Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = desert locust upsurge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7778 KiB  
Article
Desert Locust (Schistocerca gregaria) Invasion Risk and Vegetation Damage in a Key Upsurge Area
by Raphael Mongare, Elfatih M. Abdel-Rahman, Bester Tawona Mudereri, Emily Kimathi, Simon Onywere and Henri E. Z. Tonnang
Earth 2023, 4(2), 187-208; https://doi.org/10.3390/earth4020010 - 28 Mar 2023
Cited by 6 | Viewed by 4222
Abstract
In the recent past, the Horn of Africa witnessed an upsurge in the desert locust (Schistocerca gregaria) invasion. This has raised major concerns over the massive food insecurity, socioeconomic impacts, and livelihood losses caused by these recurring invasions. This study determined [...] Read more.
In the recent past, the Horn of Africa witnessed an upsurge in the desert locust (Schistocerca gregaria) invasion. This has raised major concerns over the massive food insecurity, socioeconomic impacts, and livelihood losses caused by these recurring invasions. This study determined the potential vegetation damage due to desert locusts (DLs) and predicted the suitable habitat at high risk of invasion by the DLs using current and future climate change scenarios in Kenya. The normalized difference vegetation index (NDVI) for the period 2018–2020 was computed using multi-date Sentinel-2 imagery in the Google Earth Engine platform. This was performed to assess the vegetation changes that occurred between May and July of the year 2020 when northern Kenya was the hotspot of the DL upsurge. The maximum entropy (MaxEnt) algorithm was used together with 646 DL occurrence records and six bioclimatic variables to predict DL habitat suitability. The current (2020) and two future climatic scenarios for the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5 from the model for interdisciplinary research on climate (MIROC6) were utilized to predict the future potential distribution of DLs for the year 2030 (average for 2021–2040). Using Turkana County as a case, the NDVI analysis indicated the highest vegetation damage between May and July 2020. The MaxEnt model produced an area under the curve (AUC) value of 0.87 and a true skill statistic (TSS) of 0.61, while temperature seasonality (Bio4), mean diurnal range (Bio2), and precipitation of the warmest quarter (Bio18) were the most important bioclimatic variables in predicting the DL invasion suitability. Further analysis demonstrated that currently 27% of the total area in Turkana County is highly suitable for DL invasion, and the habitat coverage is predicted to potentially decrease to 20% in the future using the worst-case climate change scenario (SSP5-8.5). These results have demonstrated the potential of remotely sensed data to pinpoint the magnitude and location of vegetation damage caused by the DLs and the potential future risk of invasion in the region due to the available favorable vegetational and climatic conditions. This study provides a scalable approach as well as baseline information useful for surveillance, development of control programs, and monitoring of DL invasions at local and regional scales. Full article
Show Figures

Figure 1

23 pages, 2364 KiB  
Article
Insecticide Use against Desert Locust in the Horn of Africa 2019–2021 Reveals a Pressing Need for Change
by Wim C. Mullié, Adam Prakash, Alexander Müller and Elena Lazutkaite
Agronomy 2023, 13(3), 819; https://doi.org/10.3390/agronomy13030819 - 10 Mar 2023
Cited by 14 | Viewed by 11540
Abstract
The desert locust upsurge in the Horn of Africa over 2019–2021 led to a total of 1.6 million ha being treated with broad-spectrum organophosphate and pyrethroid insecticides in Ethiopia and Kenya, while insect growth regulators and the entomopathogenic fungus Metarhizium acridum were applied [...] Read more.
The desert locust upsurge in the Horn of Africa over 2019–2021 led to a total of 1.6 million ha being treated with broad-spectrum organophosphate and pyrethroid insecticides in Ethiopia and Kenya, while insect growth regulators and the entomopathogenic fungus Metarhizium acridum were applied in Somalia. Environmental monitoring was largely absent, with limited surveys conducted in Kenya and Ethiopia. Overdosing of fenitrothion of a 960 g/L formulation in Kenya led to non-target mortality, including birds and honeybees. In Ethiopia, chlorpyrifos and malathion applications coincided with a honey production decline of 78% in 2020 compared to pre-upsurge levels. The use of M. acridum on nearly 253,000 ha was a breakaway from previous campaigns, in which its successful application in Somalia against both hopper bands and swarms shows that the persistent and pervasive use of organophosphate insecticides can no longer be justified. Furthermore, future procurement of organophosphate insecticides and possibly insect growth regulators could become increasingly problematic due to measures enacted by the European Union. It is recommended that the complementary impact of M. acridum and bird predation on locusts should be considered in an integrated management approach for both swarm and hopper control. Full article
Show Figures

