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Abstract: The objective of this study is to evaluate the ability of soil physical characteristics (i.e., tex-
ture and moisture conditions) to better understand the breeding conditions of desert locust (DL).
Though soil moisture and texture are well-known and necessary environmental conditions for DL
breeding, in this study, we highlight the ability of model-derived soil moisture estimates to contribute
towards broader desert locust monitoring activities. We focus on the recent DL upsurge in East Africa
from October 2019 though June 2020, utilizing known locust observations from the United Nations
Food and Agriculture Organization (FAO). We compare this information to results from the current
literature and combine the two datasets to create “optimal thresholds” of breeding conditions. When
considering the most optimal conditions (all thresholds met), the soil texture combined with modeled
soil moisture content predicted the estimated DL egg-laying period 62.5% of the time. Accounting
for the data errors and uncertainties, a 3 x 3 pixel buffer increased this to 85.2%. By including soil
moisture, the areas of optimal egg laying conditions decreased from 33% to less than 20% on average.

Keywords: desert locust; soil moisture; modeling

1. Introduction

The recent (2019-2020) upsurge of desert locust (Schistocerca gregaria) in East Africa
was the worst the region has seen over 40 years. Countries such as Kenya saw their worst
upsurge in 70 years. The swarms of desert locust (DL) can be dense and highly mobile,
devouring the vegetation that they come across; the result can mean complete devastation
of crops and grasslands [1]. DL control measures, such as pesticides and mechanical
removal, are most effective when the locusts are immature and wingless, limiting their
mobility [2]. Understanding what conditions are optimal for DL breeding is an important
component in locating the wingless “hoppers”. Soil conditions, such as texture, moisture,
and temperature, are the most limiting factors for the success of DL breeding and egg
incubation [3-7]. There have been several recent studies in the literature highlighting the
importance of these soil conditions using satellite-derived estimates (e.g., [6-12]). In this
study, we aim to evaluate the utility of an existing model-derived soil moisture product in
the region to complement the ongoing DL monitoring efforts. While soil moisture (SM)
is a known limiting factor and can be estimated using satellite remote sensing, the use of
model-derived SM has the ability to estimate the variable at high spatial (vertical) and
temporal resolutions and lowers the barrier to operationalization and forecasting.
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Expert knowledge and advanced numerical models are used to understand the tra-
jectory of existing swarms [13] and to assess and link between environmental conditions
and a species (e.g., [3,14]). However, DL monitoring efforts look at current (near-real-time)
conditions for habitat suitability, focusing on immature (wingless) hoppers, where control
measures are more effective [2]. For monitoring potential habitats, the Food and Agricul-
ture Organization (FAO) currently uses and advises countries to use vegetation greenness
and rainfall information. While vegetation is an important indicator of DL habitat, datasets
that can estimate or infer SM add an important temporal component to monitoring and
forecasting efforts. SM can be an early signal for vegetation growth, and it is a limiting
factor in the egg-laying activity of DL. Field and laboratory studies show that female DL
prefer sandy substrates with moisture between 5% and 25% at a depth between 2 and
15 cm [15-17].

The FAO currently uses satellite-derived rainfall estimates at a resolution of 25 km [18,19],
and these are used to deduce the subsequent increase in SM. However, there are multiple
datasets available from satellite sensors or models that estimate SM directly at relatively higher
spatial resolutions. Though satellite-based datasets have the potential to cover vast inaccessible
areas, they are typically available at coarser spatial resolutions than those required by most
applications. Piou et al. [11] used a disaggregation approach to downscale the original 40 km
Soil Moisture and Ocean Salinity (SMOS) SM to 1 km. They found that moisture conditions 70
to 90 days prior were best at predicting the presence of DL at an optimal SM of 0.09 cm®/cm?
and posited that gains in early warning timing of up to 3 weeks were achieved as compared
to vegetation imagery alone.

While disaggregation approaches have shown promise (e.g., [10,11,20]), the process
can be challenging, particularly due to its reliance on additional high-resolution data
resources, complicating efforts to operationalize in existing monitoring efforts. Additionally,
microwave sensors typically sense the SM in the top 3-5 cm of the soil layer [21-24]. DL
egg laying, survival, and hatching depend upon the moisture conditions between depths
of 5 and 15 cm from the surface. Hence, satellite-driven SM estimations alone may not be
sufficient for identifying the optimal DL breeding conditions.

