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Abstract: In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless “for
the development of click chemistry and biorthogonal chemistry”. Since 2001, when the concept of click
chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions
as the preferred choice of synthetic methodology employed to create new functions. This brief
perspective will summarize research performed in our laboratories with the classic Cu(I)-catalyzed
azide-alkyne click (CuAAC) reaction elaborated by Meldal and Sharpless, with the thio-bromo
click (TBC) and with the less-used, irreversible TERminator Multifunctional INItiator (TERMINI)
dual click (TBC) reactions, the last two elaborated in our laboratory. These click reactions will be
used to assemble, by accelerated modular-orthogonal methodologies, complex macromolecules and
self-organizations of biological relevance. Self-assembling amphiphilic Janus dendrimers and Janus
glycodendrimers together with their biological membrane mimics known as dendrimersomes and
glycodendrimersomes as well as simple methodologies to assemble macromolecules with perfect and
complex architecture such as dendrimers from commercial monomers and building blocks will be
discussed. This perspective is dedicated to the 75th anniversary of Professor Bogdan C. Simionescu,
the son of my (VP) Ph.D. mentor, Professor Cristofor I. Simionescu, who as his father, took both
science and science administration in his hands, and dedicated his life to handling them in a tandem
way, to their best.

Keywords: click reactions; Cu(I)-catalyzed azide-alkyne click; thio-bromo click; termini dual click;
dendrimersomes; glycodendrimersomes; dendrimers; biological membranes; modular-orthogonal
methodology

1. Introduction

In the late 1990s, the golden dream of chemists to perform chemical transformations
in living systems raised interest in a set of chemical reactions that are selective without in-
terfering with native biochemical processes. In this context, Bertozzi, Raines, and Kiessling
laboratories transformed the classic Staudinger reaction between triarylphosphines and
azides into bioorthogonal Staudinger ligation [1–5]. This reaction allowed for the first
time to perform chemistry on cultured cells and in living animals. At the same time
Sharpless laboratory [6] introduced the concept of click chemistry as a “set of powerful,
highly reliable, and selective reactions for the rapid synthesis of useful new compounds
and combinatorial libraries”. Sharpless pointed out the following requirements for click
reactions: modularity, wide-scope, very high yield, stereospecificity (but not necessarily
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enantioselectivity), and simple product isolation (separation from harmless by-products by
non-chromatographic methods). In addition to these criteria, these reactions should pro-
ceed using simple reaction conditions (solvent free or solvents like water) including simply
accessible starting materials, and the final product has to be stable under physiological
conditions. Sharpless laboratory pointed out also to a group of old reactions belonging
to the class of click reactions. Since 2002, the Cu(I)-catalyzed regioselective “ligation” of
azides with alkynes—i.e., Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC)—reported
independently by Meldal [7] and Sharpless [8] laboratories, inspired from Huisgen [9] corre-
sponding cycloaddition became the classic “click” reaction. However, the requisite use of a
transition metal catalyst prevented trajectories of bioorthogonal and click chemistries from
converging until the development of metal-free “click” strategies came to the scene. For
example, the strain-promoted azide-alkyne cycloaddition proposed by Bertozzi laboratory
allowed the reaction to proceed quickly in biological systems and without living cell toxic-
ity [10]. The Nobel Prize in Chemistry for the year 2022 was awarded to Bertozzi, Meldal,
and Sharpless “for the development of click chemistry and biorthogonal chemistry”. Today,
the “click” toolbox available for chemists, material scientists, and biologists is broad and
includes various types of 1,3-dipolar cycloadditions, triazolinedione-based reactions, oxime
ligations, Diels–Alder cycloadditions, thiol-based couplings, sulfur(VI)–fluoride exchange
reactions, and many other. This brief personal Perspective summarizes research performed
mostly in our laboratories with modular-orthogonal strategies based on CuAAC [11,12],
thio-bromo click (TBC) [13–15], and irreversible TERminator Multifunctional INItiator
(TERMINI) double click (TDC) [16,17] reactions to assemble complex macromolecules and
self-organizations of biological relevance.

