Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = dendrimersomes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 28860 KB  
Review
Dendrimers, Dendrons, and the Dendritic State: Reflection on the Last Decade with Expected New Roles in Pharma, Medicine, and the Life Sciences
by Donald A. Tomalia
Pharmaceutics 2024, 16(12), 1530; https://doi.org/10.3390/pharmaceutics16121530 - 28 Nov 2024
Cited by 10 | Viewed by 2388 | Correction
Abstract
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization [...] Read more.
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.e., dendrons/dendrimers) with nanoscale sizes and structure-controlled features that match and rival discrete in vivo biopolymers such as proteins and nucleic acids (i.e., DNA, siRNA, mRNA, etc.). These dendritic architectures exhibit unprecedented new intrinsic properties widely recognized to define a new fourth major polymer architecture class, namely: Category (IV): dendrons, dendrimers, and random hyperbranched polymers after traditional categories: (I) linear, (II) cross-linked, and (III) simple-branched types. Historical confusion over the first examples of the structure confirmed and verified cascade, dendron, dendrimer, and arborol syntheses, while associated misuse of accepted dendritic terminology is also reviewed and clarified. The importance of classifying all dendrons and dendrimers based on branch cell symmetry and the significant role of critical nanoscale-design parameters (CNDPs) for optimizing dendritic products for pharma/nanomedicine applications with a focus on enhancing stealth, non-complement activation properties is presented. This is followed by an overview of the extraordinary growth observed for amphiphilic dendron/dendrimer syntheses and their self-assembly into dendritic supramolecular assemblies, as well as many unique applications demonstrated in pharma and nanomedicine, especially involving siRNA delivery and mRNA vaccine development. This perspective is concluded with optimistic expectations predicted for new dendron and dendrimer application roles in pharma, nanomedicine, and life sciences. Full article
Show Figures

Figure 1

34 pages, 5182 KB  
Review
The Spicy Science of Dendrimers in the Realm of Cancer Nanomedicine: A Report from the COST Action CA17140 Nano2Clinic
by Sabrina Pricl
Pharmaceutics 2023, 15(7), 2013; https://doi.org/10.3390/pharmaceutics15072013 - 24 Jul 2023
Cited by 8 | Viewed by 2719
Abstract
COST Action CA17140 Cancer Nanomedicine—from the bench to the bedside (Nano2Clinic,) is the first, pan-European interdisciplinary network of representatives from academic institutions and small and medium enterprises including clinical research organizations (CROs) devoted to the development of nanosystems carrying anticancer drugs from their [...] Read more.
COST Action CA17140 Cancer Nanomedicine—from the bench to the bedside (Nano2Clinic,) is the first, pan-European interdisciplinary network of representatives from academic institutions and small and medium enterprises including clinical research organizations (CROs) devoted to the development of nanosystems carrying anticancer drugs from their initial design, preclinical testing of efficacy, pharmacokinetics and toxicity to the preparation of detailed protocols needed for the first phase of their clinical studies. By promoting scientific exchanges, technological implementation, and innovative solutions, the action aims at providing a timely instrument to rationalize and focus research efforts at the European level in dealing with the grand challenge of nanomedicine translation in cancer, one of the major and societal-burdening human pathologies. Within CA17140, dendrimers in all their forms (from covalent to self-assembling dendrons) play a vital role as powerful nanotheranostic agents in oncology; therefore, the purpose of this review work is to gather and summarize the major results in the field stemming from collaborative efforts in the framework of the European Nano2Clinic COST Action. Full article
(This article belongs to the Special Issue Dendrimers for Drug Delivery)
Show Figures

Figure 1

50 pages, 19450 KB  
Article
Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids
by Juncheng Lu, Elena N. Atochina-Vasserman, Devendra S. Maurya, Muhammad Irhash Shalihin, Dapeng Zhang, Srijay S. Chenna, Jasper Adamson, Matthew Liu, Habib Ur Rehman Shah, Honey Shah, Qi Xiao, Bryn Queeley, Nathan A. Ona, Erin K. Reagan, Houping Ni, Dipankar Sahoo, Mihai Peterca, Drew Weissman and Virgil Percec
Pharmaceutics 2023, 15(6), 1572; https://doi.org/10.3390/pharmaceutics15061572 - 23 May 2023
Cited by 27 | Viewed by 8906
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral [...] Read more.
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics. Full article
Show Figures

