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Abstract: The measurement of a mobile object’s movement direction is performed by means of
various analogue and digital devices, including both autonomous and non-autonomous ones. They
represent different measuring qualities, dimensions, weights and tolerance to ambient disturbances.
They allow measuring the course of heading and course over ground (COG) in sea navigation. They
are used for the determination of motion vectors on the water’s surface and with respect to the sea
bed, in integrated systems, DP and autopilots. Results of dynamic tests of three heading meters:
electronic and satellite compasses, and Global Navigation Satellite Systems (GNSS) determining COG
are presented in this paper. The measurements were conducted in good measuring conditions, in an
open upper hemisphere for satellite receivers and at no or minimal disturbances of the magnetic field.
Sensors were mounted on an unmanned survey vessel (USV) that was moving straight, performing
quick turns and circulations. Each of them has some limitations with respect to its use in the water
area in which a hydrographic sounding is to be performed; attention was paid to the possibility of
using a given compass on board a small autonomous ship navigating automatically.

Keywords: satellite compass; fluxgate compass; heading; course

1. Introduction

The determination of the position of an object moving in a given area is the first
aim of navigation and is necessary in order to reach a given point in a safe way, with
predictable accuracy and in an expected amount of time. This task is executed in an
autonomous manner with the use of various onboard measuring devices and systems.
Magnetic compasses and gyrocompasses were the first instruments used for this reason.
These devices facilitate the determination of the object’s position based on measurements
of the Earth’s magnetic field strength, positions of astronomical objects and permanent
characteristics of land objects. Due to the diversity of applicable devices, navigation may be
divided into the following sections: (1) astronomical navigation, consisting of observation
of the astronomical objects; (2) terrestrial navigation, consisting of observation of beacons
and other characteristic objects present on the coast; (3) dead reckoning, consisting of the
approximate determination of the ship’s position based on her last known and measured
position, the direction of her heading and speed; (4) pilot navigation, which takes into
considerations the beacons present in the given water areas, used close to seaports, on
fairways to the ports and in other marked places difficult to navigate in; (5) radio-navigation,
which is based on radio signals sent via transmitters; (6) satellite navigation, which uses
radio signals transmitted by fake Earth satellites; and (7) inertial navigation.

Despite positioning, the determination of direction and measurement of speed are
indispensable measuring processes during navigation. Gade [1] defined seven methods of
plotting a course. They were used in the construction of various devices, both autonomous
and non-autonomous, of different accuracy classes, with different possibilities of coopera-
tion with other devices and various resistances to the influence of ambient factors. Apart
from the magnetic and standard compasses, gyro-compasses [2–7] are used on big ships due
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to their significant dimensions and weights. A satellite compass (of one system) operates
correctly in good observation conditions [8–14], and it is useless in seaport areas with high
buildings close to the ships.

Both headings as well as COG are used in hydrographic systems for registration needs,
digital presentations for the system operator and helmsman, and graphical presentations of
the motion vector. On big sounding vessels equipped with gyro-compasses, a gyro-compass
heading is used to present the motion vector on the water surface. It is also possible to use
a satellite compass in good observation conditions, i.e., on open water.

The miniaturisation of vessels used in hydrography [15–25], especially unmanned
ones (USVs), and of measuring devices, in particular, the acoustic ones, including single
beam echosounders (SBES) and multibeam echosounders (MBES), provides the possibility
of their usage in limited water areas, especially in seaports where the ground conditions
restrict the application of satellite devices and systems and where disturbance of the
electromagnetic field caused by ferromagnetic objects is present. Compasses installed on
USV, being an integral part of the autonomous measuring system, are not resistant to such
disturbances, which results in no possibility for the sounding vessel to head along the
sounding profiles in an automatic mode. Therefore, it is necessary to apply a manual mode
or another device to plot the course of a mobile object to operate the USV in a precise way
in the automatic mode [26–33] in a quay, among the stand places of yachts in marinas and
berthed big ships. Advanced equipment such as MBES, LiDAR, RADAR, cameras, and
side scan sonars (SSS) are used in bigger USVs and sounding vessels equipped with GPS
compass for heading determination. Small USVs use basic hydrographic sensors: SBES
for depth measurement and GNSS for positioning. For automatic navigation, they use an
internal electronic compass. The article presents the results of heading determination using
sensors, which can be mounted on board small USVs.