2. A Brief Discussion of the Development of CuAAC, TBC, and TDC Concepts

The historical developments of azide-alkyne cycloaddition (AAC) reaction, its Cu(I)-
catalyzed (CuAAC) and strain-promoted (SAAC) versions are summarized in Figure 1.
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Figure 1a outlines the original azide-alkyne cycloaddition elaborated by Huisgen [9]
and named as one of the first click reactions by Sharpless [6]. This reaction requires
either high reaction temperature or long reaction time to reach high conversion and lacks
regiospecificity. In 2002, Meldal [7] and Sharpless [8] laboratories developed the Cu(I)-
catalyzed AAC (CuAAC) to provide regiospecificity, high conversion and short reaction
times at room temperature. In 2004, Bertozzi laboratory incorporated strain in the structure
of the alkyne to generate strain-promoted [3 + 2] azide-alkyne cycloaddition (SAAC)
(Figure 1c) [10]. SAAC can be performed at room temperature in vivo but the cycloaddition
loses regiospecificity. The following two review articles discussing in more details these
developments are recommended [18,19]. CuAAC became the classic click methodology for
in vitro experiments while SAAC became the classic biorthogonal methodology for in vivo
experiments. Numerous review articles covering the explosion of developments both for
the in vitro and in vivo developments of/or based on click chemistry are available [18–24].

Figure 2 outlines the development of thio-bromo click (TBC) reaction. In 2007, one
of our laboratories was working on the elaboration of SET-LRP an ultrafast living radical
polymerization method for acrylates, methacrylates, styrenes, and vinyl chloride producing
ultrahigh molar mass polymers at room temperature. SET-LRP was reported by our
laboratory in 2006 [25,26]. Our hypothesis for these very high molar mass polymers was a
very low degree of bimolecular termination and therefore, very high chain end functionality
for the resulting polymers. Since acrylates have the highest rate of polymerization, we
had to develop a method for the quantitative determination of the polymer chain end
functionality. The chain end resulted from the SET-LRP of acrylates was a secondary alkyl
halide. The simplest functionalization of a secondary alkyl halide would be by an SN2
reaction. However, in the presence of alkoxy nucleophiles, secondary alkyl halides will
undergo both E2 and SN2 reactions (Figure 2a,b). A softer thiolate nucleophile would have
the chance to undergo only the SN2 reaction required for this process. If this reaction would
work, it would provide access to a simple functionalization of the chain end(s) since alkyl
thiols and thiophenols have a much lower pKa than the corresponding precursors to the
oxygen nucleophiles (Figure 1a). The first attempt to functionalize the chain end(s) of
polyacrylates with thiophenol deprotonated by Et3N in acetonitrile was a great success [13]
that paved the way to the very simple and versatile thio-bromo click (TBC) reaction
employed to determine the chain end functionality of polyacrylates and to assemble
complex macromolecules and self-organizations. Review articles dedicated entirely to TBC
are not available. However, TBC based applications are discussed in several general review
articles [23,26–28].
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Figure 3 summarizes the TERminator Multifunctional INItiator (TERMINI) double
click (TDC) chemistry concept. The TDC chemistry started to be elaborated in 1998 when
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our laboratory demonstrated that arenesulfonyl halides are a universal class of functional
initiators for metal-catalyzed living radical polymerization of styrene(s), methacrylates,
and acrylates [29]. In the same paper, we demonstrated that quantitative addition of
arylsulfonyl radicals to styrene and methyl methacylate takes place in about 5 min and
under proper reaction conditions, is not accompanied by polymerization, allowing deter-
mination the rate constant of initiation for several different monomers for the first time.
In 2001, the addition of arylsulfonyl radicals to an even more reactive 1,1-disubstituted
vinyl monomer, an enol of an aryl monomer containing two masked sulfonyl halides has
been shown to occur by transforming the enol into a keto and thus self-interrupting a
radical reaction/polymerization process. Subsequently the masked diethyldithiocarbamate
groups were transformed quantitatively in about 2 min in the presence of Cl2 into the corre-
sponding arylsulfonyl halide initiators (Figure 3) [16]. This TDC process was immediately
applied to the synthesis of dendrimers from conventional commercial monomers with
a large diversity of TERMINI and multifunctional sulfonyl chloride initiators [17,30–32].
Brief review articles summarizing the role of TDC in the development of SET-LRP and of
polymers with complex architecture are available [26–28].
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3. Dendrimersomes and Glycodendrimersomes as Mimics of Biological Membranes