Figure 1

11 pages, 789 KiB  
Article
Regional Differences in Control Operations during the 2019–2021 Desert Locust Upsurge
by Renata Retkute, Rebekah G. K. Hinton, Keith Cressman and Christopher A. Gilligan
Agronomy 2021, 11(12), 2529; https://doi.org/10.3390/agronomy11122529 - 13 Dec 2021
Cited by 14 | Viewed by 4245
Abstract
The desert locust remains a major threat to global food security. Control operations are a crucial tool to manage crisis; this research investigated the nature of control operations conducted between 2019–2021. Historical data on desert locust and control operations were obtained from the [...] Read more.
The desert locust remains a major threat to global food security. Control operations are a crucial tool to manage crisis; this research investigated the nature of control operations conducted between 2019–2021. Historical data on desert locust and control operations were obtained from the survey reports at the FAO Locust Hub and analysed with respect to survey reports, land cover types, cropland/rangeland extent and crop productivity data. We found that 16.1% of the grid cells with locust presence and 14.9% of the grid cells with control operations had a proportion of rangeland higher than 0.75; while 13.3% of the grid cells with locust presence and 13.2% of the grid cells with control operations had a proportion of croplands higher than 0.75, highlighting that locust presence and control operations were reported in both rangeland and cropland. Control operations continue to be used both to reduce overall locust numbers and to protect crops. Furthermore, through identifying which crops were most at risk, our analyses indicate that wheat production was under the highest strain during periods of increased locust infestations. Full article
Show Figures

Figure 1

14 pages, 5117 KiB  
Article
Desert Locust Stopped by Tibetan Highlands during the 2020 Upsurge
by Jun Liu, Michel Lecoq and Long Zhang
Agronomy 2021, 11(11), 2287; https://doi.org/10.3390/agronomy11112287 - 11 Nov 2021
Cited by 10 | Viewed by 6160
Abstract
Desert locust is an important pest to agriculture. In 2019–2020, a major upsurge originated in the southern Arabian Peninsula and gradually spread to east Africa, then to south-west Asia, as far as Pakistan and India, even reaching Nepal, resulting in major agricultural losses. [...] Read more.
Desert locust is an important pest to agriculture. In 2019–2020, a major upsurge originated in the southern Arabian Peninsula and gradually spread to east Africa, then to south-west Asia, as far as Pakistan and India, even reaching Nepal, resulting in major agricultural losses. For the first time, a few swarms entered southern Tibet. Using field observations and experiments, we studied their path to the Tibetan plateau and their behavior at these very high altitudes. The locusts moved up the Tibetan valleys from low-lying areas (1700 m) to much higher elevations (5400 m). The low temperatures and high humidity put them under severe stress; their activities were limited, and they did not survive long or produce local offspring. It is clear that the high-altitude environmental conditions in the Himalayan mountains provided an important natural barrier that limited the northward expansion of the desert locust populations. Full article
Show Figures