Land surface models (LSMs) have their own biases and limitations (i.e., parameter-
ization, model complexities and physics, etc.); however, such models provide moisture
condition information at a much larger range of soil layer depths (0-200 cm) at relatively
higher spatial (1-10 km) and temporal resolutions. Additionally, standard configurations
for widely used LSMs, such as the NASA’s Land Information Systems [25,26], are often
used in operational settings, and they provide forecasting capabilities and the potential
for satellite data assimilation. Though recent studies on the importance of SM in DL pre-
diction have begun to consider model-based approaches to expand the depth of moisture
estimations, to our knowledge, there has not been an evaluation of an LSM-derived SM
product for this purpose. Gémez et al. [8] utilized the Soil Moisture Active Passive (SMAP)
level-four root zone estimation; however, the root zone layer used in that product combined
depths down to 100 cm, well beyond the optimal depths for DL egg laying.

We hypothesize that use of high-resolution (3 km) modeled SM datasets from an
LSM can accurately represent conditions beyond the surface layer to DL breeding depths.
Furthermore, due to the low barrier for operationalization, the modeling systems have the
potential to develop or improve information products all along the locust management
decision-making chain, providing forecasted SM conditions that could aid in preparedness
and control measures. While recognizing the many additional environmental conditions re-
quired to support the locust life cycle, the goal of this study is to simply highlight the ability
of model-derived SM estimates to contribute towards broader locust monitoring activities.

2. Data and Methods

SERVIR (servirglobal.net (accessed on 20 March 2021)), in collaboration with NASA’s
Short-Term Prediction Research and Transition Center (SPoRT), has an instance of NASA’s
Land Information Systems (LISs; [25,26]) currently operational over Eastern and Southern
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Africa at a 3 km spatial resolution using near-real-time vegetation information. Together
with the high-resolution (250 m) International Soil Reference and Information Centre
(ISRIC) SoilGrids database [27], we developed a thresholding approach in order to detect
the likelihood of DL breeding potential. To identify the optimal breeding conditions, we
used known locust observations from the FAO, looked back to the estimated breeding
period, and considered the soil conditions that were present. First, the 10th and 90th
percentile values of soil texture (clay and sand) were determined, and the percent area
coverage was evaluated for each. Next, the DL development cycle was used to determine
an approximate egg-laying time frame. Soil moisture was aggregated to the weekly time
scale to determine the estimated conditions during egg laying, and the ranges of values and
area of coverage were evaluated and compared against those from the current literature.
The two attributes were then combined to create a range of breeding condition thresholds
and evaluated against the known DL observations. To better understand the temporal
and spatial uncertainty, a 3 x 3 (9 x 9 km) buffer was applied to the final threshold
and discussed. With the lack of “no locust” observations, the results were evaluated in
terms of classified areas and discussed in the context of current monitoring efforts and
existing literature.

2.1. Study Area and Time Period

The area selected for this study is in Eastern Africa (Figure 1). The countries of Eritrea,
Djibouti, Somalia, Ethiopia, and Kenya were particularly in focus. The climate of East
Africa ranges from hot arid to tropical savanna [28] as a result of the complex terrain; in
general, it is anomalously dry for equatorial regions [29]. Rainfall across the region can be
characterized by a bimodal regime, with the movement of the Intertropical Convergence
Zone resulting in the “long rains” from March to May and the “short rains” from October
to December [29]. The study period was from December 2019 through June 2020, capturing
the start and height of the locust upsurge in the region.
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Figure 1. Study Area (WGS84) (a) depicting the locust observations in East Africa from December
2019 through June 2020. Solitary hoppers are noted by a circle and bands by squares. The colors
of the observations relate to the timing in the (b) bar plot of observation counts by month. (c) A
depiction of the timeline of the desert locust (DL) life cycle from breeding to maturity in the East
African environment, as reported in WMO/FAO [30].

2.2. Locust Observations

The locust observation data were provided by the FAO through their LocustHub
platform (https:/ /locust-hub-hqfao.hub.arcgis.com/ (accessed on 20 March 2021)). The
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dataset contains information such as the locust life cycle stages and gregariousness—
immature and mature winged adults that are either swarming or not, as well as nymphal
wingless “hoppers” that are either solitary or gregarious “bands” that march across the
land. For this study, we only used the Hopper and Band datasets. By focusing on immature
hoppers (solitary and banded), we can assume that the hatching site must be within
“marching” distance from their observed location (which can range from hundreds of
meters to several kilometers [31]) and can therefore be used as a safe proxy for egg-laying
locations (particularly true given that the resolution of the SM data is roughly 3 km).

