Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = different mowing regimes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2468 KiB  
Article
The Effects of Different Management Intensities on Biodiversity Conservation in the Wooded Grasslands of the Central Apennines
by Marina Allegrezza, Giulio Tesei, Matteo Francioni, Demetra Giovagnoli, Marco Bianchini and Paride D’Ottavio
Forests 2025, 16(7), 1034; https://doi.org/10.3390/f16071034 - 20 Jun 2025
Viewed by 218
Abstract
Wooded grasslands are agroforestry systems of high biological and cultural value, which are increasingly threatened by land-use abandonment in Mediterranean marginal areas. In the central-southern Apennines, little is known about their ecological dynamics under different management regimes. This study assesses how three management [...] Read more.
Wooded grasslands are agroforestry systems of high biological and cultural value, which are increasingly threatened by land-use abandonment in Mediterranean marginal areas. In the central-southern Apennines, little is known about their ecological dynamics under different management regimes. This study assesses how three management intensities (High: mowing plus grazing; Low: grazing only; and Abandoned: no management for ~50 years) affect the wooded grasslands in a protected area of the Central Apennines. Vascular plant composition and cover were recorded along radial transects from isolated Fagus sylvatica L. trunks to the adjacent grassland, with plots grouped in four positions (Trunk, Mid-canopy, Edge, and Grassland). The canopy cover, shrub height, species richness, and ecological roles of species were analysed. The results show that light availability, driven by canopy and shrub cover, shapes a gradient from shade-adapted species near the trunk to heliophilous grassland species in open areas. In the Abandoned site, shrub encroachment reduces light even beyond the canopy, facilitating the spread of shade-tolerant and pre-forest species, accelerating succession towards a closed-canopy forest. High-intensity management preserves floristic gradients and grassland species, while Low-intensity management shows early signs of succession at the canopy edge. These findings highlight the importance of traditional mowing and grazing in maintaining the biodiversity and ecological functions of wooded grasslands and emphasize the need for timely interventions where management declines. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

15 pages, 3191 KiB  
Article
Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China
by Lu Li, Huaiqiang Liu and Taogetao Baoyin
Agriculture 2022, 12(9), 1324; https://doi.org/10.3390/agriculture12091324 - 28 Aug 2022
Cited by 13 | Viewed by 3137
Abstract
Quantifying the long-term effects of mowing on soil organic carbon (SOC) is of great importance for understanding the changes in the carbon cycle of the grassland ecosystem and for managing the grassland strategies for both production and soil nutrients. We investigated SOC content [...] Read more.
Quantifying the long-term effects of mowing on soil organic carbon (SOC) is of great importance for understanding the changes in the carbon cycle of the grassland ecosystem and for managing the grassland strategies for both production and soil nutrients. We investigated SOC content and storage within the 0–30 cm soil layer in the grasslands following the application of different mowing regimes—i.e., mowing once every 2 years (M1/2), mowing twice every 3 years (M2/3), mowing once a year (M1/1), mowing twice a year (M2/1), and no mowing (CK)—in the semiarid steppe of northern China. The results indicated that SOC storage and microbial biomass C (MBC) decreased significantly with soil depth. Different mowing frequencies all declined SOC storage and MBC of the grassland ecosystem; however, the root-to-shoot ratio (R:S) was increased. The SOC storage was greatest under CK and had the following order: CK > M1/2 > M2/3 > M1/1 > M2/1 at 0–20 cm, while no significant difference existed in the five mowing frequencies at the soil 20–30 cm layers. Our findings elucidate that different mowing regimes influence soil carbon storage by altering the productivity of vegetation, litter, plant community composition, soil microbial biomass, and resource allocation between aboveground plants and belowground roots, which need to be considered in the sustainable utilization of grasslands in the future. The results of this study support the view that mowing once every 2 years may be an effective mowing management regime for semiarid grasslands, as it conserves both above and belowground parts and maintains the healthy development of ecosystem functions in semiarid grasslands. Full article
(This article belongs to the Special Issue Restoration of Degraded Grasslands and Sustainable Grazing)
Show Figures

