Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = digital magnetic compass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 2634 KiB  
Proceeding Paper
Digital Compasses for Orientation-Tilt Monitoring in Offshore Deep-Sea Infrastructures: The KM3NeT Case
by Harold Yepes-Ramirez
Eng. Proc. 2022, 27(1), 44; https://doi.org/10.3390/ecsa-9-13213 - 1 Nov 2022
Viewed by 1101
Abstract
The KM3NeT Collaboration is currently constructing two neutrino detectors in the depths of the Mediterranean Sea. An excellent angular resolution will be necessary for an accurate reconstruction of neutrino direction, much as a precise knowledge of the position and orientation of the detector [...] Read more.
The KM3NeT Collaboration is currently constructing two neutrino detectors in the depths of the Mediterranean Sea. An excellent angular resolution will be necessary for an accurate reconstruction of neutrino direction, much as a precise knowledge of the position and orientation of the detector components will be mandatory in order to achieve the required angular resolution. For High-Energy Neutrino Astrophysics program, an angular resolution < 0.05 deg is expected for the sparser detector if synchronization ~1 ns, positioning < 20 cm, and orientation < 3 deg are guaranteed for the Detection Units. The KM3NeT orientation-tilt system, known as “Digital Compasses”, is an Attitude and Heading Reference System (AHRS) board coupled to the inner Central Logic Boards of the detection modules. The AHRS integrates a 3D-magnetometer containing an Anisotropic Magnetoresistive Sensor to estimate the Earth’s magnetic field with a 3D-accelerometer equipped with a Micro-Electro Mechanical System that estimates the acceleration field intensity. The performance of the Digital Compasses, together with the reconstruction of orientation-tilt magnitudes and calibration, will be presented and discussed in this contribution. Full article
Show Figures

Figure 1

17 pages, 7885 KiB  
Article
Determination of USV’s Direction Using Satellite and Fluxgate Compasses and GNSS-RTK
by Artur Makar
Sensors 2022, 22(20), 7895; https://doi.org/10.3390/s22207895 - 17 Oct 2022
Cited by 13 | Viewed by 2511
Abstract
The measurement of a mobile object’s movement direction is performed by means of various analogue and digital devices, including both autonomous and non-autonomous ones. They represent different measuring qualities, dimensions, weights and tolerance to ambient disturbances. They allow measuring the course of heading [...] Read more.
The measurement of a mobile object’s movement direction is performed by means of various analogue and digital devices, including both autonomous and non-autonomous ones. They represent different measuring qualities, dimensions, weights and tolerance to ambient disturbances. They allow measuring the course of heading and course over ground (COG) in sea navigation. They are used for the determination of motion vectors on the water’s surface and with respect to the sea bed, in integrated systems, DP and autopilots. Results of dynamic tests of three heading meters: electronic and satellite compasses, and Global Navigation Satellite Systems (GNSS) determining COG are presented in this paper. The measurements were conducted in good measuring conditions, in an open upper hemisphere for satellite receivers and at no or minimal disturbances of the magnetic field. Sensors were mounted on an unmanned survey vessel (USV) that was moving straight, performing quick turns and circulations. Each of them has some limitations with respect to its use in the water area in which a hydrographic sounding is to be performed; attention was paid to the possibility of using a given compass on board a small autonomous ship navigating automatically. Full article
Show Figures