Figure 1

29 pages, 24638 KB  
Perspective
Assembling Complex Macromolecules and Self-Organizations of Biological Relevance with Cu(I)-Catalyzed Azide-Alkyne, Thio-Bromo, and TERMINI Double “Click” Reactions
by Adrian Moreno, Gerard Lligadas, Jasper Adamson, Devendra S. Maurya and Virgil Percec
Polymers 2023, 15(5), 1075; https://doi.org/10.3390/polym15051075 - 21 Feb 2023
Cited by 13 | Viewed by 3317
Abstract
In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless “for the development of click chemistry and biorthogonal chemistry”. Since 2001, when the concept of click chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions [...] Read more.
In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless “for the development of click chemistry and biorthogonal chemistry”. Since 2001, when the concept of click chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions as the preferred choice of synthetic methodology employed to create new functions. This brief perspective will summarize research performed in our laboratories with the classic Cu(I)-catalyzed azide-alkyne click (CuAAC) reaction elaborated by Meldal and Sharpless, with the thio-bromo click (TBC) and with the less-used, irreversible TERminator Multifunctional INItiator (TERMINI) dual click (TBC) reactions, the last two elaborated in our laboratory. These click reactions will be used to assemble, by accelerated modular-orthogonal methodologies, complex macromolecules and self-organizations of biological relevance. Self-assembling amphiphilic Janus dendrimers and Janus glycodendrimers together with their biological membrane mimics known as dendrimersomes and glycodendrimersomes as well as simple methodologies to assemble macromolecules with perfect and complex architecture such as dendrimers from commercial monomers and building blocks will be discussed. This perspective is dedicated to the 75th anniversary of Professor Bogdan C. Simionescu, the son of my (VP) Ph.D. mentor, Professor Cristofor I. Simionescu, who as his father, took both science and science administration in his hands, and dedicated his life to handling them in a tandem way, to their best. Full article
Show Figures

Figure 1

29 pages, 3178 KB  
Review
Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review
by Adina Căta, Ioana Maria Carmen Ienașcu, Mariana Nela Ştefănuț, Dan Roșu and Oana-Raluca Pop
Pharmaceutics 2023, 15(2), 589; https://doi.org/10.3390/pharmaceutics15020589 - 9 Feb 2023
Cited by 25 | Viewed by 4430
Abstract
Amphiphilic Janus dendrimers are arrangements containing both hydrophilic and hydrophobic units, capable of forming ordered aggregates by intermolecular noncovalent interactions between the dendrimer units. Compared to conventional dendrimers, these molecular self-assemblies possess particular and effective attributes i.e., the presence of different terminal groups, [...] Read more.
Amphiphilic Janus dendrimers are arrangements containing both hydrophilic and hydrophobic units, capable of forming ordered aggregates by intermolecular noncovalent interactions between the dendrimer units. Compared to conventional dendrimers, these molecular self-assemblies possess particular and effective attributes i.e., the presence of different terminal groups, essential to design new elaborated materials. The present review will focus on the pharmaceutical and biomedical application of amphiphilic Janus dendrimers. Important information for the development of novel optimized pharmaceutical formulations, such as structural classification, synthetic pathways, properties and applications, will offer the complete characterization of this type of Janus dendrimers. This work will constitute an up-to-date background for dendrimer specialists involved in designing amphiphilic Janus dendrimer-based nanomaterials for future innovations in this promising field. Full article
(This article belongs to the Special Issue Applications of Dendrimers in Biomedicine)
Show Figures