Figure 1

16 pages, 1558 KiB  
Article
Optimal Mowing Regime in Enhancing Biodiversity in Seasonal Floodplains along Engineered Channels
by Tsz Kin Calvin Leung, Ken Ying Kin So, Bond Ting Wing Shum and Billy Chi Hang Hau
Sustainability 2022, 14(7), 4002; https://doi.org/10.3390/su14074002 - 28 Mar 2022
Cited by 3 | Viewed by 2424
Abstract
The vegetation grown on grasscretes along channelized rivers have been regularly mown in Hong Kong. However, no baseline information on the relationship between different mowing regimes and the biodiversity of such riverbed vegetation is available. We therefore carried out a manipulative experiment along [...] Read more.
The vegetation grown on grasscretes along channelized rivers have been regularly mown in Hong Kong. However, no baseline information on the relationship between different mowing regimes and the biodiversity of such riverbed vegetation is available. We therefore carried out a manipulative experiment along a channelized river to test the effect of mowing frequency and intensity on the abundance and species richness of terrestrial biodiversity. We conducted point counts and transect counts to survey birds, butterflies and Odonates, night surveys for amphibians and reptiles, quadrat surveys for vegetation and sweep net and pan traps for other macroinvertebrates. The results from Generalized Linear Mixed Models (GLMMs) showed a taxon-specific effect of mowing regime. Bird species richness was significantly suppressed in plots mown with high frequency. Both butterfly abundance and species richness were greatly enhanced by low intensity and low frequency mowing. Odonate abundance, and the abundance and species richness of other macroinvertebrates remained high whenever a portion of vegetation was retained as refuge. Amphibians and reptiles did not prefer to utilize the vegetation grown on grasscretes, and thus showed no impact from different mowing regimes. The overall species richness of vegetation was not affected by mowing regimes, but the domination of tall invasive Brachiaria mutica was suppressed by any mowing activity. To cater for the need of most taxa, we propose a mosaic mowing regime, in which most parts along the channelized river could be mown infrequently to 600 mm tall while some of the patches remain unmown. Full article
Show Figures

Figure 1

16 pages, 2579 KiB  
Article
Weed Spectrum in Durum Wheat under Different Soil Tillage and Fertilizer Application in Mediterranean Environment
by Verdiana Petroselli, Emanuele Radicetti, Alireza Safahani Langeroodi, Mohamed Allam and Roberto Mancinelli
Sustainability 2021, 13(13), 7307; https://doi.org/10.3390/su13137307 - 30 Jun 2021
Cited by 3 | Viewed by 2817
Abstract
Agricultural intensification may cause significant changes in weed density due to high weed competitiveness. Therefore, sustainable practices are to be designed to get maximum benefits of plant biodiversity in the agro-ecosystems. Field experiments were conducted in 2013/2014 and 2014/2015 to evaluate the impact [...] Read more.
Agricultural intensification may cause significant changes in weed density due to high weed competitiveness. Therefore, sustainable practices are to be designed to get maximum benefits of plant biodiversity in the agro-ecosystems. Field experiments were conducted in 2013/2014 and 2014/2015 to evaluate the impact of fertilizer source and soil tillage on weed spectrum in durum wheat (Triticum durum Desf.). Treatments in this study were: (i) two fertilizer sources (mineral fertilizer (MIN) and municipal organic waste (MOW)), and (ii) three tillage regimes (plowing (Plo), subsoiling (Sub) and spading (SM)). A randomized complete block design with three replications was adopted. Data on weed density and biomass were collected at the wheat tillering stage. Weed density was higher in MOW than MIN (53.8 vs. 44.0 plants·m−2), especially in 2014/2015, while S was the highest among tillage regimes (58.2 plants·m−2). Annual and monocots species were always the highest in subsoiling (43.5 and 10.1 plants·m−2). The density of perennial and dicots species was higher in MOW compared with MIN plots, regardless of soil tillage management. Weed community, in terms of weed species composition, varied between the two fertilizer sources, while among soil tillage regimes, it only differed between plowing and subsoiling. Based on the analysis of weed community composition, annual dicot species were mainly associated with plowing, while monocots tended to be associated with MIN fertilizer. Spading tillage may be a useful strategy for managing weed diversity under organic fertilization, where mineral soil nitrogen availability was limited. Conversely, the spading machine produced lower grain yields than plowing with mineral fertilizer application. Full article
(This article belongs to the Special Issue Sustainable Weed Control in the Agroecosystems)
Show Figures