In total, 6171 observations were used—2734 hoppers and 3437 bands. The timing of
the observations was similar between the two groups, with two significant population
buildups seen in January and May/June (Figure 1). These increases are roughly in line
with the breeding cycles of DL observed from the FAO Locust analysis [32]. It can be seen
from Figure 1 that band /hopper observations in late 2019/ early 2020 (brown) exist mostly
in the north and east (in the countries including Eritrea, Djibouti, and Yemen). These
matured into swarms that moved southwards, where favorable conditions facilitated a
second round of breeding that resulted in increased hopper/band observations in May and
June (teal/green).

In general, the DL incubation and development periods are dependent on soil and air
temperature (WMO/FAOQ [30], Figure 1c). The incubation period can range between 14
and 22 days in the soil temperatures of the region: approximately 27-32 °C. Immature DL
will then remain grounded through their various development stages (instars) for another
3545 days. Thus, depending on the stage of the hopper, the optimum environmental
conditions for egg laying would have to be met approximately 3-10 weeks prior to the
observation date. The timing of instar development can vary widely depending on soil
and air temperature. The majority (>80%) of the reported observations were in their later
instars—three or greater. However, most observations noted several stages, and many
were missing altogether. For this analysis, we assumed that the hoppers observed were
usually in the later instars, pushing the range to more like 8-10 weeks (in line with the
previous studies referenced above).

2.3. Soil Moisture and Texture Datasets
2.3.1. Soil Moisture from LIS

The daily averaged SM was modeled using the Noah land surface model [33] within
the NASA Land Information System [25], which was set up to run in near real time over
East Africa by SERVIR and NASA’s SPoRT [34]. The full domain was a 0.03 degree (~3 km)
lat/long grid spanning 21° E to 53° E and 22° S to 22° N. The model was forced using
precipitation data from the Integrated Multi-satellite Retrievals for Global Precipitation
Measurement mission (IMERG) whereas the surface temperature, pressure, winds, and
downwelling long/shortwave radiation data were available from three-hourly Global
Data Assimilation System analyses and forecasts [35,36]. Static fields, such as soil type
classification, were from the global FAO soil map [37] using the State Soil Geographic
(STATSGO; [38]) categories. The land cover was aggregated from the 500 m MODIS Land
Cover Type (MCD12Q1) product [39] using the 20-category National Center for Envi-
ronmental Prediction (NCEP)-modified International Geosphere-Biosphere Programme
(IGBP) land-use classification. The soil bottom temperature climatology (lower boundary
condition) was based on 6 years of NCEP Global Data Assimilation System (GDAS) 2 m air
temperatures using the method of Chen and Dudhia [40].

The LIS runs also used a daily real-time satellite-derived Greenness Vegetation Fraction
(GVF) from Visible Infrared Imaging Radiometer Suite (VIIRS) instrument [41]. Using the
satellite-observed GVF improves the partitioning of latent and sensible heating compared
to a seasonal climatology [26]. The SM product available from the LIS was the hourly mean
moisture content at layer depths of of 0-10, 1040, 40-100, and 100-200 cm. In this study,
the daily composite of the volumetric SM from the top layer (0-10 cm) was used, since the
DL is most likely to lay eggs in the 5-15 cm depth range.
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2.3.2. ISRIC Soil Texture

In addition to the FAO soil texture data used in LIS, we utilized the International Soil
Reference and Information Centre (ISRIC) SoilGrids database [27]. SoilGrids is a global
250 m database of standard numeric soil property predictions that include soil texture
at depths from the surface to 200 cm. On average, the dataset explains 79% and 73% of
the variance in sand and clay percentages (by weight), respectively. In this study, we
aggregated the ISRIC dataset to 3 km (nearest neighbor) to match the LIS soil moisture
output. At the 3 km level specification of the model, there is not much difference between
the two datasets (FAO and ISRIC); however, when used alone, the ISRIC is much preferred
due to the spatial resolution and the specificity of texture. Therefore, we used the ISRIC
data for texture analysis in this study.