Figure 4 summarizes the concept of dendrimersomes and glycodendrimersomes as
mimics of biological membranes. In 1964, Bangham laboratory reported that natural phos-
pholipids self-assemble into liposome that are however unstable [33]. Increased stability
of liposomes including in vivo was accomplished by co-assembly with PEG-conjugated
phospholipids and cholesterol to create Stealth Liposomes that are currently used in drug
delivery [34,35]. The second approach to increased stability of vesicles was obtained
by self-assembly of amphiphilic block copolymers [36]. The resulting vesicles—named
polymersomes—are stable; exhibit excellent mechanical properties, but the thickness of
their bilayer is much wider than that of the cell membranes; and their building blocks
are polydisperse, even when they are prepared by living polymerization methodologies.
In 2010, our laboratory reported that monodisperse amphiphilic Janus dendrimers self-
assemble into vesicles named dendrimersomes, that are stable, exhibit excellent mechanical
properties, and their bilayer thickness is identical with that of the cell membranes. In addi-
tion, Janus dendrimers self-assemble into dendrimersomes with predictable dimensions by
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simple injection from their ethanol solution in water or buffer [11]. The multivalency of the
glycan of biological membranes was first mimicked with glycopolymers [37], followed by
glycodendrimers [38] and glycoliposomes [39]. Glycopolymers were the first mimics of the
glycan of biological membranes. They are easy to synthesize but most of the carbohydrates
are part of the inner structure of the random-coil conformation of the glycopolymers and
therefore, the exact value of the multivalency on the surface of glycopolymers is unknown.
Glycodendrimers have a good control of the carbohydrate multivalency but their synthesis
is very difficult. Glycoliposomes are made by co-assembly of phospholipids with sugar
conjugated lipids and this process limits our knowledge of their exterior multivalency. In
2013, by screening through numerous libraries, our laboratory elaborated the synthesis of
amphiphilic Janus dendrimers whose self-assembly provides very precise and predictable
size vesicles named glycodendrimersomes [12]. Just like Janus dendrimers, Janus glyco-
dendrimers self-assemble in water or in buffer by simple injection of their ethanol or THF
solution into monodisperse glycodendrimersomes with predictable dimensions. CuAAC
was used in their modular orthogonal synthesis. Several review articles discuss their syn-
thesis, self-assembly of dendrimersomes and glycodendrimersomes, and their biological
activity in interaction with sugar binding proteins known as lectins [23].
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4. Perfecting SET-LRP with the Aid of TBC

A simple and rapid method for polymer chain end(s) analysis by a combination of
accurate and accessible analytical methods is required in order to perfect the structure
of the polymers synthesized by living radical polymerization reaction under different
reaction conditions. A combination of NMR and MALDI-TOF is considered by us to
provide such a methodology. The major requirement for such a methodology is based
on a rapid and quantitative organic reaction that transforms the structure of the polymer
chain end(s) from its native functional group into a new functional group. Polyacrylates
synthesized by SET-LRP contain a secondary alkyl bromide native functional group. In
2007, we considered that TBC could potentially provide this methodology if the secondary



Polymers 2023, 15, 1075 6 of 29

bromide group could be replaced with an aromatic thioether group (Figure 2) by an SN2
mechanism in the complete absence of an E2 reaction. Thiophenol and p-fluorothiophenol
would be suitable candidates for this reaction since their suitable pKa would provide
their transformation into a soft nucleophile in situ by using mild bases such as NEt3 in
the low boiling polar solvent acetonitrile. In addition, the resulting new thiophenolate
chain-end would exhibit 1H-NMR resonance that would not overlap with the structure
of the polyacrylate, but would be able to be integrated with the structure of the initiator
rest and of the parent bromide native chain end. Figure 5 outlines this TBC chain end
analysis method reported by our laboratory in 2007 [13]. The TBC strategy outlined in
Figures 2 and 5 became a routine method employed to analyze the structure of polymer
chain-ends both in our laboratory as well as in other laboratories and to construct polymers
with complex architecture [13–15,40–102]. This method was expanded by our and other
laboratories to the construction of polymers with complex architecture and functionality
including dendrimers.
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Figure 5. Structural analysis of polyacrylate chain ends by TBC.

5. Divergent Synthesis of Dendrimers by TBC

The difference between the pKa of alcohols and thiols outlined in Figure 2a was used to
employ bifunctional thiol-alcohol organic compounds such as thioglycerol in the synthesis
of complex monodisperse macromolecules by the TBC chemistry as outlined in the right
part of Figure 2c. In the presence of Et3N or iPr2EtN as base in acetonitrile the thiol groups
is deprotonated and therefore, is transformed into a soft nucleophile and very weak base,
while the alcohol groups that are strong bases when deprotonated are not deprotonated.
The difference in nucleophilicity and basicity between the deprotonated thiol and the
non-deprotonated alcohol groups make the alcohol groups be inert and inactive during
this TBC reaction in which the thioglycerol group incorporates the AB2 branching point.
This combination of reactivity of the thioglycerol was employed by one of our laboratories
to develop a new methodology for the divergent synthesis of dendrimers (Figure 6) [14].
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Figure 6. Synthesis of G1 to G4 dendrimers by TBC [14]. Reproduced with permission from Ref. [14];
Copyright 2009 John Wiley & Sons, Inc.