Graphical abstract

11 pages, 1609 KiB  
Communication
Detecting Desert Locust Breeding Grounds: A Satellite-Assisted Modeling Approach
by W. Lee Ellenburg, Vikalp Mishra, Jason B. Roberts, Ashutosh S. Limaye, Jonathan L. Case, Clay B. Blankenship and Keith Cressman
Remote Sens. 2021, 13(7), 1276; https://doi.org/10.3390/rs13071276 - 27 Mar 2021
Cited by 19 | Viewed by 4835
Abstract
The objective of this study is to evaluate the ability of soil physical characteristics (i.e., texture and moisture conditions) to better understand the breeding conditions of desert locust (DL). Though soil moisture and texture are well-known and necessary environmental conditions for DL breeding, [...] Read more.
The objective of this study is to evaluate the ability of soil physical characteristics (i.e., texture and moisture conditions) to better understand the breeding conditions of desert locust (DL). Though soil moisture and texture are well-known and necessary environmental conditions for DL breeding, in this study, we highlight the ability of model-derived soil moisture estimates to contribute towards broader desert locust monitoring activities. We focus on the recent DL upsurge in East Africa from October 2019 though June 2020, utilizing known locust observations from the United Nations Food and Agriculture Organization (FAO). We compare this information to results from the current literature and combine the two datasets to create “optimal thresholds” of breeding conditions. When considering the most optimal conditions (all thresholds met), the soil texture combined with modeled soil moisture content predicted the estimated DL egg-laying period 62.5% of the time. Accounting for the data errors and uncertainties, a 3 × 3 pixel buffer increased this to 85.2%. By including soil moisture, the areas of optimal egg laying conditions decreased from 33% to less than 20% on average. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

9 pages, 1994 KiB  
Article
Could Entomophagy Be an Effective Mitigation Measure in Desert Locust Management?
by Ahmed Ali Samejo, Riffat Sultana, Santosh Kumar and Samiullah Soomro
Agronomy 2021, 11(3), 455; https://doi.org/10.3390/agronomy11030455 - 28 Feb 2021
Cited by 18 | Viewed by 4067
Abstract
The desert locust has been a notorious pest since ancient times. A population upsurge hit Pakistan in 2019 and caused tremendous damage to agriculture and livelihoods. To take advantage of this ongoing upsurge, we conducted a field study to verify whether locust collection [...] Read more.
The desert locust has been a notorious pest since ancient times. A population upsurge hit Pakistan in 2019 and caused tremendous damage to agriculture and livelihoods. To take advantage of this ongoing upsurge, we conducted a field study to verify whether locust collection could be an interesting control method to protect crops in the event of an invasion, as well as an accepted food resource for poor rural communities. A village in the Thar desertic region was selected as a type-locality. An awareness campaign was launched to promote the collection and consumption of locusts as well as to alert people of their nutritional value. Two large swarms arrived near the village and several other swarms affected places nearby. Around 3033 kg of locusts were collected through handpicking at night. Most of the locusts were eaten and, as a result, hoppers of the next generation did not emerge in the type-locality; however, hopper bands appeared in areas where entomophagy was not practiced. The study area had less locust activity because swarms could not lay eggs due to entomophagy by the villagers. The consumption of desert locusts could be an effective practice to prevent malnutrition and protein deficiency and, to a certain extent, an efficient mitigation measure to help local populations to better protect themselves and their crops against locust outbreaks. Collection and consumption of locusts should be encouraged while remaining realistic about its real impact on locust control. This should also be done in concert with local authorities to take into account the risks to human health and to avoid the consumption of insects treated with pesticides. Full article
Show Figures