3. Results and Discussion

Both the soil texture and SM datasets were used to evaluate their effectiveness in
predicting conditions suitable for locust breeding sites. The solitary hoppers and gregarious
bands were analyzed separately, as they were disaggregated in the original FAO data.
However, since no significant differences were found between the datasets, from here on,
we consider them as one and present the combined results for a more cohesive discussion.

3.1. Soil Texture Analysis

Female DL require sandy soils to lay their eggs. The ISRIC soil texture data were
evaluated at a depth of 5-15 cm for both sand and clay contents. Knowing that the hoppers
can move up to several kilometers across the land surface (Ariel and Ayali, 2015), the
ISRIC data were aggregated (nearest neighbor) up to the 3 km scale for this historical
analysis, matching that of the LIS grid (it should be noted, however, that in operational DL
monitoring, the native resolution of 250 m will be extremely useful). The mean percentages
(by weight) of sand and clay at DL observations were 58% and 21%, respectively. This
aligns well with the assumption of a sandy soil or substrate, where sand percentages <50%
are classified as sandy according to the USDA soil classification triangle. The 10/90th
percentiles for sand exist between 45 and 69.5%, while the clay percentiles are a bit narrower
at 13.5-29.5%.

The sand threshold was met in 80% of the DL observations and covered more than
44% of the study area. This exemplifies the importance of including a secondary texture
class. The percentage of area in which the DL clay threshold was met covered only 36% of
the area and added further information for refining the “optimal” soil type conditions for
breeding. The combined categories reduced the optimal area to 30% and still comprised
over 74% of the DL observations on average.

3.2. Soil Moisture Analysis

DL also require a specific moisture content for their eggs to remain viable. The
averaged weekly volumetric SM content was evaluated to account for daily fluctuations
and provide a clearer picture of the SM trends. The 10th and 90th percentiles of weekly
averages were analyzed over the (assumed) incubation period, 9 weeks prior. The weekly
average of the optimal SM 9 weeks prior was 0.19 cm?®/cm?, with a range encompassing
80% of the data of between 0.12 and 0.27 cm®/cm?. The analysis was initially conducted
for weekly averages over the broader potential incubation periods of 6-10 weeks. The
difference in median SM values across the range was 0.04 cm3/cm3 (~20%), with the earlier
(5-7 week) median towards the upper limit of values reported in the literature.

The nine-week averaged SM aligns well with the optimal SM conditions for locust
breeding reported within the field- and lab-based literature [15,16] and is consistent with
previous studies, such as those of Piou et al. [11] and Gémez et al. [8], which found
that a mean of 9 weeks was most indicative of the most optimal breeding conditions.
However, the studies using remote-sensing-derived SM reported median surface values
of 0.09-0.1 cm®/cm3. The discrepancy between previous studies using remotely sensed
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observations could be due to the fact that the LIS data were reporting the top layer to a
depth of 10 cm, while satellite-derived SM typically senses the top-most layer of soil. As
the top layer of soil is more susceptible to drying, especially in sandy soils, it makes sense
that that modeled product would have a higher—possibly more representative—average
SM for the egg-laying depth.

A bootstrap resampling was performed (n = 100), and it was found that the SM distri-
bution was quite stable, with a variance in both the 10th and 90th percentile values of less
than 1% (p-value < 0.05), giving confidence in the distribution. The difference in the mean
SM between the two main breeding cycles (October /November and March/April) was
~0.02, with the later season exhibiting a slightly wider range (mean = 0.19, range = 0.14)
than the earlier (mean = 0.19, range = 0.10). However, the locusts observed between the
major breeding cycles (December/January/February), though representing <15% of the
data, showed a distinctly larger range of values (mean = 0.20, range = 0.19). On average,
the areas within the SM threshold constitute 50.1% of the study area.