6. Divergent Synthesis of Dendritic Macromolecules from Commercial Monomers
by TBC

An additional divergent methodology for the synthesis of dendrimers based on and
TBC (Figures 2 and 6) was elaborated by combining the thioglycerol and SET-LRP of
commercial monomers. Figure 7 illustrates this new methodology for the assembly of
dendritic macromolecules from methyl acrylate [15]. This method can be applied to
the synthesis of dendritic macromolecules from any commercial acrylate or acrylamide
monomers that does not contain alcohol or amine groups. Alternative methods for the
synthesis of dendrimers by TBC chemistry were elaborated [103–105].
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Figure 7. Synthesis of dendritic polyacrylates by TBC combined with SET-LRP [15]. Reproduced
with permission from Ref. [15]; Copyright 2009 John Wiley & Sons, Inc.

7. Modular-Orthogonal Assembly of Amphiphilic Janus Dendrimers by TBC

Amphiphilic Janus dendrimers that self-assemble dendrimersomes were elaborated
by a diversity of synthetic methodologies [11,23] to self-assemble unilamellar and mul-
tilamellar onion-like assemblies [106–120]. A schematic synthesis of amphiphilic Janus
dendrimers by employing the thioglycerol TBC outlined in Figure 2c demonstrates the
capabilities of this strategy (Figure 8). The hydrophilic part of the Janus dendrimers is
determined by the generation number of the hydrophilic dendron prepared by TBC chem-
istry while the hydrophobic part is determined by the 3,5-, 3,4-, or 3,4,5- substitution
pattern of the corresponding phenolic acid precursor. The 3,5-disubstituted hydrophobic
fragments interdigitate in their hydrophobic part providing a thinner bilayer. The 3,4-
and 3,4,5- substitution patterns do not interdigitate and therefore, provide a wider bilayer.
This information is obtained from the X-ray analysis of the lamellar structure (Figure 9).
When transplanted to water or buffer phase, the mechanism outlined in Figure 9 from
bulk state provides access to a methodology to predict with great accuracy the size of the
dendrimersome assembled in water or buffer (Figure 10) [121].
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Figure 8. Synthesis of thioglycerol-benzylether amphiphilic Janus dendrimers by TBC [11]. Repro-
duced from Ref. [11] with permission from AAAS.
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Figure 9. Chemical structures (a) with the corresponding SAXS data for the lamellar phases of the
indicated library of three JDs synthesized by TBC (b). X-ray data and reconstructed electron density
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maps (c) illustrating the change in thickness of the layers from less interdigitated (3,4)12G1-X and
(3,4,5)12G1-X to more interdigitated (3,5)12G1-X JDs (d) [121]. Reprinted with permission from
Ref. [121]; Copyright 2011 American Chemical Society.
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8. Modular-Orthogonal CuAAC Synthesis of Amphiphilic Janus Glycodendrimers

An accelerated modular-orthogonal CuAAC synthesis of amphiphilic single–single,
twin–twin, and twin–mixed Janus glycodendrimers containing representative plant, bac-
teria, and human carbohydrates in their hydrophilic part that self-assemble by simple
injection in water or buffer into glycodendrimersomes was elaborated in our laboratory
in 2013 [12] and developed in additional publications [122–134]. Single–single stands for
a combination of single hydrophilic with single hydrophobic dendrons in the structure
of the amphiphilic Janus dendrimer, twin–twin stands for two identical hydrophilic and
two identical hydrophobic dendrons while twin–mixed represents a combination of twin
hydrophobic and mixed hydrophilic. This definition will become more trivial as we will
follow the Figures in which these structures will be discussed. Figure 11 outlines the
modular-orthogonal synthesis of a library of twin–twin.

