Weed Spectrum in Durum Wheat under Different Soil Tillage and Fertilizer Application in Mediterranean Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Details
2.3. Weather Conditions during Durum Wheat Cultivation
2.4. Crop Management
2.5. Observations
2.6. Data Analysis
3. Results
3.1. Weed Characteristics in Durum Wheat
3.2. Durum Wheat Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holling, C.S. Resilience and Stability of Ecological Systems. In The Future of Nature: Documents of Global Change; Yale University Press: New Haven, CT, USA, 2013; ISBN 9780300184617. [Google Scholar]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Grace, P.R.; Harrington, L.; Jain, M.C.; Philip Robertson, G. Long-Term Sustainability of the Tropical and Subtropical Rice-Wheat System: An Environmental Perspective. In Improving the Productivity and Sustainability of Rice-Wheat Systems: Issues and Impacts; American Society of Agronomy Special Publication 65; American Society of Agronomy: Madison, WI, USA, 2015; Volume 65, pp. 27–43. [Google Scholar]
- Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal tillage as innovative element of the technology of growing winter wheat: A field experiment under low rainfall conditions. Agriculture 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Radicetti, E.; Mancinelli, R.; Campiglia, E. Influence of winter cover crop residue management on weeds and yield in pepper (Capsicum annuum L.) in a Mediterranean environment. Crop. Prot. 2013, 52, 64–71. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D. Strip-till one-pass technology in central and eastern Europe: A MZURI pro-til hybrid machine case study. Agronomy 2020, 10, 925. [Google Scholar] [CrossRef]
- Jaskulska, I.; Romaneckas, K.; Jaskulski, D.; Wojewódzki, P. A Strip-Till One-Pass System as a Component of Conservation Agriculture. Agronomy 2020, 10, 2015. [Google Scholar] [CrossRef]
- Langeroodi, A.R.S.; Mancinelli, R.; Radicetti, E. How do intensification practices affect weed management and yield in Quinoa (Chenopodium quinoa willd) crop? Sustainability 2020, 12, 6103. [Google Scholar] [CrossRef]
- Schmidt, J.H.; Bergkvist, G.; Campiglia, E.; Radicetti, E.; Wittwer, R.A.; Finckh, M.R.; Hallmann, J. Effect of tillage, subsidiary crops and fertilisation on plant-parasitic nematodes in a range of agro-environmental conditions within Europe. Ann. Appl. Biol. 2017, 171, 477–489. [Google Scholar] [CrossRef]
- Bhandari, A.L.; Ladha, J.K.; Pathak, H.; Padre, A.T.; Dawe, D.; Gupta, R.K. Yield and Soil Nutrient Changes in a Long-Term Rice-Wheat Rotation in India. Soil Sci. Soc. Am. J. 2002, 66, 162–170. [Google Scholar] [CrossRef]
- Bijay-Singh, Y.-S.; Ladha, J.K.; Khind, C.S.; Gupta, R.K.; Meelu, O.P.; Pasuquin, E. Long-Term Effects of Organic Inputs on Yield and Soil Fertility in the Rice–Wheat Rotation. Soil Sci. Soc. Am. J. 2004, 68, 845–853. [Google Scholar] [CrossRef]
- Barabasz, W.; Albińska, D.; Jaśkowska, M.; Lipiec, J. Biological Effects of Mineral Nitrogen Fertilization on Soil Microorganisms. Pol. J. Environ. Stud. 2002, 11, 193–198. [Google Scholar]
- Blackshaw, R.E. Application method of nitrogen fertilizer affects weed growth and competition with winter wheat. Weed Biol. Manag. 2004, 4, 103–113. [Google Scholar] [CrossRef]
- Iqbal, J.; Wright, D. Effects of nitrogen supply on competition between wheat and three annual weed species. Weed Res. 1997, 37, 391–400. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Molnar, L.J.; Janzen, H.H. Nitrogen fertilizer timing and application method affect weed growth and competition with spring wheat. Weed Sci. 2004, 52, 614–622. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Kunzová, E. Effect of Mineral and Organic Fertilizers on Yield and Technological Parameters of Winter Wheat (Triticum aestivum L.) on Illimerized Luvisol. Pol. J. Agron. 2014, 17, 18–24. [Google Scholar]