3.3. Combined Analysis

Combining the SM and soil texture, we created six classes (0: no conditions met,
1: sand or clay threshold met, 2: sand and clay met, 3: only SM threshold met, 4: one
soil type and SM met, 5: all conditions met). Figure 2 shows a subset of the threshold
maps generated and how the area of each of these conditions changed over time. Table 1
summarizes the breakdown of classifications for the locust observations 9 weeks prior. The
location of the DL observations matched the overall optimal conditions (class 5) 9 weeks
prior for 62.5% of the time. It can be seen that, in important breeding periods, the majority
of the data were captured in the most optimal class, >80% of the time in the early breeding
cycle (October-November), and >60% in the latter cycle (March—April) on average.
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Figure 2. Optimal DL breeding threshold maps and the percentages of areas under each classification
over time. Breeding thresholds: 0: no conditions met, 1: sand or clay threshold met, 2: sand and clay
met, 3: only soil moisture (SM) threshold met, 4: one soil type and SM met, 5: all conditions met.

When considering other classes, such as 2 and 4, where only the soil type or SM
was met (less optimal, but still triggering some conditions sufficient for breeding), the
percentage of data captured was greatly increased (87.1% on average), especially in the
latter cycle, though that would also contribute to a less specific (greater area) classification
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(i.e., false positives). Additionally, whereas the soil texture and moisture datasets by
themselves had classification areas of 30%, and 51%, respectively, the combined class 5
was, on average, significantly less, at 20% (17% during the main breeding cycles). The
classification map identified where breeding is most likely to occur (class 5), areas in which
some conditions are met and breeding may occur (classes 2—4), and areas where breeding is
not expected. As we recognize the errors associated with both the soil type and SM datasets,
the classification map is essentially providing a level of uncertainty in the likelihood of
breeding conditions.

Table 1. Percentages (%) of DL observations under each threshold analyzed by month at the level
of one pixel (3 x 3 km). Brackets show the corresponding percentages for a buffer of 3 x 3 pixels
(9 x 9 km). See the text or Figure 2 for threshold definitions.

Breeding Threshold
Month 0 1 2 3 4 5

10(n=430) 2.0[0.0] 2.1[0.0] 56[53] 09[0.0] 7.1[09] 84.0[93.7]
11(n=1003) 2.0[0.1] 05[0.1] 49[L.1] 29[0.0] 81[05] 83.4[98.2]
12(n=339) 29[12] 73[35] 152[150] 9.1[0.0] 185[62] 46.9[74.2]

[
{
1(n=351) 3.0[12] 44[0.8] 166[148] 202[62] 223[5.1] 33.5[717]
2(n=224) 19.6[08] 82[33] 269[26.8] 11.4[41] 147[81] 19.2[56.9]
3(n=1051) 3.6[07] 29[0.6] 336[3.0] 74[25] 7.1[26] 453[63.5]
4n=2763) 09[02] 20[02] 92[48 99[0.1] 126[3.5] 65.4[90.1]

[

Average (wt) 2.1[04] 25[05] 132[9.7] 0.083[1.1] 11.4[3.5] 62.5[85.2]

To better understand the spatial distribution of classes and help discuss the limitations,
we highlighted a collection of DL observations in May. Figure 3 illustrates the classification
map for 14 March, which corresponds to 265 DL observations between 14 and 18 May. In
this time period, most locust observations corresponded to a classification of 5 or 2, in
line with the broader results. In this case, class 5 represents 57% of the data, while class 2
(optimal soil, outside SM threshold) represents 31%.

This example was chosen because it showcases the sensitivity and the correlation
of classes 2 and 5. When looking at the locust observations around the Shebelle river in
south-eastern Ethiopia (b) or the areas near the northern Somali-Ethiopia border (c), just
south of Djibouti, the SM-driven class 5 shows a distinct signal in each of these locations;
however, the DL observation may exist one or two pixels outside class 5. This could be
due to the fact that the locust had moved beyond the 3 km pixels, spatial/temporal errors
present in the SM model, or the fact that the nine-week prior assumption was not accurate.
This is an inherent error in the analysis; if the DL observed were less mature, the date of
estimated egg laying will be off. This error is somewhat mitigated when averaging the SM
at the weekly scale.