Janus glycodendrimers by CuAAC chemistry. Twin hydrophobic fragments are
equipped with azide or terminal alkyne groups while the corresponding carbohydrate
libraries are conjugated to the complementary azide and alkyne groups required to create
the modules employed for orthogonal CuAAC coupling. Similar methodologies were
elaborated for libraries of single–single and twin–mixed Janus glycodendrimersomes. The
primary structure of the hydrophilic and hydrophobic parts were modified until conditions
were found to design amphiphilic Janus glycodendrimers that self-assemble and are stable
in the buffer required to study the interaction between the glycan surface of the glycoden-
drimersomes with natural sugar-binding proteins specific for plant, bacterial, and human
cells—known as lectins—and with synthetically modified and programmed lectins. One
of the many questions we had to address was the density of sugars on the surface of our
glycodendrimersome that provides the highest activity. Intuitively, the higher the density
of sugars the higher is the multivalency of the glycan and therefore, a higher activity of
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binding to proteins is expected. This concept was studied by generating a library of Janus
glycodendrimers that provides a variation in the concentration and sequence of sugars on
the glycodendrimersome surface. Figure 12 provides an example of methodology that gen-
erates access to sequence and concentration dependence of the glycan. This concentration
has to take into account the fact that glycodendrimersomes can be either unilamellar or
onion-like multilamellar architectures (Figure 13).
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Figures 14 and 15 outline in more details such an experiment in which the sequence
and concentration of the carbohydrate Lactose was placed in a sequence-defined architec-
ture on the periphery of the glycodendrimersome glycan (Figure 14). Figure 15 shows the
unexpected dependence between the activity of binding and the concentration-sequence.
Surprisingly, the lowest activity of binding was observed at the highest concentration
of carbohydrates while the highest activity was observed at the lowest concentration in
a sequence-defined arrangement. These results changed our way of thinking about the
activity of the interaction of sugar binding proteins to concentration and sequence of sugars.
This higher activity at lower concentration can be explained by a different rate contact
that depends on concentration, rather than a constant rate constant that changes rate as a
function of concentration and this event can be explained only by a different morphology
of the surface of the glycan that like in the case of block copolymers is concentration depen-
dent. Figure 16 shows the dependence of the glycan surface morphology of sequence and
concentration that is responsible for the increase in reactivity at low sugar concentration.
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plotting images with different numbers of bilayers and diameters at 0.1 mM in HEPES (e–j) [12,126].
Reproduced with permission from Refs. [12,126]; copyright 2013 American Chemical Society and
2016 National Academy of Sciences USA.
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9. Hybrids of Dendrimersomes/Glycodendrimersomes with Bacteria and Human Cell
Membranes and Dendrimersomes Engulf Living Bacteria via Endocytosis

Hybrid dendrimersomes/glycodendrimersomes with bacteria and human cell mem-
branes were successfully co-assembled to transfer many of the components of the natural
cell membranes in the resulting hybrid. This is a very important accomplishment since
incorporation even of natural transmembrane proteins into synthetic cell membranes is a
very complex experiment. Figure 17 illustrates the co-assembly of bacterial cell membranes
with glycodendrimersomes [113,127].
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Figure 18 shows how a dendrimersome engulfs a living bacteria that stays alive and
fights the dendrimersome wall in order to escape. This process can be visualized best
by the movies available in the original publication [116]. We recommend the reader to
consult these movies. These experiments can have numerous practical applications and
demonstrate the excellent mechanical properties and stability of dendrimersomes and
glycodendrimersomes.
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10. Divergent Synthesis of Dendritic Macromolecules from Commercial Methyl
Methacylate by DTC

The TDC methodology was highlighted in Figure 3. Naming this methodology ‘click
chemistry’ after so many years was inspired by the approach of Sharpless to click chemistry
from his pioneering paper from 2001 [6]. In his paper, he defined a series of old methodolo-
gies including the original Huisgen and interfacial amidation reactions as ‘click’ reactions.
Therefore, we feel that it is reasonable to state that the TDC reaction outlined in Figure 3
belongs to the class of click reactions. The first application of TDC was reported in 2003 and
provided access to the divergent synthesis of dendritic macromolecules from the commer-
cial monomer methyl methacrylate [17]. We believe that this methodology applies to any
commercial methacrylate or styrene monomer. The synthesis of a methyl methacrylate den-
dritic macromolecule by this methodology is outlined in Figure 19, while Figures 20 and 21
show the unusual structures and three-dimensional architectures of the resulting dendritic
macromolecules. This methodology was expanded to different multiplicities at the focal
point and to simpler TERMINI molecules [30–32,135].
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a combination of LRP and TDC [17]. Reproduced with permission from Ref. [17]; Copyright 2003
American Chemical Society.
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Figure 20. Dendritic macromolecules accessible by the combination of LRP of MMA and the bifunc-
tional TERMINI starting from the 3PSC–trifunctional iniatiator: (a) containing various DP of the
PMMA per arm and PMMA chain ends; (b) containing DP of PMMA equal to zero and sulfonyl
chloride chain ends; (c) containing DP of PMMA equal to 1 and MMA adduct as chain ends; (d) con-
taining various DP of the PMMA per arm and sulfonyl chloride as chain ends [17]. Reproduced with
permission from Ref. [17]; Copyright 2003 American Chemical Society.
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11. Organizing Frontiers in Macromolecular and Supramolecular Science Symposia
together with Bogdan C. Simionescu

