Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = delay-Doppler channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1935 KiB  
Article
Adaptive Modulation Tracking for High-Precision Time-Delay Estimation in Multipath HF Channels
by Qiwei Ji and Huabing Wu
Sensors 2025, 25(14), 4246; https://doi.org/10.3390/s25144246 - 8 Jul 2025
Viewed by 310
Abstract
High-frequency (HF) communication is critical for applications such as over-the-horizon positioning and ionospheric detection. However, precise time-delay estimation in complex HF channels faces significant challenges from multipath fading, Doppler shifts, and noise. This paper proposes a Modulation Signal-based Adaptive Time-Delay Estimation (MATE) algorithm, [...] Read more.
High-frequency (HF) communication is critical for applications such as over-the-horizon positioning and ionospheric detection. However, precise time-delay estimation in complex HF channels faces significant challenges from multipath fading, Doppler shifts, and noise. This paper proposes a Modulation Signal-based Adaptive Time-Delay Estimation (MATE) algorithm, which effectively decouples carrier and modulation signals and integrates phase-locked loop (PLL) and delay-locked loop (DLL) techniques. By leveraging the autocorrelation properties of 8PSK (Eight-Phase Shift Keying) signals, MATE compensates for carrier frequency deviations and mitigates multipath interference. Simulation results based on the Watterson channel model demonstrate that MATE achieves an average time-delay estimation error of approximately 0.01 ms with a standard deviation of approximately 0.01 ms, representing a 94.12% reduction in mean error and a 96.43% reduction in standard deviation compared to the traditional Generalized Cross-Correlation (GCC) method. Validation with actual measurement data further confirms the robustness of MATE against channel variations. MATE offers a high-precision, low-complexity solution for HF time-delay estimation, significantly benefiting applications in HF communication systems. This advancement is particularly valuable for enhancing the accuracy and reliability of time-of-arrival (TOA) detection in HF-based sensor networks and remote sensing systems. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 2347 KiB  
Article
Adaptive Damping Log-Domain Message-Passing Algorithm for FTN-OTFS in V2X Communications
by Hui Xu, Chaorong Zhang, Qingying Wu, Benjamin K. Ng and Chan-Tong Lam
Sensors 2025, 25(12), 3692; https://doi.org/10.3390/s25123692 - 12 Jun 2025
Viewed by 430
Abstract
To enable highly reliable and spectrum-efficient vehicle-to-everything (V2X) communications under conditions with severe Doppler effects and rapidly time-varying channels, we propose a novel faster-than-Nyquist orthogonal time frequency space (FTN-OTFS) modulation scheme. In this scheme, FTN signaling is integrated with spectrally efficient frequency division [...] Read more.
To enable highly reliable and spectrum-efficient vehicle-to-everything (V2X) communications under conditions with severe Doppler effects and rapidly time-varying channels, we propose a novel faster-than-Nyquist orthogonal time frequency space (FTN-OTFS) modulation scheme. In this scheme, FTN signaling is integrated with spectrally efficient frequency division multiplexing (SEFDM) within the OTFS framework, enabling a higher symbol-transmission density within a fixed time–frequency resource block and thus enhancing spectral efficiency without increasing the occupied bandwidth. An analytical input–output model is derived in both the delay–Doppler and time–frequency domains. To further enhance numerical stability, an improved detection algorithm called adaptive damping log-domain message-passing (ADL-MP) is developed for the proposed scheme. Simulation results demonstrate that the proposed scheme achieves robust and reliable performance in high-mobility scenarios and that the proposed algorithm consistently outperforms conventional methods in terms of bit error rate (BER) under both the extended vehicular A (EVA) model and the high-speed train (HST) scenario, confirming its effectiveness and superiority for V2X communications. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