To better characterize the impact of this error, we can apply a buffer to the observations
to see how often a point is missed by the difference (spatially) of one pixel. A 3 x 3 pixel
buffer was applied (9 x 9 km) for each observation, as described above. The results of the
buffer analysis are noted in brackets in Table 1. It can be seen that the results dramatically
improved, indicating the extent to which the small spatial errors can impact the data.
On average, the buffer improved the overall results from 62.5% to 85.2%. The biggest
improvement was during the “off-cycle” observations (December, January, February),
improving from 35% to 69% (wt. average) in the data under the optimal threshold. The off-
cycle months were during the dry period between the two rainy seasons, and precipitation
was limited and more sporadic, making it harder to resolve the spatial extent precisely,
thus exacerbating the type of spatial errors discussed in Figure 3. Perhaps a larger source
of uncertainty is the assumption of the DL maturity. As can be seen in Figure 3b, if the
estimated breeding period was assumed to be 1-2 weeks later, the SM threshold would
have been met. Given the DL observation data that we have, there is no certainty of
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information on the age of the hoppers. We know that the majority are in their mid to late
instar; however, the lengths of these individual stages vary widely and are an uncertainty
that we must accommodate.
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Figure 3. Optimal breeding classification map for 14 March (weekly average SM), which corresponds
to 265 DL observations between 14 and 18 May, and the corresponding SM time series for two
example cases in March for two regions in Ethiopia: B—Shabelle River and C—just south of Djibouti.
The approximate location of the time series is annotated in the map in red. See the text or Figure 2 for
threshold definitions.

3.4. Discussion

The improvement as a result of buffering can be explained, in part, by the inherent
errors in the datasets, models, and assumptions in this analysis. Whereas the confidence is
highest in the soil texture dataset (especially since they were aggregated up), the timing of
the SM combined with the assumption of DL maturity created a lot of uncertainty in space
and time. The error due to this uncertainty can be as large as 30% or more, as the buffer
analysis suggests.

To attempt to better understand these uncertainties, we evaluated the sensitivity of
the DL maturity, ranging from 5 to 9 weeks. While the nine-week average was best overall,
most scenarios found that category 5 was met 60% of the time or more. The explanation
for this can be seen in the time series plots of Figure 3. It turns out that the nine-week
window occurred most often right at a major change, such as an increase in SM after a long
recession. In most cases, the SM continued in the “optimal” range for several weeks. This
indicates that nine weeks is roughly the earliest at which breeding conditions can be seen;
however, it is likely that areas will stay optimal for several weeks. The association of the
laying period with an increase in soil moisture is consistent with rainfall providing green
vegetation for adult maturation and ample green vegetation for the survival of offspring
nymphs [15-17].

Lastly, the amount of information added was quantified by analyzing the areas under
which the thresholds occurred, with the understanding that the less area covered, the more
accurate (fewer false positives) the “optimal breeding” dataset was. Indeed, though the
areas classified as optimal were less than 20% of the study area, on average, this resulted
in large areas of false positives. However, the purpose of this analysis was not to predict
DL; instead, it was to evaluate the ability of soil texture and moisture conditions to be
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used to better understand the breeding conditions in order to assist in monitoring efforts.
The DL habit is expansive, and any deduction of areas that are likely have locust could be
immensely helpful to survey efforts and for informing more efficient control measures. To
accurately predict DL, more information, such as vegetation and temperature, is crucial.
DL prediction models utilize many datasets, and DL experts are required to interpret those
results. Here, we show that soil texture and land surface model SM datasets can be a useful
component in that analysis. While this analysis focuses on historical DL observations, the
LIS land surface model can be used to forecast and combine the native-resolution (250 m)
soil texture data, potentially adding more value to the DL monitoring efforts.

4. Conclusions

In this study, we highlighted the ability of model-derived SM estimates to contribute
towards broader locust monitoring activities. Model-estimated SM conditions can repre-
sent conditions beyond the surface layer, where DL egg-laying occurs (5-10 cm). There
is a distinct signal that can be seen from the modeled SM and soil type in predicting the
egg-laying areas of DL. When considering the most optimal conditions (all thresholds
met), the soil texture combined with the modeled SM content predicted the estimated DL
egg-laying period 62.5% of the time. Accounting for the data errors and uncertainties, a
3 x 3 pixel buffer increased this to 85.2%. By including the SM, the areas of optimal egg-
laying conditions decreased from 33% to less than 20% on average (this can be interpreted
as a >30% reduction in false positives). This paper shows that, though there are limitations
to applying this analysis to DL monitoring efforts, there is a clear value in the added
information that SM and texture provide in understating DL breeding conditions. This
can assist in more targeted survey efforts, thus informing more efficient control measures.
Additionally, by using a satellite-assisted modeled SM product, the barrier to operational-
ization and forecasting is reduced, thus potentially providing information products all
along the locust management decision-making chain.
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