In 1981, one of us (VP) defected the country he was born and educated. Political
changes allowed him to return to Romania in 1995, accompanied by a small group of
scientists and a former Ph.D. student.

The short visit was used to celebrate the 75th anniversary of his Ph.D. mentor Professor
Cristofor I. Simionescu with a scientific symposium. This visit created life-time friendship
with all the speakers at this symposium. Only one of the speakers at this symposium did not
come from abroad. His name was Bogdan C. Simionescu. Few photos from this symposium
are shown in Figure 22. This symposium also allowed me to visit with all other speakers
for the first time in many years the laboratory in which I (VP) conducted the research
for my Ph.D. thesis (Figure 22). In 2008, when Professor Cristofor I. Simionescu was no
longer with us, I convinced Bogdan Simionescu to start duplicating the 1995 symposium
and dedicate it to the memory of his father. Since I had organized previously numerous
Gordon Research Conferences and other international symposia, the decision was made
to maintain the format of the 1995 symposium with less than 10 invited lecturers and no
other speakers. This would provide sufficient time for the young generation of scientists to
discuss with the invited speakers. The poster of the 2008 symposium entitles “Frontiers in
Macromolecular and Supramolecular Science”, First Cristofor I. Simionescu Symposium
is shown in Figure 23 together with the poster of the 10th and last symposium. Most
of the lectures from the 1995 symposium attended also the 2008 symposium, and this
rotation of some of the same speakers was maintained for all 10 Symposia. A photo of the
participants and lecturers at the First Frontiers in Macromoleculer and Supramolecular
Science Symposium from 2008 on the stairs of the Institute in Iasi is shown in Figure 24.
All 10 Symposia started to take place both at the Academy in Bucharest and at the “Petru
Poni” Institute of Macromolecular Chemistry in Iasi. I insisted that we would maintain
the original arrangement of the 1995 symposium that was co-organized, in fact behind
the scene, by the person we were celebrating, Cristofor I. Simionescu. In order to recover
the difference of time for lecturers from Japan and United States, as Professor Cristofor
I. Simionescu organized it in 1995, all speakers would spend one or two days in Sinaia
visiting the surroundings, including Peles and Bran Castles, as well as Brasov. This would
blend history with culture and science.

Each symposium would end with a short visit to the Monasteries of Bucovina where
both Professor Cristofor I. Simionescu and myself (VP) were born. This was a remarkable
series of symposia that could be organized only by a very special collaboration, friendship,
and respect towards the father of Bogdan Simionescu by both Bogdan and by one of the
former students of his father (VP). These symposia will never be duplicated again in any
place and by anybody else. However, the desire to restart a similar series by the same
concept exists in the mind of all previous speakers and organizers of the first 10 Frontiers
in Macromolecular and Supramolecular Science Symposia.
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12. Conclusions

This perspective discusses a very narrow topic of research from our laboratories. It
does not even touch related topics of biological relevance such as mimics of transmembrane
protein mimics, Tobacco Mosaic Virus [136–142], Frank–Kasper phases that are available
also in lipids [143–150], new synthetic methods-based on Ni rather than Pd-catalyzed and
other reactions [151–154], or additional improvements of living radical polymerizations
expanding on the 1995 publication on arenesulfonyl chloride initiators [155–157]. Not even
the work on helical chirality pioneered during my graduate studies in the laboratory of
C. I. Simionescu [158] was discussed here. We would like to mention that the amphiphilic
Janus dendrimers and glycodendrimers dicussed briefly here are precursors to the one-
component multifunctional sequence-defined ionizable amphiphilic Janus dendrimers
(IAJDs) elaborated by our laboratory for the targeted delivery of mRNA [159–161]. The
goal of this perspective is to make the synthetic community adopt the click concept of
Sharpless, expand it to many other organic reactions, hoping that one day we will teach
undergraduate and graduate organic chemistry only with click reactions.
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