The measurements were done in the Gdynia marina neighbouring a municipal beach
(Figure 1). It is protected by a breakwater, which ensured no impact of hydro-meteorological
conditions on the USV.
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Three devices enabling the course of the USV to be plotted were used for this research:
a fluxgate compass, being an electromagnetic instrument, and two satellite receivers:
one-antenna multi-GNSS for COG determination and a two-antenna one-system satellite
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compass. They represent various qualities with respect to ambient resistance. On the
one hand, the fluxgate should determine the course in a water area of difficult GNSS
observation conditions, but it is sensitive to the magnetic field influence. On the other
hand, satellite devices are resistant to external conditions but in the open upper hemisphere
enabling receipt of signals from the satellites.

The composition of the paper is as follows: Section 2 presents the measuring vessel
and sensors used to plot her course. Section 3 provides the results of static and kinematic
measurements done in a seaport area on long straight profiles, short profiles and on returns.
Conclusions close the article.

2. Materials and Methods
2.1. Measured Parameters and Relationships between Them

In a measuring system (Figure 2), each of the sensors determines the direction between
the northern part of the meridian passing the given sensor or arrangement of the sensors
and the beginning of the coordinates polar system related to the sensor. As a reference,
an arrangement of the satellite compass, for which (at the base distance between anten-
nas being 120 cm) it may be assumed that it coincides with the USV’s centre line, has
been accepted.
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Figure 2. Relationships between headings and COG.

The fluxgate compass was installed approximately towards the centre line, and then,
after the execution of static measurements, corrections were done in an analytic way. It
is also possible to compensate it mechanically within a range of several degrees. The
COG is not subject to any initial measurement nor calibration due to being a parameter
determined based on the coordinates of the position. However, parameters measured by
the fluxgate and satellite compasses are connected with the sounding vessel’s hull, and
COG is determined on the basis of the GNSS antenna’s positions’ coordinates. There is a
possible difference between COG and parameters measured by two other sensors, which
can be observed in Figure 2. Generally, the hydro-meteorological conditions of wind and
wave motion do not influence the measuring objects and determined parameters. The
discrepancy between HDT, HDM, and COG is a result of the difference between parameters
related to water and the ground.

The satellite compass, as a GNSS sensor, works in an open area, so it can be impossible
to use it in a restricted area with high port infrastructure, close to high buildings and high
moored vessels. Measurements are provided. The GNSS receiver in RTK/RTN mode can
be used in the GSM range (operational zone), but the article is dedicated to hydrographic



Sensors 2022, 22, 7895 4 of 17

surveys in coastal areas using small USVs with the availability of RTK/RTN corrections. It
is a partial answer to the next question about measurements in the open sea.

2.2. USV and Measurement Sensors

An OceanAlpha SL20 USV (Figure 3) is a hydrographic vessel equipped with an
SBES Echologger and an internal GPS receiver, which is usually replaced with a geodetic
GNSS receiver. It is powered by two (water-jet propulsion) engines and has no rudder.
During bathymetric surveys, it moves with a velocity of 2–5 kn, which enables both line
keeping and steering. The data are transmitted via a radio link at a frequency of 2.4 GHz.
A manipulator that allows two engines to be controlled separately is used for manual
steering. Autopilot, using a course from the internal electronic compass, ensures automatic
navigation (i.e., the guidance of USV along planned lines).
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A two-system (GPS and GLONASS—GLObalnaja NAwigacionnaja Sputnikowaja
Sistiema) Leica Viva GS15 [34,35] receiver was used as an external receiver to determine
the position’s coordinates in real-time network (RTN) mode, with a horizontal accuracy
not worse than 1 cm thanks to the corrections being received from the SmartNet network.