Figure 1

9 pages, 1919 KiB  
Communication
Soft and Hard Iron Compensation for the Compasses of an Operational Towed Hydrophone Array without Sensor Motion by a Helmholtz Coil
by Tommaso Lapucci, Luigi Troiano, Carlo Carobbi and Lorenzo Capineri
Sensors 2021, 21(23), 8104; https://doi.org/10.3390/s21238104 - 3 Dec 2021
Cited by 4 | Viewed by 3332
Abstract
Usually, towed hydrophone arrays are instrumented with a set of compasses. Data from these sensors are utilized while beamforming the acoustic signal for target bearing estimation. However, elements of the hydrophone array mounted in the neighborhood of a compass can affect the Earth’s [...] Read more.
Usually, towed hydrophone arrays are instrumented with a set of compasses. Data from these sensors are utilized while beamforming the acoustic signal for target bearing estimation. However, elements of the hydrophone array mounted in the neighborhood of a compass can affect the Earth’s magnetic field detection. The effects depend upon the materials and magnetic environment present in the vicinity of the platform hosting the compass. If the disturbances are constant in time, they can be compensated for by means of a magnetic calibration procedure. This process is commonly known as soft and hard iron compensation. In this paper, a solution is presented for carrying out the magnetic calibration of a COTS (Commercial Off the Shelf) digital compass without sensor motion. This approach is particularly suited in applications where a physical rotation of the platform that hosts the sensor is unfeasible. In our case, the platform consists in an assembled and operational towed hydrophone array. A standard calibration process relies on physical rotation of the platform and thus on the use of the geomagnetic field as a reference during the compensation. As a variation on this approach, we generate an artificial reference magnetic field to simulate the impractical physical rotation. We obtain this by using a tri-axial Helmholtz coil, which enables programmability of the reference magnetic field and assures the required field uniformity. In our work, the simulated geomagnetic field is characterized in terms of its uncertainty. The analysis indicates that our method and experimental set-up represent a suitably accurate approach for the soft and hard iron compensation of the compasses equipped in the hydrophone array under test. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

9 pages, 1661 KiB  
Article
A Magnetic Field Camera for Real-Time Subsurface Imaging Applications
by Andriyan Bayu Suksmono, Donny Danudirdjo, Antonius Darma Setiawan, Dien Rahmawati and Rizki Putra Prastio
Appl. Sci. 2021, 11(8), 3302; https://doi.org/10.3390/app11083302 - 7 Apr 2021
Cited by 9 | Viewed by 5264
Abstract
We have constructed an imaging device that is capable of showing the spatio-temporal distribution of magnetic flux density in real-time. The device employs a set of AMR (anisotropic magneto-resistance) three-axis magnetometers, which are arranged into a two-dimensional sensor array. All of the magnetic [...] Read more.
We have constructed an imaging device that is capable of showing the spatio-temporal distribution of magnetic flux density in real-time. The device employs a set of AMR (anisotropic magneto-resistance) three-axis magnetometers, which are arranged into a two-dimensional sensor array. All of the magnetic field values measured by the array are collected by a microcontroller, which pre-processes and sends the data to a PDU (processing and display unit) implemented on a smartphone/tablet or a computer. The interpolation algorithm and display software in the PDU present the field as a high-resolution video; thus, the device works as a magnetic field camera. In the experiments, we employ the camera to map the field distribution of the distorted ambient magnetic field caused by a hidden object. The obtained image of field shows both the position and shape of the object. We also demonstrate the capability of the device to image a loaded power-line cable carrying a 50 Hz alternating current. Full article
(This article belongs to the Special Issue Magnetometers: Development and Application for the Last Decade)
Show Figures