- Bhattacharyya, R.; Kundu, S.; Prakash, V.; Gupta, H.S. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean-wheat system of the Indian Himalayas. Eur. J. Agron. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal soild waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Chairi, F.; Aparicio, N.; Serret, M.D.; Araus, J.L. Breeding effects on the genotype × environment interaction for yield of durum wheat grown after the Green Revolution: The case of Spain. Crop. J. 2020, 8, 623–634. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; De Stefanis, E.; Pucciarmati, S.; Radicetti, E. The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of Central Italy. Field Crop. Res. 2015, 176, 34–44. [Google Scholar] [CrossRef]
- Thorsted, M.D.; Weiner, J.; Olesen, J.E. Above- and below-ground competition between intercropped winter wheat Triticum aestivum and white clover Trifolium repens. J. Appl. Ecol. 2006, 43, 237–245. [Google Scholar] [CrossRef]
- Olsen, J.; Kristensen, L.; Weiner, J.; Griepentrog, H. Increased density and spatial uniformity increase weed suppression by spring wheat. Weed Res. 2005, 45, 316–321. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Floristic composition and species diversity of weed community after 10 years of different cropping systems and soil tillage in a Mediterranean environment. Weed Res. 2018, 58, 273–283. [Google Scholar] [CrossRef]
- Usman, K.; Khalil, S.K.; Khan, A.Z.; Khalil, I.H.; Khan, M.A. Amanullah Tillage and herbicides impact on weed control and wheat yield under rice-wheat cropping system in Northwestern Pakistan. Soil Tillage Res. 2010, 110, 101–107. [Google Scholar] [CrossRef]
- Ercoli, L.; Masoni, A.; Mariotti, M.; Pampana, S.; Pellegrino, E.; Arduini, I. Effect of preceding crop on the agronomic and economic performance of durum wheat in the transition from conventional to reduced tillage. Eur. J. Agron. 2017, 125–133. [Google Scholar] [CrossRef]
- Falhi, W.; Safi, S.M.A. Effect of weed competition in the characteristics of growth and yield and its components of wheat crop Ttriticum aestivum L.: A mini review. J. Res. Ecol. 2018, 6, 1637–1646. [Google Scholar]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Pollnac, F.W.; Maxwell, B.D.; Menalled, F.D. Weed community characteristics and crop performance: A neighbourhood approach. Weed Res. 2009, 49, 242–250. [Google Scholar] [CrossRef]
- Franke, A.C.; Lotz, L.A.P.; Van Der Burg, W.J.; Van Overbeek, L. The role of arable weed seeds for agroecosystem functioning. Weed Res. 2009, 49, 131–141. [Google Scholar] [CrossRef]
- Légère, A.; Stevenson, F.C.; Benoit, D.L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 2005, 45, 303–315. [Google Scholar] [CrossRef]
- Angeloni. Available online: http://www.angeloniweb.it/prodotti/lavorazioni-terreno/aratri/serie-aps/ (accessed on 29 June 2021).
- Dondi. Available online: https://www.dondinet.it/lavorazione-terreno-a-campo-aperto/dissodatori-e-decompattatori/dissodatori-idropneumatici/#gref (accessed on 29 June 2021).
- Tortella. Available online: https://tortella.it/?page_id=11930 (accessed on 29 June 2021).
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D. SAS System for Mixed Models; SAS Institute: Cary, NC, USA, 1996; ISBN 1555447791. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures For Agricultural Research; Indian Statistical Institute: Kolkata, India, 1984; Volume 47, pp. 296–299. [Google Scholar]
- McCune, B.; Grace, J. MRPP (Multi-response Permutation Procedures) and related techniques. Anal. Ecol. Communities 2002, 289. [Google Scholar] [CrossRef]
- Blossom. Available online: https://www.usgs.gov/software/blossom-statistical-package (accessed on 29 June 2021).