Figure 1

21 pages, 7482 KB  
Review
Recent Development in the Design of Neoglycoliposomes Bearing Arborescent Architectures
by Leila Mousavifar, Shuay Abdullayev and René Roy
Molecules 2021, 26(14), 4281; https://doi.org/10.3390/molecules26144281 - 15 Jul 2021
Cited by 2 | Viewed by 2792
Abstract
This brief review highlights systematic progress in the design of synthetic glycolipid (neoglycolipids) analogs evolving from the conventional architectures of natural glycosphingolipids and gangliosides. Given that naturally occurring glycolipids are composed of only one hydrophilic sugar head-group and two hydrophobic lipid tails embedded [...] Read more.
This brief review highlights systematic progress in the design of synthetic glycolipid (neoglycolipids) analogs evolving from the conventional architectures of natural glycosphingolipids and gangliosides. Given that naturally occurring glycolipids are composed of only one hydrophilic sugar head-group and two hydrophobic lipid tails embedded in the lipid bilayers of the cell membranes, they usually require extraneous lipids (phosphatidylcholine, cholesterol) to confer their stability. In order to obviate the necessity for these additional stabilizing ingredients, recent investigations have merged dendrimer chemistry with that of neoglycolipid syntheses. This singular approach has provided novel glycoarchitectures allowing reconsidering the necessity for the traditional one to two hydrophilic/hydrophobic ratio. An emphasis has been provided in the recent design of modular arborescent neoglycolipid syntheses coined glycodendrimersomes. Full article
(This article belongs to the Special Issue Multivalent Self-Assembled Systems for Biological Applications)
Show Figures

Graphical abstract

15 pages, 3132 KB  
Article
pH-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery
by Evgeny Apartsin, Nadezhda Knauer, Valeria Arkhipova, Ekaterina Pashkina, Alina Aktanova, Julia Poletaeva, Javier Sánchez-Nieves, Francisco Javier de la Mata and Rafael Gómez
Nanomaterials 2020, 10(10), 1899; https://doi.org/10.3390/nano10101899 - 23 Sep 2020
Cited by 21 | Viewed by 4207
Abstract
Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species—triazine-carbosilane dendrons readily [...] Read more.
Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species—triazine-carbosilane dendrons readily self-assembling into pH-sensitive dendrimersomes. The dendrimersomes efficiently encapsulate anticancer drugs doxorubicin and methotrexate. Chemodrug-loaded dendrimersomes have dose-related cytotoxic activity against leukaemia cell lines 1301 and K562. Our findings suggest that triazine-carbosilane dendrimersomes are prospective drug carriers for anti-cancer therapy. Full article
(This article belongs to the Special Issue Advances in Nanomaterials in Biomedicine)
Show Figures

Figure 1

15 pages, 3287 KB  
Article
Self-Assembly Behavior of Amphiphilic Janus Dendrimers in Water: A Combined Experimental and Coarse-Grained Molecular Dynamics Simulation Approach
by Mariana E. Elizondo-García, Valeria Márquez-Miranda, Ingrid Araya-Durán, Jesús A. Valencia-Gallegos and Fernando D. González-Nilo
Molecules 2018, 23(4), 969; https://doi.org/10.3390/molecules23040969 - 21 Apr 2018
Cited by 10 | Viewed by 7701
Abstract
Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been [...] Read more.
Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems. Full article
(This article belongs to the Special Issue Dendrimers in Medicine)
Show Figures

Graphical abstract

36 pages, 10725 KB  
Review
Vesicles from Amphiphilic Dumbbells and Janus Dendrimers: Bioinspired Self-Assembled Structures for Biomedical Applications
by Soraya Taabache and Annabelle Bertin
Polymers 2017, 9(7), 280; https://doi.org/10.3390/polym9070280 - 12 Jul 2017
Cited by 24 | Viewed by 12179
Abstract
The current review focuses on vesicles obtained from the self-assembly of two types of dendritic macromolecules, namely amphiphilic Janus dendrimers (forming dendrimersomes) and amphiphilic dumbbells. In the first part, we will present some synthetic strategies and the various building blocks that can be [...] Read more.
The current review focuses on vesicles obtained from the self-assembly of two types of dendritic macromolecules, namely amphiphilic Janus dendrimers (forming dendrimersomes) and amphiphilic dumbbells. In the first part, we will present some synthetic strategies and the various building blocks that can be used to obtain dendritic-based macromolecules, thereby showing their structural versatility. We put our focus on amphiphilic Janus dendrimers and amphiphilic dumbbells that form vesicles in water but we also encompass vesicles formed thereof in organic solvents. The second part of this review deals with the production methods of these vesicles at the nanoscale but also at the microscale. Furthermore, the influence of various parameters (intrinsic to the amphiphilic JD and extrinsic—from the environment) on the type of vesicle formed will be discussed. In the third part, we will review the numerous biomedical applications of these vesicles of nano- or micron-size. Full article
(This article belongs to the Special Issue Bio-inspired and Bio-based Polymers)
Show Figures

Graphical abstract

Back to TopTop