Figure 1

18 pages, 4944 KiB  
Article
Digital Magnetic Compass Integration with Stationary, Land-Based Electro-Optical Multi-Sensor Surveillance System
by Branko Livada, Saša Vujić, Dragan Radić, Tomislav Unkašević and Zoran Banjac
Sensors 2019, 19(19), 4331; https://doi.org/10.3390/s19194331 - 7 Oct 2019
Cited by 11 | Viewed by 9760
Abstract
Multi-sensor imaging systems using the global navigation satellite system (GNSS) and digital magnetic compass (DMC) for geo-referencing have an important role and wide application in long-range surveillance systems. To achieve the required system heading accuracy, the specific magnetic compass calibration and compensation procedures, [...] Read more.
Multi-sensor imaging systems using the global navigation satellite system (GNSS) and digital magnetic compass (DMC) for geo-referencing have an important role and wide application in long-range surveillance systems. To achieve the required system heading accuracy, the specific magnetic compass calibration and compensation procedures, which highly depend on the application conditions, should be applied. The DMC compensation technique suitable for the operation environment is described and different technical solutions are studied. The application of the swinging procedure was shown as a good solution for DMC compensation in a given application. The selected DMC was built into a system to be experimentally evaluated, both under laboratory and field conditions. The implementation of the compensation procedure and magnetic sensor integration in systems is described. The heading accuracy measurement results show that DMC could be successfully integrated and used in long-range surveillance systems providing required geo-referencing data. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 7105 KiB  
Article
Improving the Accuracy of Direct Geo-referencing of Smartphone-Based Mobile Mapping Systems Using Relative Orientation and Scene Geometric Constraints
by Naif M. Alsubaie, Ahmed A. Youssef and Naser El-Sheimy
Sensors 2017, 17(10), 2237; https://doi.org/10.3390/s17102237 - 30 Sep 2017
Cited by 26 | Viewed by 5997
Abstract
This paper introduces a new method which facilitate the use of smartphones as a handheld low-cost mobile mapping system (MMS). Smartphones are becoming more sophisticated and smarter and are quickly closing the gap between computers and portable tablet devices. The current generation of [...] Read more.
This paper introduces a new method which facilitate the use of smartphones as a handheld low-cost mobile mapping system (MMS). Smartphones are becoming more sophisticated and smarter and are quickly closing the gap between computers and portable tablet devices. The current generation of smartphones are equipped with low-cost GPS receivers, high-resolution digital cameras, and micro-electro mechanical systems (MEMS)-based navigation sensors (e.g., accelerometers, gyroscopes, magnetic compasses, and barometers). These sensors are in fact the essential components for a MMS. However, smartphone navigation sensors suffer from the poor accuracy of global navigation satellite System (GNSS), accumulated drift, and high signal noise. These issues affect the accuracy of the initial Exterior Orientation Parameters (EOPs) that are inputted into the bundle adjustment algorithm, which then produces inaccurate 3D mapping solutions. This paper proposes new methodologies for increasing the accuracy of direct geo-referencing of smartphones using relative orientation and smartphone motion sensor measurements as well as integrating geometric scene constraints into free network bundle adjustment. The new methodologies incorporate fusing the relative orientations of the captured images and their corresponding motion sensor measurements to improve the initial EOPs. Then, the geometric features (e.g., horizontal and vertical linear lines) visible in each image are extracted and used as constraints in the bundle adjustment procedure which correct the relative position and orientation of the 3D mapping solution. Full article
(This article belongs to the Special Issue Multi-Sensor Integration and Fusion)
Show Figures

Figure 1

20 pages, 4549 KiB  
Article
Fast Fingerprint Database Maintenance for Indoor Positioning Based on UGV SLAM
by Jian Tang, Yuwei Chen, Liang Chen, Jingbin Liu, Juha Hyyppä, Antero Kukko, Harri Kaartinen, Hannu Hyyppä and Ruizhi Chen
Sensors 2015, 15(3), 5311-5330; https://doi.org/10.3390/s150305311 - 4 Mar 2015
Cited by 50 | Viewed by 10587
Abstract
Indoor positioning technology has become more and more important in the last two decades. Utilizing Received Signal Strength Indicator (RSSI) fingerprints of Signals of OPportunity (SOP) is a promising alternative navigation solution. However, as the RSSIs vary during operation due to their physical [...] Read more.
Indoor positioning technology has become more and more important in the last two decades. Utilizing Received Signal Strength Indicator (RSSI) fingerprints of Signals of OPportunity (SOP) is a promising alternative navigation solution. However, as the RSSIs vary during operation due to their physical nature and are easily affected by the environmental change, one challenge of the indoor fingerprinting method is maintaining the RSSI fingerprint database in a timely and effective manner. In this paper, a solution for rapidly updating the fingerprint database is presented, based on a self-developed Unmanned Ground Vehicles (UGV) platform NAVIS. Several SOP sensors were installed on NAVIS for collecting indoor fingerprint information, including a digital compass collecting magnetic field intensity, a light sensor collecting light intensity, and a smartphone which collects the access point number and RSSIs of the pre-installed WiFi network. The NAVIS platform generates a map of the indoor environment and collects the SOPs during processing of the mapping, and then the SOP fingerprint database is interpolated and updated in real time. Field tests were carried out to evaluate the effectiveness and efficiency of the proposed method. The results showed that the fingerprint databases can be quickly created and updated with a higher sampling frequency (5Hz) and denser reference points compared with traditional methods, and the indoor map can be generated without prior information. Moreover, environmental changes could also be detected quickly for fingerprint indoor positioning. Full article
(This article belongs to the Special Issue Sensors for Indoor Mapping and Navigation)
Show Figures

Figure 1

Back to TopTop