Antennas of the satellite compass Novatel PwrPak 7 [36,37] were mounted on a
rigid measuring system at a distance of 120 cm. The receiver of the compass enables the
cooperation with other devices and dedicated software via a serial port, a RJ45-TCP/IP
wire link and a cordless network, with the possible registration of the observation data
internally. The RJ45 cordless link was used in the tested measuring system of the internal
USV network. The pitch angle is an additional parameter determined by the satellite
compass [38–49].

Plotting the compass course is a basic task executed by an electronic compass. The mea-
sured resultant vector of the magnetic field is corrected automatically (auto-compensation)
by the deviation value, so it equals the magnetic course value [50–55]. An INI-200 ATC
compass was used in the measurements.

Table 1 presents the basic parameters of the USV and sensors.
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Table 1. Basic parameters of USV and sensors.

Device Photograph Parameter Value

SL20
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Hull material Carbon fiber
Dimension 105 cm × 55 cm × 35 cm

Weight 17 kg
Draft 15 cm

Propulsion Water-jet propulsion
Survey speed 2–5 kn (1–2.5 m/s)

Max speed 10 kn (5 m/s)
Positioning

(standard—not used) U-blox LEA-6 series

Positioning (used in
maneuvering) Leica Viva GS15

Heading Honeywell HMC6343
Echosounder Echologger series SBES

Novatel
PwrPak 7

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18 
 

 

Table 1. Basic parameters of USV and sensors. 

Device Photograph Parameter Value 

SL20 

 

Hull material Carbon fiber 

Dimension 105 cm × 55 cm × 35 cm 

Weight 17 kg 

Draft 15 cm 

Propulsion Water-jet propulsion 

Survey speed 2–5 kn (1–2.5 m/s) 

Max speed 10 kn (5 m/s) 

Positioning (standard—not used) U-blox LEA-6 series 

Positioning (used in maneuvering) Leica Viva GS15 

Heading Honeywell HMC6343 

Echosounder Echologger series SBES 

Novatel 

PwrPak 7 

 

Signals Tracked 

Primary Antenna 

GPS (L1 C/A, L1C, L2C, L2P, L5) 

GLONASS (L1 C/A, L2 C/A, L2P, L3) 

BeiDou (B1I, B1C, B2I, B2a, B2b) 

Galileo (E1, E5 AltBOC, E5a, E5b) 

NavIC (IRNSS) (L5) 

QZSS (L1 C/A, L1C, L1S, L2C, L5) 

SBAS (L1, L5) 

L-Band (Up to 5 channels) 

Code measurement precision 

GPS 

GLONASS 

BeiDou 

Galileo 

4–8 cm 

8 cm 

4 cm 

3 cm 

Velocity accuracy <0.03 m/s RMS 

ALIGN heading accuracy 
Baseline = 2 m   0.08 degrees 

Baseline = 4 m   0.05 degrees 

Fluxgate 

INI-200 ATC 

 

 

Accuracy 

 

0.2° 

Maximum operating magnetic  

inclination 
85° 

Gimbal operating range 

Heel (roll) angle 

Pitch angle 

 

±45° 

±45° 

GNSS 

Leica Viva 

GS15 

 

GNSS technology Advanced four constellation tracking 

Number of channels 
120 (up to 60 satellites simultaneously on two 

frequencies)/500 + 1 

Signal tracking 

GPS (L1, L2, L2C, L5), Glonass (L1, L2),  

BeiDou (B1, B2),  

Galileo (E1, E5a, E5b, Alt-BOC) 

QZSS (L1, L2, L5),  

SBAS (WAAS, EGNOS, MSAS, CAGAN) 

Code differential 

DGPS/RTCM 
Typically 25 cm 

Real-time kinematic  

Single baseline (<30 km) 