26 pages, 9887 KiB  
Article
Delay–Doppler Block Division Multiplexing: An Integrated Navigation and Communication Waveform for LEO PNT
by Dong Fu, Honglei Lin, Yinan Meng, Jing Peng, Gang Ou and Shaojing Wang
Remote Sens. 2025, 17(7), 1270; https://doi.org/10.3390/rs17071270 - 2 Apr 2025
Cited by 3 | Viewed by 796
Abstract
The recent rapid deployment of low-Earth-orbit (LEO) broadband constellations has positioned these systems as expected emerging navigation sources, thereby driving research interest in integrated navigation and communication (INAC) technologies. Existing INAC waveforms face various challenges in LEO environments, including limited ranging accuracy due [...] Read more.
The recent rapid deployment of low-Earth-orbit (LEO) broadband constellations has positioned these systems as expected emerging navigation sources, thereby driving research interest in integrated navigation and communication (INAC) technologies. Existing INAC waveforms face various challenges in LEO environments, including limited ranging accuracy due to high mutual interference (MI) between signal components, a heavy signal processing burden for navigation users, or degraded data transmission reliability. We propose an INAC waveform named delay–Doppler block division multiplexing (DDBDM) in this work. MI is effectively reduced by modulating pseudo-random noise (PRN) codes and data separately on orthogonal delay–Doppler (DD) blocks. Navigation and communication signals in DDBDM can be separated in the frequency band, which allows the user to receive only the bandwidth occupied by the navigation subcarriers, reducing the signal processing overhead. Moreover, data transmission in the DD domain exhibits a low bit error rate in high-mobility channels, which enables fast and reliable navigation augmentation information for users. Simulation results demonstrate that DDBDM offers superior navigation performance and data transmission reliability compared to existing INAC schemes. The proposed waveform enhances the performance of the LEO INAC system and effectively extends the position, navigation, and timing (PNT) service capability. Full article
(This article belongs to the Special Issue LEO-Augmented PNT Service)
Show Figures

Figure 1

17 pages, 3071 KiB  
Article
OTFS: A Potential Waveform for Space–Air–Ground Integrated Networks in 6G and Beyond
by Obinna Okoyeigbo, Xutao Deng, Agbotiname Lucky Imoize and Olamilekan Shobayo
Telecom 2025, 6(1), 19; https://doi.org/10.3390/telecom6010019 - 11 Mar 2025
Cited by 1 | Viewed by 1708
Abstract
6G is expected to provide ubiquitous connectivity, particularly in remote and inaccessible environments, by integrating satellite and aerial networks with existing terrestrial networks, forming Space–Air–Ground Integrated Networks (SAGINs). These networks, comprising satellites, unmanned aerial vehicles (UAVs), and high-speed terrestrial networks, introduce severe Doppler [...] Read more.
6G is expected to provide ubiquitous connectivity, particularly in remote and inaccessible environments, by integrating satellite and aerial networks with existing terrestrial networks, forming Space–Air–Ground Integrated Networks (SAGINs). These networks, comprising satellites, unmanned aerial vehicles (UAVs), and high-speed terrestrial networks, introduce severe Doppler effects due to high mobility. Traditional modulation techniques like Orthogonal Frequency Division Multiplexing (OFDM) struggle to maintain reliable communication under such conditions. This paper investigates Orthogonal Time Frequency Space (OTFS) modulation as a robust alternative for high-mobility scenarios in SAGINs. Using 6G exploration library in MATLAB, this study compares the bit error rate (BER) performance of OTFS and OFDM under static and multipath channels with varying mobility scenarios from 20 km/h to 2000 km/h, and varying modulation orders (BPSK, QPSK, and 8-PSK). The results indicate that OTFS significantly outperforms OFDM, while maintaining signal integrity under extreme mobility conditions. OTFS modulates information symbols in the delay–Doppler domain, demonstrating a strong robustness against Doppler shifts and delay spreads. This makes it particularly suitable for high-mobility applications such as satellites, UAVs, and high-speed terrestrial networks. Conversely, while OFDM remains effective in static and low-mobility environments, it struggles with severe Doppler effects, common in the proposed SAGINs. These findings reinforce OTFS as a promising modulation technique for SAGINs in 6G and beyond. Full article
Show Figures

Figure 1

19 pages, 11241 KiB  
Article
Skywave Ionosphere Communication Channel Characteristics for Hypersonic Vehicles at a Typical Frequency of 14 MHz
by Zongyuan Liu, Lei Shi, Bo Yao, Zijian Teng, Yifan Wang, Fangyan Li and Zhiyi Chen
Remote Sens. 2025, 17(5), 909; https://doi.org/10.3390/rs17050909 - 5 Mar 2025
Cited by 1 | Viewed by 915
Abstract
This study starts from the physical perspective of electromagnetic wave propagation in ionosphere media, and the skywave OTH (over-the-horizon) ionosphere channel model is established for hypersonic vehicles based on the ray-tracing method, and this study identifies the key parameters influencing channel characteristics. Secondly, [...] Read more.
This study starts from the physical perspective of electromagnetic wave propagation in ionosphere media, and the skywave OTH (over-the-horizon) ionosphere channel model is established for hypersonic vehicles based on the ray-tracing method, and this study identifies the key parameters influencing channel characteristics. Secondly, using the re-entry trajectory of the RAM C-II flight experiment as an example, dynamic multipath channel characteristic parameters—such as loss, delay, and Doppler shift—are analyzed in multiple seasons during the noon and midnight periods at a communication frequency of 14 MHz. The results indicate that the settling effect of the ionosphere at midnight makes the changes in the channel more complex, with the irregular sudden appearance and disappearance of multipath numbers. In addition, channel loss is greater in low-elevation propagation mode than in high-elevation propagation mode, indicating that the channel multipath exhibits high loss and low delay characteristics. The skywave communication channel model for hypersonic vehicles, and the dynamic multipath channel characteristic parameters presented in this study offer valuable support for the design, development, and evaluation of long-distance TT&C (Tracking, Telemetering, and Command) communication systems. Full article
Show Figures