Figure 1

9 pages, 1941 KiB  
Article
Response of Twenty Tall Fescue (Schedonorus arundinaceus (Schreb.) Dumort.) Cultivars to Low Mowing Height
by Marco Schiavon, Stefano Macolino and Cristina Pornaro
Agronomy 2021, 11(5), 943; https://doi.org/10.3390/agronomy11050943 - 10 May 2021
Cited by 4 | Viewed by 2538
Abstract
Tall fescue (Schedonorus arundinaceus (Schreb.) Dumort.) is the most widely used species in the European transition zone, however, despite its good wear tolerance, its use is still limited to lawns and landscape areas due to concerns about its ability to withstand low [...] Read more.
Tall fescue (Schedonorus arundinaceus (Schreb.) Dumort.) is the most widely used species in the European transition zone, however, despite its good wear tolerance, its use is still limited to lawns and landscape areas due to concerns about its ability to withstand low mowing regimes. A two years field study was conducted to access performance of twenty tall fescue cultivars (‘Ares’, ‘Armani’, ‘Dynamites LS’, ‘Firecracker SLS’, ‘Firewall’, ‘Foxhound’ ‘Granditte’, ‘JT-LT2′, ‘JT-338′, ‘Karakum’, ‘Lexington’, ‘Olympic Gold’, ‘Rebounder’, ‘Rhambler SRP’, ‘Starlett’, ‘Supersonic’, ‘Talladega’, ‘Thunderstruck’, ‘Titanium 2LS’, ‘Turfway’) mowed weekly at 18 mm. Turfgrass was evaluated every two weeks for visual quality, color, density, texture and uniformity, as well as percent green cover (PGC) and dark green color index (DGCI), and normalized difference vegetation index (NDVI), and traction twice per year. Although no cultivars showed sufficient quality throughout the year, ‘Turfway’, ‘Titanium 2LS’ and ‘JT-338’ achieved high quality rating during spring and fall, the two seasons with the highest frequency of games played on sports field in northern Italy. Traction ratings collected in these study fell within acceptable range for football fields. Our results suggest that improved dwarf-type tall fescue cultivars can be used in sport fields in Northern Italy. Full article
Show Figures

Figure 1

13 pages, 895 KiB  
Article
Spatial Heterogeneity of Vegetation Structure, Plant N Pools and Soil N Content in Relation to Grassland Management
by Juliette M. G. Bloor, Antoine Tardif and Julien Pottier
Agronomy 2020, 10(5), 716; https://doi.org/10.3390/agronomy10050716 - 16 May 2020
Cited by 15 | Viewed by 4053
Abstract
Spatial heterogeneity in plant and soil properties plays a key role for biogeochemical cycling, nutrient losses and ecosystem function. Different management practices are expected to induce varying levels of spatial heterogeneity in agroecosystems, but the effects of contrasting biomass removal regimes and herbivore [...] Read more.
Spatial heterogeneity in plant and soil properties plays a key role for biogeochemical cycling, nutrient losses and ecosystem function. Different management practices are expected to induce varying levels of spatial heterogeneity in agroecosystems, but the effects of contrasting biomass removal regimes and herbivore species on grassland variability and spatial pattern have faced little attention. We carried out a spatially-explicit sampling campaign and geostatistical analyses to quantify the spatial heterogeneity of the biomass and N in plants and soil for three management treatments (mowing, cattle grazing and sheep grazing) within a long-term grassland experiment. All plant and soil properties showed within-site variation, irrespective of management treatment. Within-site variation in plant variables could be ranked as grazing > mowing. Cattle grazing increased variability in vegetation structure, soil mineral N and soil C:N compared with sheep grazing. In addition, the cattle-grazed field had a higher degree of spatial structure and a more coarse-grained pattern of spatial heterogeneity in plant properties than the sheep-grazed field. However, both grazing treatments showed spatial asynchrony in above- and below-ground responses to grazing. These results demonstrate the importance of herbivore species identity as a driver of grassland spatial heterogeneity, with implications for spatial uncoupling of nutrient cycles at the field scale. Full article
Show Figures

Figure 1

12 pages, 1506 KiB  
Article
Soil Respiration Dynamics in Bromus erectus-Dominated Grasslands under Different Management Intensities
by Matteo Francioni, Laura Trozzo, Marco Toderi, Nora Baldoni, Marina Allegrezza, Giulio Tesei, Ayaka Wenhong Kishimoto-Mo, Lucia Foresi, Rodolfo Santilocchi and Paride D’Ottavio
Agriculture 2020, 10(1), 9; https://doi.org/10.3390/agriculture10010009 - 30 Dec 2019
Cited by 16 | Viewed by 4007
Abstract
Reduction of soil greenhouse gas emissions is crucial to control increases in atmospheric CO2 concentrations. Permanent grasslands are of considerable importance in climate change mitigation strategies as they cover about 13% of the global agricultural area. However, uncertainties remain for the effects [...] Read more.
Reduction of soil greenhouse gas emissions is crucial to control increases in atmospheric CO2 concentrations. Permanent grasslands are of considerable importance in climate change mitigation strategies as they cover about 13% of the global agricultural area. However, uncertainties remain for the effects of management practices on soil respiration, especially over the short term. This study investigated the influence of different mowing intensities on soil respiration over the short term for Bromus erectus-dominated grasslands in the central Apennines. From 2016 to 2018, soil respiration, temperature, and moisture were measured under three different management systems: customary management, intensive use, and abandonment. Both soil water content and temperature changed over time, however mowing did not affect soil water content while occasionally altered soil temperature. The intensive use promoted higher seasonal mean soil respiration compared to the abandonment only during the 2016 growing season. Soil temperature was the main driver of soil respiration above a soil water content threshold that varied little among treatments (18.23–22.71%). Below the thresholds, soil moisture was the main driver of soil respiration. These data suggest that different mowing regimes have little influence on soil respiration over the short term in Bromus erectus-dominated grasslands. Thus, more intensive use would not have significative impacts on soil respiration, at least over the short term. Future studies need to clarify the role of root mycorrhizal and microbial respiration in the light of climate change, considering the seasonal redistribution of the rainfall. Full article
(This article belongs to the Special Issue Greenhouse Gas Emissions in Agroecosystems)
Show Figures