Network RTK 

Hz 8 mm + 1 ppm/V 15 mm + 1 ppm 

Hz 8 mm + 0.5 ppm/V 15 mm + 0.5 ppm 

Post-processing  

Static (phase) with long observations 

Static and rapid static (phase) 

Hz 3 mm + 0.1 ppm/V 3.5 mm + 0.4 ppm 

Hz 3 mm + 0.5 ppm/V 5 mm + 0.5 ppm 

  

Signals Tracked
Primary Antenna

GPS (L1 C/A, L1C, L2C, L2P, L5)
GLONASS (L1 C/A, L2 C/A, L2P, L3)

BeiDou (B1I, B1C, B2I, B2a, B2b)
Galileo (E1, E5 AltBOC, E5a, E5b)

NavIC (IRNSS) (L5)
QZSS (L1 C/A, L1C, L1S, L2C, L5)

SBAS (L1, L5)
L-Band (Up to 5 channels)

Code measurement precision

GPS
GLONASS

BeiDou
Galileo

4–8 cm
8 cm
4 cm
3 cm

Velocity accuracy <0.03 m/s RMS

ALIGN heading accuracy Baseline = 2 m 0.08 degrees
Baseline = 4 m 0.05 degrees

Fluxgate
INI-200 ATC

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18 
 

 

Table 1. Basic parameters of USV and sensors. 

Device Photograph Parameter Value 

SL20 

 

Hull material Carbon fiber 

Dimension 105 cm × 55 cm × 35 cm 

Weight 17 kg 

Draft 15 cm 

Propulsion Water-jet propulsion 

Survey speed 2–5 kn (1–2.5 m/s) 

Max speed 10 kn (5 m/s) 

Positioning (standard—not used) U-blox LEA-6 series 

Positioning (used in maneuvering) Leica Viva GS15 

Heading Honeywell HMC6343 

Echosounder Echologger series SBES 

Novatel 

PwrPak 7 

 

Signals Tracked 

Primary Antenna 

GPS (L1 C/A, L1C, L2C, L2P, L5) 

GLONASS (L1 C/A, L2 C/A, L2P, L3) 

BeiDou (B1I, B1C, B2I, B2a, B2b) 

Galileo (E1, E5 AltBOC, E5a, E5b) 

NavIC (IRNSS) (L5) 

QZSS (L1 C/A, L1C, L1S, L2C, L5) 

SBAS (L1, L5) 

L-Band (Up to 5 channels) 

Code measurement precision 

GPS 

GLONASS 

BeiDou 

Galileo 

4–8 cm 

8 cm 

4 cm 

3 cm 

Velocity accuracy <0.03 m/s RMS 

ALIGN heading accuracy 
Baseline = 2 m   0.08 degrees 

Baseline = 4 m   0.05 degrees 

Fluxgate 

INI-200 ATC 

 

 

Accuracy 

 

0.2° 

Maximum operating magnetic  

inclination 
85° 

Gimbal operating range 

Heel (roll) angle 

Pitch angle 

 

±45° 

±45° 

GNSS 

Leica Viva 

GS15 

 

GNSS technology Advanced four constellation tracking 

Number of channels 
120 (up to 60 satellites simultaneously on two 

frequencies)/500 + 1 

Signal tracking 

GPS (L1, L2, L2C, L5), Glonass (L1, L2),  

BeiDou (B1, B2),  

Galileo (E1, E5a, E5b, Alt-BOC) 

QZSS (L1, L2, L5),  

SBAS (WAAS, EGNOS, MSAS, CAGAN) 

Code differential 

DGPS/RTCM 
Typically 25 cm 

Real-time kinematic  

Single baseline (<30 km) 

Network RTK 

Hz 8 mm + 1 ppm/V 15 mm + 1 ppm 

Hz 8 mm + 0.5 ppm/V 15 mm + 0.5 ppm 

Post-processing  

Static (phase) with long observations 

Static and rapid static (phase) 

Hz 3 mm + 0.1 ppm/V 3.5 mm + 0.4 ppm 

Hz 3 mm + 0.5 ppm/V 5 mm + 0.5 ppm 

  

Accuracy 0.2◦

Maximum operating magnetic
inclination 85◦

Gimbal operating range
Heel (roll) angle

Pitch angle

±45◦

±45◦

GNSS
Leica Viva

GS15

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18 
 

 

Table 1. Basic parameters of USV and sensors. 