Figure 1

29 pages, 4419 KiB  
Article
OTFS-Based Handover Triggering in UAV Networks
by Ehab Mahmoud Mohamed, Hany S. Hussein, Mohammad Ahmed Alnakhli and Sherief Hashima
Drones 2025, 9(3), 185; https://doi.org/10.3390/drones9030185 - 3 Mar 2025
Viewed by 835
Abstract
In this paper, delay Doppler (DD) domain is utilized for enabling an efficient handover-triggering mechanism in highly dynamic unmanned aerial vehicles (UAVs) or drones to ground networks. In the proposed scheme, the estimated DD channel gains using DD multi-carrier modulation (DDMC), e.g., orthogonal [...] Read more.
In this paper, delay Doppler (DD) domain is utilized for enabling an efficient handover-triggering mechanism in highly dynamic unmanned aerial vehicles (UAVs) or drones to ground networks. In the proposed scheme, the estimated DD channel gains using DD multi-carrier modulation (DDMC), e.g., orthogonal time frequency space (OTFS) modulation, are utilized for triggering the handover decisions. This is motivated by the fact that the estimated DD channel gain is time-invariant throughout the whole OTFS symbol despite the entity speed. This results in more stable handover decisions over that based on the time-varying received-signal strength (RSS) or frequency time (FT) channel gains using orthogonal frequency division multiplexing (OFDM) modulation employed in fifth-generation–new radio (5G-NR) and its predecessors. To mathematically bind the performance of the proposed scheme, we studied its performance under channel estimation errors of the most dominant DD channel estimators, i.e., least square (LS) and minimum mean square error (MMSE), and we prove that they have marginal effects on its performance. Numerical analyses demonstrated the superiority of the proposed DD-based handover-triggering scheme over candidate benchmarks in terms of the handover overhead, the achievable throughput, and ping-pong ratio under different simulation conditions. Full article
Show Figures

Figure 1

17 pages, 4106 KiB  
Article
Iterative Maximum Ratio Combining Detector for Satellite Multiple-Input Multiple-Output/Orthogonal Time–Frequency Space Systems Based on Soft-Symbol Interference Cancelation
by Meng Sun, Qi Zhang, Haipeng Yao, Ran Gao, Jiayuan Li, Weiying Feng, Fu Wang, Xiaohu Li, Xiangyu Liu, Feng Tian, Qinghua Tian, Yi Zhao, Liang Liu and Yuqi Wang
Electronics 2025, 14(3), 521; https://doi.org/10.3390/electronics14030521 - 27 Jan 2025
Viewed by 836
Abstract
Orthogonal time–frequency space (OTFS) modulation combined with massive multiple-input multiple-output (MIMO) can simultaneously address the problems caused by multipath delay, the Doppler effect, and channel fading. To mitigate inter-subcarrier and inter-symbol interference in satellite–terrestrial MIMO-OTFS systems, an iterative maximum ratio combining detection algorithm [...] Read more.
Orthogonal time–frequency space (OTFS) modulation combined with massive multiple-input multiple-output (MIMO) can simultaneously address the problems caused by multipath delay, the Doppler effect, and channel fading. To mitigate inter-subcarrier and inter-symbol interference in satellite–terrestrial MIMO-OTFS systems, an iterative maximum ratio combining detection algorithm based on hard-decision interference cancelation (ICH-IMRC) is proposed. The signal detection is iterated by performing MRC on the interference-canceled received symbols. To mitigate the error spread in the interference cancelation process, iterative maximum ratio combining detection based on soft symbol interference cancelation (S-IMRC) is proposed, which is improved based on ICH-IMRC. The interference cancelation is updated by the expectation of other symbols, and the expectation and variance of symbols are updated by soft judgment with the posterior probability of symbols. To improve the detection convergence speed, optimal relaxation parameters are obtained based on the Sparrow Search Algorithm (SSA). Simulation results show that the proposed S-IMRC has superior error rate performance compared to the conventional algorithms for satellite–terrestrial MIMO-OTFS systems. Furthermore, the proposed algorithm is applicable to various satellite channel models and achieves excellent BER for different orders of orthogonal amplitude-modulated signals and different antenna array sizes. Full article
Show Figures

