Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = dihydrofuran acetals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3701 KiB  
Article
Enhancing Antileishmanial Activity of Amidoxime-Based Compounds Bearing a 4,5-Dihydrofuran Scaffold: In Vitro Screening Against Leishmania amazonensis
by Fabiana Maia Santos Urbancg Moncorvo, Oscar Leonardo Avendaño Leon, Christophe Curti, Youssef Kabri, Sébastien Redon, Eduardo Caio Torres-Santos and Patrice Vanelle
Molecules 2024, 29(22), 5469; https://doi.org/10.3390/molecules29225469 - 20 Nov 2024
Viewed by 1082
Abstract
Leishmaniasis, a protozoan disease affecting humans, exposes significant shortcomings in current treatments. In continuation to our previous findings on amidoxime-based antileishmanial compounds bearing a 4,5-dihydrofuran scaffold, twelve new amidoxime derivatives substituted at position 3 with an amide bearing a nitrogen heterocycle were synthesized. [...] Read more.
Leishmaniasis, a protozoan disease affecting humans, exposes significant shortcomings in current treatments. In continuation to our previous findings on amidoxime-based antileishmanial compounds bearing a 4,5-dihydrofuran scaffold, twelve new amidoxime derivatives substituted at position 3 with an amide bearing a nitrogen heterocycle were synthesized. This series was designed to replace the sulfone and aryl group on a previously reported HIT. The synthesis of these compounds involved the following three-step pathway: manganese (III) acetate-based cyclization of a β-ketoester, followed by amidation with LiHMDS and a final reaction with hydroxylamine. Three of them, containing either bromine, chlorine, or methyl substitutions and featuring a pyridine moiety, showed an interesting toxicity–activity relationship in vitro. They exhibited IC50 values of 15.0 µM, 16.0 µM, and 17.0 µM against the promastigote form of the parasite and IC50 values of 0.5 µM, 0.6 µM, and 0.3 µM against the intracellular amastigote form, respectively. A selectivity index (SI) greater than 300 was established between the cytotoxic concentrations (in murine macrophages) and the effective concentrations (against the intracellular form of Leishmania amazonensis). This SI is at least seventy times higher than that observed for Pentamidine and twenty-five times higher than that observed for the reference HIT, as previously reported. Full article
Show Figures

Graphical abstract

19 pages, 2302 KiB  
Article
Lewis Acid-Catalyzed 2,3-Dihydrofuran Acetal Ring-Opening Benzannulations toward Functionalized 1-Hydroxycarbazoles
by Shaoren Yuan, Gabriel Guerra Faura, Hailey E. Areheart, Natalie E. Peulen and Stefan France
Molecules 2022, 27(23), 8344; https://doi.org/10.3390/molecules27238344 - 30 Nov 2022
Cited by 6 | Viewed by 3922
Abstract
The development of a Lewis acid-catalyzed, intramolecular ring-opening benzannulation of 5-(indolyl)2,3-dihydrofuran acetals is described. The resulting 1-hydroxycarbazole-2-carboxylates are formed in up to 90% yield in 1 h. The dihydrofuran acetals are readily accessed from the reactions of enol ethers and α-diazo-β-indolyl-β-ketoesters. To highlight [...] Read more.
The development of a Lewis acid-catalyzed, intramolecular ring-opening benzannulation of 5-(indolyl)2,3-dihydrofuran acetals is described. The resulting 1-hydroxycarbazole-2-carboxylates are formed in up to 90% yield in 1 h. The dihydrofuran acetals are readily accessed from the reactions of enol ethers and α-diazo-β-indolyl-β-ketoesters. To highlight the method’s synthetic utility, a formal total synthesis of murrayafoline A, a bioactive carbazole-containing natural product, was undertaken. Full article
(This article belongs to the Special Issue Benzannulations in Organic Synthesis)
Show Figures