Figure 1

19 pages, 18519 KiB  
Article
Using Long-Term Earth Observation Data to Reveal the Factors Contributing to the Early 2020 Desert Locust Upsurge and the Resulting Vegetation Loss
by Lei Wang, Wen Zhuo, Zhifang Pei, Xingyuan Tong, Wei Han and Shibo Fang
Remote Sens. 2021, 13(4), 680; https://doi.org/10.3390/rs13040680 - 13 Feb 2021
Cited by 32 | Viewed by 4840
Abstract
Massive desert locust swarms have been threatening and devouring natural vegetation and agricultural crops in East Africa and West Asia since 2019, and the event developed into a rare and globally concerning locust upsurge in early 2020. The breeding, maturation, concentration and migration [...] Read more.
Massive desert locust swarms have been threatening and devouring natural vegetation and agricultural crops in East Africa and West Asia since 2019, and the event developed into a rare and globally concerning locust upsurge in early 2020. The breeding, maturation, concentration and migration of locusts rely on appropriate environmental factors, mainly precipitation, temperature, vegetation coverage and land-surface soil moisture. Remotely sensed images and long-term meteorological observations across the desert locust invasion area were analyzed to explore the complex drivers, vegetation losses and growing trends during the locust upsurge in this study. The results revealed that (1) the intense precipitation events in the Arabian Peninsula during 2018 provided suitable soil moisture and lush vegetation, thus promoting locust breeding, multiplication and gregarization; (2) the regions affected by the heavy rainfall in 2019 shifted from the Arabian Peninsula to West Asia and Northeast Africa, thus driving the vast locust swarms migrating into those regions and causing enormous vegetation loss; (3) the soil moisture and NDVI anomalies corresponded well with the locust swarm movements; and (4) there was a low chance the eastwardly migrating locust swarms would fly into the Indochina Peninsula and Southwest China. Full article
(This article belongs to the Special Issue Remote Sensing for Future Food Security and Sustainable Agriculture)
Show Figures

Graphical abstract

15 pages, 936 KiB  
Article
Early Intervention against Desert Locusts: Current Proactive Approach and the Prospect of Sustainable Outbreak Prevention
by Allan T. Showler, Mohammed Abdallahi Ould Babah Ebbe, Michel Lecoq and Koutaro O. Maeno
Agronomy 2021, 11(2), 312; https://doi.org/10.3390/agronomy11020312 - 10 Feb 2021
Cited by 27 | Viewed by 6274
Abstract
The desert locust, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), a major Old World pest, is associated with agricultural losses and undesirable societal effects. There are three broad approaches to its control: reaction, proaction, and outbreak prevention. Reaction protects crops from swarms but it is [...] Read more.
The desert locust, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), a major Old World pest, is associated with agricultural losses and undesirable societal effects. There are three broad approaches to its control: reaction, proaction, and outbreak prevention. Reaction protects crops from swarms but it is costly and disruptive. Proaction involves early intervention during outbreaks to avert further development to plague status; it is in current use because it is effective, relatively inexpensive, and it is the best available option for now. Outbreak prevention, largely unavailable since the 1970s, at least on a regional scale, will require highly sensitive surveillance to detect the onset of gregarization. Sufficiently early intervention can, hypothetically, extend desert locust recession indefinitely. While research on desert locust biology and behavior is, almost, no longer an urgent requirement to improve the efficacy of control, new priorities have arisen for developing outbreak prevention capability (and for enhancing proaction). Salient needs presently include long residual tactics for prophylactic (preventive) control in breeding areas, intervention thresholds, and improved, sustainable coordination among stakeholders at national, regional, and international levels. The most recent desert locust episode of 2020 provides an illustrative example of how prevention might have averted the entire upsurge, and how proaction in some countries contained the spread of swarms. The initial outbreak in Saudi Arabia escaped control due to unpreparedness, and impacts of armed conflict in Somalia and Yemen, which weakened surveillance and control, further contributed to the invasion of ≥22 countries, and the spraying of ≈4.9 million ha, by the end of 2020. Full article
Show Figures