Device Photograph Parameter Value 

SL20 

 

Hull material Carbon fiber 

Dimension 105 cm × 55 cm × 35 cm 

Weight 17 kg 

Draft 15 cm 

Propulsion Water-jet propulsion 

Survey speed 2–5 kn (1–2.5 m/s) 

Max speed 10 kn (5 m/s) 

Positioning (standard—not used) U-blox LEA-6 series 

Positioning (used in maneuvering) Leica Viva GS15 

Heading Honeywell HMC6343 

Echosounder Echologger series SBES 

Novatel 

PwrPak 7 

 

Signals Tracked 

Primary Antenna 

GPS (L1 C/A, L1C, L2C, L2P, L5) 

GLONASS (L1 C/A, L2 C/A, L2P, L3) 

BeiDou (B1I, B1C, B2I, B2a, B2b) 

Galileo (E1, E5 AltBOC, E5a, E5b) 

NavIC (IRNSS) (L5) 

QZSS (L1 C/A, L1C, L1S, L2C, L5) 

SBAS (L1, L5) 

L-Band (Up to 5 channels) 

Code measurement precision 

GPS 

GLONASS 

BeiDou 

Galileo 

4–8 cm 

8 cm 

4 cm 

3 cm 

Velocity accuracy <0.03 m/s RMS 

ALIGN heading accuracy 
Baseline = 2 m   0.08 degrees 

Baseline = 4 m   0.05 degrees 

Fluxgate 

INI-200 ATC 

 

 

Accuracy 

 

0.2° 

Maximum operating magnetic  

inclination 
85° 

Gimbal operating range 

Heel (roll) angle 

Pitch angle 

 

±45° 

±45° 

GNSS 

Leica Viva 

GS15 

 

GNSS technology Advanced four constellation tracking 

Number of channels 
120 (up to 60 satellites simultaneously on two 

frequencies)/500 + 1 

Signal tracking 

GPS (L1, L2, L2C, L5), Glonass (L1, L2),  

BeiDou (B1, B2),  

Galileo (E1, E5a, E5b, Alt-BOC) 

QZSS (L1, L2, L5),  

SBAS (WAAS, EGNOS, MSAS, CAGAN) 

Code differential 

DGPS/RTCM 
Typically 25 cm 

Real-time kinematic  

Single baseline (<30 km) 

Network RTK 

Hz 8 mm + 1 ppm/V 15 mm + 1 ppm 

Hz 8 mm + 0.5 ppm/V 15 mm + 0.5 ppm 

Post-processing  

Static (phase) with long observations 

Static and rapid static (phase) 

Hz 3 mm + 0.1 ppm/V 3.5 mm + 0.4 ppm 

Hz 3 mm + 0.5 ppm/V 5 mm + 0.5 ppm 

  

GNSS technology Advanced four constellation tracking

Number of channels 120 (up to 60 satellites simultaneously on
two frequencies)/500 + 1

Signal tracking

GPS (L1, L2, L2C, L5), Glonass (L1, L2),
BeiDou (B1, B2),

Galileo (E1, E5a, E5b, Alt-BOC)
QZSS (L1, L2, L5),

SBAS (WAAS, EGNOS, MSAS, CAGAN)
Code differential

DGPS/RTCM Typically 25 cm

Real-time kinematic
Single baseline (<30 km)

Network RTK

Hz 8 mm + 1 ppm/V 15 mm + 1 ppm
Hz 8 mm + 0.5 ppm/V 15 mm + 0.5 ppm

Post-processing
Static (phase) with long

observations
Static and rapid static (phase)

Hz 3 mm + 0.1 ppm/V 3.5 mm + 0.4 ppm
Hz 3 mm + 0.5 ppm/V 5 mm + 0.5 ppm

The integration of sensors was made based on an internal network enabling the
application of an internal GPS receiver, compass, echosounder and external GNSS receiver
operating in geodetic RTK (real-time kinematic)/RTN variant. Additional sensors were
connected to the network: the Novatel PwrPak 7 satellite compass, which was connected
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directly by means of the TCP/IP protocol, and the fluxgate electronic compass, which was
connected with the use of an RS232—TCP/IP converter WRT610.