- Zanin, G.; Otto, S.; Riello, L.; Borin, M. Ecological interpretation of weed flora dynamics under different tillage systems. Agric. Ecosyst. Environ. 1997, 66, 177–188. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.L.; Abernethy, V.J.; Murphy, K.J.; Adam, A.; McCracken, D.I.; Downie, I.S.; Foster, G.N.; Furness, R.W.; Waterhouse, A.; Ribera, I. Prediction of plant diversity response to land-use change on Scottish agricultural land. Agric. Ecosyst. Environ. 2003, 94, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Tørresen, K.S.; Skuterud, R.; Tandsæther, H.J.; Hagemo, M.B. Long-term experiments with reduced tillage in spring cereals. I. Effects on weed flora, weed seedbank and grain yield. Crop Prot. 2003, 22, 185–200. [Google Scholar] [CrossRef]
- Colbach, N.; Dürr, C. How to model the effects of farming practices on weed emergence. Weed Res. 2005, 45, 2–17. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 2012, 38, 57–65. [Google Scholar] [CrossRef]
- Pinke, G.; Pál, R.W.; Tóth, K.; Karácsony, P.; Czúcz, B.; Botta-Dukát, Z. Weed vegetation of poppy (Papaver somniferum) fields in Hungary: Effects of management and environmental factors on species composition. Weed Res. 2011, 51, 621–630. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Brandt, R.N.; Janzen, H.H.; Entz, T.; Grant, C.A.; Derksen, D.A. Differential response of weed species to added nitrogen. Weed Sci. 2003, 51, 532–539. [Google Scholar] [CrossRef]
- Cathcart, R.J.; Chandler, K.; Swanton, C.J. Fertilizer nitrogen rate and the response of weeds to herbicides. Weed Sci. 2004, 52, 291–296. [Google Scholar] [CrossRef]
- De Cauwer, B.; van den Berge, K.; Cougnon, M.; Bulcke, R.; Reheul, D. Weed seedbank responses to 12 years of applications of composts, animal slurries or mineral fertilisers. Weed Res. 2010, 50, 425–435. [Google Scholar] [CrossRef]
- Hyvönen, T.; Ketoja, E.; Salonen, J.; Jalli, H.; Tiainen, J. Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric. Ecosyst. Environ. 2003, 97, 131–149. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, R.; Chauhan, B.S. Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Prot. 2018, 103, 65–72. [Google Scholar] [CrossRef]
- Sweeney, A.E.; Renner, K.A.; Laboski, C.; Davis, A. Effect of Fertilizer Nitrogen on Weed Emergence and Growth. Weed Sci. 2008, 56, 714–721. [Google Scholar] [CrossRef]
- Siddiqui, I.; Bajwa, R.; Huma, Z.E.; Javaid, A. Effect of six problematic weeds on growth and yield of wheat. Pak. J. Bot. 2010, 42, 2461–2471. [Google Scholar]
- Ryan, M.R.; Smith, R.G.; Mortensen, D.A.; Teasdale, J.R.; Curran, W.S.; Seidel, R.; Shumway, D.L. Weed-crop competition relationships differ between organic and conventional cropping systems. Weed Res. 2009, 49, 572–580. [Google Scholar] [CrossRef]
- Fried, G.; Kazakou, E.; Gaba, S. Trajectories of weed communities explained by traits associated with species’ response to management practices. Agric. Ecosyst. Environ. 2012, 158, 147–155. [Google Scholar] [CrossRef]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front. Environ. Sci. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Lemanowicz, J.; Breza-Boruta, B.; Siwik-Ziomek, A.; Radziemska, M.; Dariusz, J.; Białek, M. Chemical and biological properties of sandy loam soil in response to long-term organic-mineral fertilisation in a warm-summer humid continental climate. Agronomy 2020, 10, 1610. [Google Scholar] [CrossRef]
Parameter | Methodology | Values | Limit |