Figure 1

24 pages, 7167 KiB  
Article
Incidence and Ramifications of Armed Conflict in Countries with Major Desert Locust Breeding Areas
by Allan T. Showler and Michel Lecoq
Agronomy 2021, 11(1), 114; https://doi.org/10.3390/agronomy11010114 - 8 Jan 2021
Cited by 18 | Viewed by 4778
Abstract
Despite many areas of progress in recent years, desert locust surveillance and control is impaired by many obstacles, the most intractable of which is insecurity. Insecurity involves rebellions, insurgencies, civil and international war, banditry, terrorism, and minefields. Obstruction of desert locust operations in [...] Read more.
Despite many areas of progress in recent years, desert locust surveillance and control is impaired by many obstacles, the most intractable of which is insecurity. Insecurity involves rebellions, insurgencies, civil and international war, banditry, terrorism, and minefields. Obstruction of desert locust operations in breeding areas by ongoing armed conflict and landmines constitutes “direct” insecurity. “Indirect” insecurity, although less obvious, is arguably more broadly deleterious by debilitating government function and diverting funds, personnel, and equipment from desert locust management. Indirect “active” insecurity is armed conflict and civil unrest that is occurring at the same time as a desert locust episode, but not in the breeding areas. Indirect “inactive” insecurity refers to the after-effects of insecurity, including weak funding because of prior inattention to capacity maintenance during times of direct and indirect active insecurity, disabled or militarily-appropriated vehicles and other resources, destruction of infrastructure, and deployment of mines. We provide examples of direct and indirect insecurity across 35 years, from 1986 through May 2020, in 13 African and Asian countries (Chad, Eritrea, Ethiopia, India, Mali, Mauritania, Niger, Pakistan, Saudi Arabia, Somalia, Sudan, Western Sahara, and Yemen) with desert locust breeding areas to illustrate the complexity, pervasiveness, and chronic occurrence of insecurity. The upsurge of 2020 is used to show how direct insecurity still contributes to the genesis and expansion of desert locust episodes. Possible mitigation of direct insecurity effects on some desert locust operations is discussed. Full article
Show Figures

Figure 1

17 pages, 2570 KiB  
Review
Locust and Grasshopper Outbreaks in the Near East: Review under Global Warming Context
by Battal Çiplak
Agronomy 2021, 11(1), 111; https://doi.org/10.3390/agronomy11010111 - 8 Jan 2021
Cited by 20 | Viewed by 5362
Abstract
Plagues of locust possibly date back to before humanity, as they evolved before humans. Following the Neolithic revolution and the permanent settlement of humans in Mesopotamia, locusts and grasshoppers have become a serious problem for people, as imprinted on archaeological remains. In the [...] Read more.
Plagues of locust possibly date back to before humanity, as they evolved before humans. Following the Neolithic revolution and the permanent settlement of humans in Mesopotamia, locusts and grasshoppers have become a serious problem for people, as imprinted on archaeological remains. In the Near East, desert locust may be an important problem during invasion periods, in addition to various local species of locusts and grasshoppers. Past plagues caused serious disasters in the region, but there has been a pause since the 1960s, thanks to more effective monitoring and control. However, global warming and other anthropogenic activities change ecosystems, and these increase the potential for locust outbreaks, upsurges and plagues for the region. Outbreaks of some local species could also be a serious problem. Pest species of the locust and grasshopper of the Near East mainly belong to Caelifera and some to Ensifera. Global warming and extended agricultural activities can increase the potential for outbreaks of local species and create suitable conditions for desert locust invasions. This review is an attempt to (i) provide a historical background for locust invasions/outbreaks in the Near East, (ii) assess the potential for outbreaking of local species and (iii) define a perspective for future actions regarding global changes. Full article
Show Figures