Table 2 presents messages used to register the heading/course:

Table 2. Messages transmitted by sensors.

Device Message Parameter Frequency [Hz]

GNSS
$GPGGA, $GPGLL

$GPVTG
$GPGSA, $GPGSV

Position coordinates
COG, SOG 10

Satellite compass $GPHDT Heading 10

Fluxgate compass $HCHDM Heading 1

An example of recorded messages is shown below.

GNSS $GPGGA,082319.00,5431.0669492,N,01833.0649214,E,4,08,1.22,−4.0236,M,33.6965,M,2.0,0871*51
$GPGLL,5431.0669492,N,01833.0649214,E,082319.00,A,D*6D
$GPGSA,M,3,32,06,19,22,25,17,24,12„„,2.23,1.22,1.87*09
$GPGSV,3,1,09,32,27,311,41,06,23,097,40,19,42,060,46,22,14,326,40*71
$GPGSV,3,2,09,25,27,258,39,17,25,047,42,24,68,166,49,12,70,253,48*7A
$GPGSV,3,3,09,02,10,139,42*4E
$GPVTG,187.581,T„M,1.2603,N,2.3341,K,D*0B $HCHDM,241.9,M*27

Fluxgate $GPHDT,138.0153,T*08
Satellite compass $HCHDM,241.9,M*27

HYPACK (HYPACK, Middletown, CT, USA) software was used for the recording of
geospatial data during a bathymetric sounding and heading/course during measurements.

3. Results
3.1. Static Measurements—Fluxgate and Satellite Compass

Prior to the execution of the static measurements by means of the fluxgate electronic
compass, its calibration was performed by means of full circulation to the right, with a
double crossing of the North direction. It was fixed into the measuring system rigidly
connected with the base (a two-antenna system) of the satellite compass. The satellite
compass did not require calibration. The measuring session lasted 180 min. Figure 4 shows
the course plotted by the satellite compass (a) and measured by the fluxgate (b).

On the basis of the statistical analysis, the mean value of the heading HDG (HDT and
HDM) is as follows:

HDG =
∑ HDG

n
=


293.44◦

290.82◦

f or Novatel

f or f luxgate
(1)

and the standard deviation is:

σHDG =

√
∑ (∆HDG)2

n
=


0.0658◦

2.835◦

f or Novatel

f or f luxgate
. (2)

where n denotes the number of recorder headings. Because of different standard deviations,
two parts of Figure 4 were presented in Figure 5: the first 10 s of static measurements (a)
and a period between 5.5 and 6.5 s (b).
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3.2. Linear Trajectory—Long Profiles

In the first part of dynamic measurements, 50 m long linear profiles were planned
with a distance of 2 m between them [56]. The automatic mode of USV steering allowed
us to keep the profile (line keeping) with minimum cross-track error (XTE) (Figure 6) as a
distance between the USV position and the profile.
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The first 200 s of the survey divided into four parts is shown in Figure 8.

3.3. Quick Heading’s Changes on Reciprocal One

For measurements of quick heading changes, short 12 m profiles were planned with
a 5 m distance between them [56]. The goal of measurements was to record and analyse
headings while turning the USV 180◦ right and left. As distinct from the navigation on
long profiles, when the USV’s speed is almost constant, in short profiles, the speed varies.
The lowest speed occurs during turning on another, closer profile. The USV’s position
should be at the beginning of the profile with the heading as the profile’s bearing. The rate
of turn (ROT) is low, and the 1 Hz frequency of message transmission (fluxgate) enables
the observation (recording) of low heading changes. Figure 9 shows the trajectory of the
USV during measurements on short, parallel profiles.
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Figure 10 presents satellite compass and fluxgate headings and COG during a 270 s
survey of USV on 13 short profiles.
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with quick heading changes.