---|---|---|---|
Moisture (%) | DM 21/12/2000 GU n. 21 26/01/2001 | 19.4 | <50 |
pH | DM 17/06/2002 GU n. 220 del 19/09/2002 suppl.7 Met III.4 | 7.8 | 6–8.8 |
Conductivity (dS m−1) | DM 17/06/2002 GU n. 220 del 19/09/2002 suppl.7 Met III.4 | 3.82 | - |
Organic carbon (%) | DM 13/09/1999 SO n. 185 GU n. 248 21/10/1999 Met. VII.1 | 25.7 | >20 |
Organic nitrogen (%) | DM 13/09/1999 SO n. 185 GU n. 248 21/10/1999 Met. VII.1 | 2.37 | - |
C/N ratio | DM 13/09/1999 SO n. 185 GU n. 248 21/10/1999 Met. VII.1 | 10.7 | <25 |
Phosphorous | EPA 3052 1996 + EPA 6010D2018 | 0.5 | - |
Cadmium (mg kg−1 DM) | EPA 3052 1996 + EPA 6010D2018 | <1.0 | <1.5 |
Copper (mg kg−1 DM) | EPA 3052 1996 + EPA 6010D2018 | 70.1 | <230 |
Mercury (mg kg−1 DM) | EPA 7473 2007 | 0.10 | <1.50 |
Nickel (mg kg−1 DM) | EPA 3052 1996 + EPA 6010D2018 | 16.8 | <100 |
Lead (mg kg−1 DM) | EPA 3052 1996 + EPA 6010D2018 | 34.5 | <140 |
Zinc (mg kg−1 DM) | EPA 3052 1996 + EPA 6010D2018 | 146.0 | <500 |
Chrome VI (mg kg−1 DM) | DM 08/05/2003 Suppl.8 GU n. 116 21/05/03 | <0.10 | <0.5 |
Weed Density (plants·m−2) | Weed Aboveground Biomass (g·m−2) | |||||||
---|---|---|---|---|---|---|---|---|
2013/2014 | 2014/2015 | 2013/2014 | 2014/2015 | |||||
MIN | MOW | MIN | MOW | MIN | MOW | MIN | MOW | |
Plo | 44.3 bA | 46.0 bA | 34.3 bB | 42.0 cA | 54.1 bA | 55.0 cA | 42.5 cB | 69.6 cA |
Sub | 56.3 aB | 63.7 aA | 45.3 aB | 67.3 aA | 75.6 aA | 77.0 aA | 62.8 aB | 94.0 aA |
SM | 47.0 bA | 50.3 bA | 36.7 bB | 53.3 bA | 54.3 bB | 61.9 bA | 51.2 bB | 77.0 bA |
LSD | 7.21 | 6.34 |
Weed Density Characteristics (plants·m−2) | ||||||||
---|---|---|---|---|---|---|---|---|
Annual | Perennial | Monocots | Dicots | |||||
MIN | MOW | MIN | MOW | MIN | MOW | MI | MOW | |
Plo | 37.0 aB | 41.8 bA | 2.3 cA | 2.1 cA | 3.7 aB | 9.3 bA | 30.0 bB | 40.3 cA |
Sub | 38.7 aB | 48.3 aA | 12.2 aB | 17.2 aA | 6.8 aB | 13.3 aA | 37.5 aB | 58.7 aA |
SM | 35.6 aB | 44.3 abA | 6.1 bA | 7.5 bA | 4.5 aB | 13.3 aA | 29.5 bB | 47.3 bA |
LSD | 5.94 | 1.42 | 3.78 | 2.81 |
2013/2014 | 2014/2015 | |||
---|---|---|---|---|
T | p | T | p | |
Fertilization | ||||
MIN vs. MOW | −5.73 | <0.0001 | −3.61 | 0.0041 |
Soil tillage | ||||
Plo vs. SM | −0.58 | 0.2368 | −0.09 | 0.5134 |
Plo vs. Sub | −2.63 | 0.0225 | −3.91 | 0.0029 |
SM vs. Sub | −0.26 | 0.3468 | −1.43 | 0.0883 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petroselli, V.; Radicetti, E.; Langeroodi, A.S.; Allam, M.; Mancinelli, R. Weed Spectrum in Durum Wheat under Different Soil Tillage and Fertilizer Application in Mediterranean Environment. Sustainability 2021, 13, 7307. https://doi.org/10.3390/su13137307
Petroselli V, Radicetti E, Langeroodi AS, Allam M, Mancinelli R. Weed Spectrum in Durum Wheat under Different Soil Tillage and Fertilizer Application in Mediterranean Environment. Sustainability. 2021; 13(13):7307. https://doi.org/10.3390/su13137307
Chicago/Turabian StylePetroselli, Verdiana, Emanuele Radicetti, Alireza Safahani Langeroodi, Mohamed Allam, and Roberto Mancinelli. 2021. "Weed Spectrum in Durum Wheat under Different Soil Tillage and Fertilizer Application in Mediterranean Environment" Sustainability 13, no. 13: 7307. https://doi.org/10.3390/su13137307
APA StylePetroselli, V., Radicetti, E., Langeroodi, A. S., Allam, M., & Mancinelli, R. (2021). Weed Spectrum in Durum Wheat under Different Soil Tillage and Fertilizer Application in Mediterranean Environment. Sustainability, 13(13), 7307. https://doi.org/10.3390/su13137307