Figure 1

22 pages, 3755 KiB  
Article
Evidence for a Causal Relationship between the Solar Cycle and Locust Abundance
by Robert A. Cheke, Stephen Young, Xia Wang, Jamie A. Tratalos, Sanyi Tang and Keith Cressman
Agronomy 2021, 11(1), 69; https://doi.org/10.3390/agronomy11010069 - 31 Dec 2020
Cited by 8 | Viewed by 4360
Abstract
Time series of abundance indices for Desert Locusts Schistocerca gregaria (Forskål 1775) and Oriental Migratory Locusts Locusta migratoriamanilensis (Meyen 1835) were analysed independently and in relation to measures of solar activity and ocean oscillation systems. Data were compiled on the numbers of [...] Read more.
Time series of abundance indices for Desert Locusts Schistocerca gregaria (Forskål 1775) and Oriental Migratory Locusts Locusta migratoriamanilensis (Meyen 1835) were analysed independently and in relation to measures of solar activity and ocean oscillation systems. Data were compiled on the numbers of territories infested with swarms of the Desert Locust from 1860–2015 and an inferred series that compensated for poor reporting in the 1860 to 1925 period. In addition, data for 1930 to 2014, when reports are considered to have been consistently reliable were converted to numbers of 1° grid squares infested with swarms and separated according to four different geographical regions. Spectral analysis to test the hypothesis that there are cycles in the locust dynamics revealed periodicities of 7.5 and 13.5 years for the inferred series that were significant according to the Ornstein-Uhlenbeck state-space (OUSS) test. Similar periodicities were evident in the 1° grid square data and in each of the regions but even though these were significantly different from white noise, they were not significant according to the OUSS criterion. There were no significant peaks in the Oriental Migratory Locust results with the OUSS test, but the data were significantly different from white noise. To test hypotheses that long term trends in the locust dynamics are driven by solar activity and/or oceanic oscillation systems (the Southern Oscillation Index (SOI), the North Atlantic Oscillation Index (NAO) and the Indian Ocean Dipole (IOD)), the original locust data series and their Kalman-filtered low frequency (LF) components were tested for causality using both spectral coherence tests and convergent cross mapping. Statistically significant evidence was found that solar activity measured by numbers of sunspot groups drive the dynamics, especially the LF components, of both species. In addition, causal links were inferred between both the SOI and NAO data and Desert Locust dynamics. Spectral coherence was also found between sunspot groups and the NAO, the IOD and LF SOI data. The data were also analysed showing that the LF SOI had causal links with the LF inferred Desert Locust series. In addition, the LF NAO was causally linked to the LF 1° grid square data, with the NAO for December-March being most influential. The results suggest that solar activity plays a role in driving locust abundance, but that the mechanisms by which this happens, and whether they are mediated by fluctuations in oceanic systems, is unclear. Furthermore, they offer hope that information on these phenomena might enable a better early warning forecasting of Desert Locust upsurges. Full article
Show Figures

Figure 1

8 pages, 2088 KiB  
Communication
Plagues of Desert Locusts: Very Low Invasion Risk to China
by Yun-Ping Wang, Ming-Fei Wu, Pei-Jiong Lin, Yao Wang, Ai-Dong Chen, Yu-Ying Jiang, Bao-Ping Zhai, Jason W. Chapman and Gao Hu
Insects 2020, 11(9), 628; https://doi.org/10.3390/insects11090628 - 11 Sep 2020
Cited by 20 | Viewed by 4229
Abstract
Recently, the most serious upsurge of the desert locust (Schistocerca gregaria) in the last 25 years is spreading across eastern Africa and southwestern Asia. Parts of the desert locust ‘invasion area’, namely the northern border areas of Pakistan and India, are [...] Read more.
Recently, the most serious upsurge of the desert locust (Schistocerca gregaria) in the last 25 years is spreading across eastern Africa and southwestern Asia. Parts of the desert locust ‘invasion area’, namely the northern border areas of Pakistan and India, are very close to China, and whether locust swarms will invade China is of wide concern. To answer this question, we identified areas of potentially suitable habitat for the desert locust within China based on historical precipitation and temperature data, and found that parts of Xinjiang and Inner Mongolia provinces could provide ephemeral habitat in summer, but these places are remote from any other desert locust breeding areas. New generation adults of the desert locust in Pakistan and India present since April led to swarms spreading into the Indo-Pakistan border region in June, and so we examined historical wind data for this period. Our results showed that winds at the altitude of locust swarm flight blew eastward during April–June, but the wind speeds were quite slow and would not facilitate desert locust eastward migration over large distances. Simulated trajectories of desert locust swarms undertaking 10-day migrations mostly ended within India. The most easterly point of these trajectories just reached eastern India, and this is very close to the eastern border of the invasion area of desert locusts described in previous studies. Overall, the risk that the desert locust will invade China is very low. Full article
(This article belongs to the Special Issue Locusts and Grasshoppers: Biology, Ecology and Management)
Show Figures

Figure 1

Back to TopTop