For observation differences of measured headings/COG, Figure 11 presents the results
of measurements of two first profiles and two first turnings.
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3.4. Circulations

The goal of measurements during circulation was to record and analyse the constant
heading/COG as a result of long-term USV turning. The rotation has been obtained
manually by working only one propulsion: the left engine for rotation to the right and
the right engine for rotation to the left. Figure 12 presents the trajectory of USV during
circulations: left (blue line) and right (red line).

Figure 13 presents headings and COG during 90 s of rotation of the USV to the right
(a) and 120 s of rotation to the left. During measurements, the USV rotated four times right
and five times left.
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Figure 14 presents headings/COG during two rotations right (a), (b) and left (c), (d).
They took about c.a 24 s (23 s–25 s) with ROT ≈ 15◦/s.
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4. Discussion

(1) While executing the static measurements, a mean value of the heading measured by
the fluxgate and satellite compasses was determined; it was indispensable to determine cor-
rection for the electronic compass heading with respect to the satellite compass. A standard
deviation was determined of 0.07◦ for the satellite compass and 2.84◦ for the fluxgate.

(2) The best accuracy of the satellite compass was assumed, and the assumption
was also that it was a reference sensor in good (sufficient) conditions for the satellites to
determine the heading, despite cooperation with only one GPS satellite system in the SBAS
variant. The delivered software monitors the accuracy of determining heading and yaw
parameters and of the signal reflection from buildings.

(3) Indications of the fluxgate electronic compass vary from indications of the satellite
compass in a serious way (even by 50◦) during return and, afterwards, what is important
in navigating the measuring vessel along the sounding lines. In dynamic conditions, even
on board such a vessel as a USV that moves very slowly, high accuracy of the heading
measurement at return with high frequency and low inertia is important. Figure 15 presents
heading differences between the satellite compass and fluxgate.
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Figure 15. Heading differences between satellite compass and fluxgate during surveys: long profile
(a) and turning (b), short profile (c), quick heading changes (d), and circulations right (e) and left (f).

(4) COG does not differ from the heading determined by the satellite compass in
motion in a special way (difference between indications of the satellite compass and COG),
even at low, and for the vessels, velocities if there are no impacts of hydro-meteorological
factors there. Figure 16 presents differences between satellite compass heading and COG.
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5. Conclusions

Three course meters (out of many different compasses used in navigation) were
applied: two compasses and a GNSS receiver determining COG. Static measurements of
the compasses were necessary to determine corrections for the electronic compass with
respect to the satellite compass. Both sensors represent high-angle stability and are state-of-
the-art for their ages (please note that the fluxgate has not been manufactured since 2002).
The declared 0.1◦ accuracy of the course measurement is sufficient for the USV navigation
with a measurement frequency of 10 Hz.
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The fluxgate compass does not meet the requirements of up-to-date dynamic mea-
surements on board a ship operating in low and very low disturbances of the magnetic
field due to high and increasing errors of the course measurements despite the deviation
auto-compensation.

COG is an important parameter of a moving object, taking into consideration the
impact of external factors on a vessel. At their lack, vectors of motion on the water surface
coincide, and COG may be used to draw the vessel’s symbol on an electronic map of the
hydrographic system in real-time in order to operate manually along sounding lines. In
addition, coordinates of the position and the course based on COG are profiled thanks to
the 1-3-step Kalman filter (FK). Due to the influence of hydro-meteorological factors on
the vessel, COG is not applicable as the autopilot’s sensor to operate the ship along the
lines automatically. The discrepancy between COG and the heading also occurs during
the execution of return onto the next line (onto a counter heading) due to the occurrence
of inertia.
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