Figure 1

24 pages, 1186 KiB  
Review
Managing Floral Resources in Apple Orchards for Pest Control: Ideas, Experiences and Future Directions
by Annette Herz, Fabian Cahenzli, Servane Penvern, Lukas Pfiffner, Marco Tasin and Lene Sigsgaard
Insects 2019, 10(8), 247; https://doi.org/10.3390/insects10080247 - 11 Aug 2019
Cited by 65 | Viewed by 8718
Abstract
Functional biodiversity is of fundamental importance for pest control. Many natural enemies rely on floral resources to complete their life cycle. Farmers need to ensure the availability of suitable and sufficient floral biodiversity. This review summarizes 66 studies on the management of floral [...] Read more.
Functional biodiversity is of fundamental importance for pest control. Many natural enemies rely on floral resources to complete their life cycle. Farmers need to ensure the availability of suitable and sufficient floral biodiversity. This review summarizes 66 studies on the management of floral biodiversity in apple orchards, published since 1986. Approaches followed different degrees of intervention: short-term practices (mowing regime and weed maintenance, cover crops), establishment of durable ecological infrastructures (perennial flower strips, hedgerows) and re-design of the crop system (intercropping, agroforestry). Although short-term practices did not always target the nutrition of natural enemies by flowering plants, living conditions for them (alternative prey, provision of habitat) were often improved. Perennial flower strips reliably enhanced natural enemies and techniques for their introduction continuously developed. Resident natural enemies and their impact in pest control reacted positively to the introduction of a more diversified vegetation, whereas the response of very mobile organisms was often not directly linked to the measures taken. A careful selection and management of plants with particular traits exploitable by most natural enemies emerged as a key-point for success. Now the elaborated design of such measures needs to be adopted by stakeholders and policy makers to encourage farmers to implement these measures in their orchards. Full article
(This article belongs to the Special Issue Pest Control in Fruit Trees)
Show Figures

Figure 1

13 pages, 3346 KiB  
Article
Grassland Management Influences the Response of Soil Respiration to Drought
by Gabriel Y. K. Moinet, Andrew J. Midwood, John E. Hunt, Cornelia Rumpel, Peter Millard and Abad Chabbi
Agronomy 2019, 9(3), 124; https://doi.org/10.3390/agronomy9030124 - 7 Mar 2019
Cited by 22 | Viewed by 5416
Abstract
Increasing soil carbon stocks in agricultural grasslands has a strong potential to mitigate climate change. However, large uncertainties around the drivers of soil respiration hinder our ability to identify management practices that enhance soil carbon sequestration. In a context where more intense and [...] Read more.
Increasing soil carbon stocks in agricultural grasslands has a strong potential to mitigate climate change. However, large uncertainties around the drivers of soil respiration hinder our ability to identify management practices that enhance soil carbon sequestration. In a context where more intense and prolonged droughts are predicted in many regions, it is critical to understand how different management practices will temper drought-induced carbon losses through soil respiration. In this study, we compared the impact of changing soil volumetric water content during a drought on soil respiration in permanent grasslands managed either as grazed by dairy cows or as a mowing regime. Across treatments, root biomass explained 43% of the variability in soil respiration (p < 0.0001). Moreover, analysis of the isotopic composition of CO2 emitted from the soil, roots, and root-free soil suggested that the autotrophic component largely dominated soil respiration. Soil respiration was positively correlated with soil water content (p = 0.03) only for the grazed treatment. Our results suggest that the effect of soil water content on soil respiration was attributable mainly to an effect on root and rhizosphere activity in the grazed treatment. We conclude that farm management practices can alter the relationship between soil respiration and soil water content. Full article
(This article belongs to the Special Issue Grassland Management for Sustainable Agroecosystems)
Show Figures

Figure 1

Back to TopTop