Figure 1

4 pages, 1094 KiB  
Short Note
(1R,2R,3S,4R)-1-(Acetylamino)-2,4,5-tris(acetyloxy)-1-((2S)-4-(benzyloxy)-5-oxo-2,5-dihydrofuran-2-yl)pentan-3-yl Acetate
by Liam S. Fitzgerald, Ciaran O’Malley and Paul V. Murphy
Molbank 2022, 2022(1), M1337; https://doi.org/10.3390/M1337 - 10 Feb 2022
Viewed by 2553
Abstract
Treatment of N-acetylneuraminic acid with excess base in the presence of benzyl bromide gives a polyhydroxylated 1,4 lactone which after acetylation gave the title compound in 20% overall yield. The structure of the product was confirmed by single crystal X-ray diffraction analysis, [...] Read more.
Treatment of N-acetylneuraminic acid with excess base in the presence of benzyl bromide gives a polyhydroxylated 1,4 lactone which after acetylation gave the title compound in 20% overall yield. The structure of the product was confirmed by single crystal X-ray diffraction analysis, as well as FT-IR, NMR spectroscopic and HRMS analysis. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

14 pages, 1202 KiB  
Article
Enhancement of Antioxidant and Antibacterial Activities of Salvia miltiorrhiza Roots Fermented with Aspergillus oryzae
by Keumok Moon and Jaeho Cha
Foods 2020, 9(1), 34; https://doi.org/10.3390/foods9010034 - 1 Jan 2020
Cited by 19 | Viewed by 4654
Abstract
The roots of Salvia miltiorrhiza are known to exhibit antioxidant and antibacterial activities. To improve the antioxidant and antibacterial activities of S. miltiorrhiza roots, the roots were fermented with Aspergillus oryzae at 25 °C for 3 weeks. The non-fermented (SME) and fermented (SMBE) [...] Read more.
The roots of Salvia miltiorrhiza are known to exhibit antioxidant and antibacterial activities. To improve the antioxidant and antibacterial activities of S. miltiorrhiza roots, the roots were fermented with Aspergillus oryzae at 25 °C for 3 weeks. The non-fermented (SME) and fermented (SMBE) roots of S. miltiorrhiza were extracted with 70% ethanol, respectively, and then fractionated with organic solvents. By fermentation, total phenolic and flavonoid contents, as well as antioxidant activity of SMBE, were increased by about 1.2 to 1.3 times compared with those of SME. The antibacterial activity of SMBE was also twice as high as that of SME. The antibacterial activity of SMBE against Bacillus cereus was lower in the n-hexane and chloroform fractions, but higher in the ethyl acetate and n-butanol fractions, compared with those of SME. These results indicate that the bioactive components of S. miltiorrhiza roots exhibiting antibacterial activity were converted to more polar compounds by fermentation of A. oryzae. Gas chromatography and mass spectrometry (GC-MS) and LC-MS analyses of SME and SMBE demonstrate that these changes are due to the acylation of dihydrofuran-2(3H)-one, dealkylation of 4-methylbenzene-1,2-diol and 4-ethylbenzene-1,2-diol, and esterification of hexadecanoic acid and (9Z, 12Z)-octadec-9,12-dienoic acid during fermentation. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

15 pages, 369 KiB  
Communication
Manganese(III) Acetate-mediated Oxidative Cyclization of a-Methylstyrene and trans-Stilbene with b-Ketosulfones
by Ahlem Bouhlel, Christophe Curti, Clémence Tabelé and Patrice Vanelle
Molecules 2013, 18(4), 4293-4307; https://doi.org/10.3390/molecules18044293 - 11 Apr 2013
Cited by 17 | Viewed by 6371
Abstract
A convenient microwave irradiation protocol was utilized for the synthesis of b-ketosulfones 15 in good yields. These sulfones reacted with alkenes through a radical oxidative cyclization mediated by Mn(OAc)3. Dihydrofurans 610 were obtained in moderate to good [...] Read more.
A convenient microwave irradiation protocol was utilized for the synthesis of b-ketosulfones 15 in good yields. These sulfones reacted with alkenes through a radical oxidative cyclization mediated by Mn(OAc)3. Dihydrofurans 610 were obtained in moderate to good yields starting from 1,1-disubstituted alkenes. Dihydrofurans 1115 were synthesized in moderate yields and unexpected cyclopropanes 1619 were obtained in low yields starting from 1,2-disubstituted alkenes. This protocol offers access to various dihydrofurans which could be tested for their antiparasitic potential. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop