7-fold) and ornithine decarboxylase (1.6-fold). Concluding, the pathway is deregulated in CD and UC, also in quiescent bowel, reflecting inflammation severity and angiogenic potential. Functional analysis of PRMTs and DDAHs as potential targets for therapy is warranted. Full article
(This article belongs to the Special Issue Update on Basic and Molecular Research in Inflammatory Bowel Disease)
Show Figures

Figure 1

Back to TopTop