Figure 1

13 pages, 3193 KiB  
Article
Multi-Pilot Channel Estimation for Orthogonal Time–Frequency Space Systems Based on Constant-Amplitude Zero-Autocorrelation Sequences
by Renjie Ju, Yangyanhao Guo, Xiaojuan Hou, Jian He, Ting Li, Zhiqiang Lan and Xiujian Chou
Sensors 2024, 24(23), 7588; https://doi.org/10.3390/s24237588 - 27 Nov 2024
Viewed by 1345
Abstract
Future communication systems must support high-speed mobile scenarios, while the mainstream Orthogonal Frequency Division Multiplexing (OFDM) technology faces severe inter-carrier interference in such environments. Therefore, the adoption of Orthogonal Time–Frequency Space (OTFS) modulation in 6G systems is an effective solution. The widely used [...] Read more.
Future communication systems must support high-speed mobile scenarios, while the mainstream Orthogonal Frequency Division Multiplexing (OFDM) technology faces severe inter-carrier interference in such environments. Therefore, the adoption of Orthogonal Time–Frequency Space (OTFS) modulation in 6G systems is an effective solution. The widely used single-pilot channel estimation in OTFS systems is susceptible to path loss and inaccurate fading coefficient estimation, leading to reduced estimation accuracy, signal distortion, and degraded overall system communication quality. To address this problem, this paper proposes a Constant-Amplitude Zero-Autocorrelation (CAZAC) sequence-based multi-pilot OTFS channel estimation scheme. The proposed method inserts multiple low-power pilots in the delayed Doppler domain (DD) and employs joint signal processing at the receiver to effectively suppress noise, thereby significantly improving the accuracy and reliability of channel estimation. Additionally, this paper analyzes the impact of CAZAC sequence length on estimation performance and provides reasonable parameter selection recommendations. In summary, this work proposes an innovative solution to the channel estimation challenge in OTFS systems, laying a solid theoretical foundation for the realization of future high-speed mobile communication technologies such as 6G, with important academic value and application prospects. Full article
(This article belongs to the Special Issue 5G/6G Networks for Wireless Communication and IoT)
Show Figures

Figure 1

17 pages, 6781 KiB  
Communication
An Iterative Orthogonal Frequency Division Multiplexing Receiver with Sequential Inter-Carrier Interference Canceling Modified Delay and Doppler Profiler for an Underwater Multipath Channel
by Suguru Kuniyoshi, Shiho Oshiro, Rie Saotome and Tomohisa Wada
J. Mar. Sci. Eng. 2024, 12(10), 1712; https://doi.org/10.3390/jmse12101712 - 27 Sep 2024
Cited by 2 | Viewed by 1218
Abstract
In 2023, we proposed the modified delay and Doppler profiler (mDDP) as an inter-carrier interference (ICI) countermeasure for underwater acoustic orthogonal frequency division multiplexing (OFDM) mobile communications in a multipath environment. However, the performance improvement in the computer simulation and pool experiments was [...] Read more.
In 2023, we proposed the modified delay and Doppler profiler (mDDP) as an inter-carrier interference (ICI) countermeasure for underwater acoustic orthogonal frequency division multiplexing (OFDM) mobile communications in a multipath environment. However, the performance improvement in the computer simulation and pool experiments was not significant. In a subsequent study, the accuracy of the channel transfer function (CTF), which is the input for the mDDP channel parameter estimation, was considered insufficient. Then a sequential ICI canceling mDDP was devised. This paper presents simulations of underwater OFDM communications using an iterative one- to three-step mDDP. The non-reflective pool experiment conditions are a two-wave multipath environment where the receiving transducer moves at a speed of 0.25 m/s and is subjected to a Doppler shift in the opposite direction. As NumCOL, the number of taps in the multitap equalizer which removes ICI, was increased, the bit error rate (BER) of 0.0526661 at NumCOL = 1 was significantly reduced by a factor of approximately 45 to a BER of 0.0011655 at NumCOL = 51 for the sequential ICI canceling mDDP. Full article
(This article belongs to the Special Issue Underwater Acoustic Communication and Network, 2nd Edition)
Show Figures

Figure 1

19 pages, 5025 KiB  
Article
Measurement-Based Tapped Delay Line Channel Modeling for Fixed-Wing Unmanned Aerial Vehicle Air-to-Ground Communications at S-Band
by Yue Lyu, Yuanfeng He, Zhiwei Liang, Wei Wang, Junyi Yu and Dan Shi
Drones 2024, 8(9), 492; https://doi.org/10.3390/drones8090492 - 17 Sep 2024
Cited by 1 | Viewed by 1888
Abstract
Fixed-wing unmanned aerial vehicles (UAVs) are widely considered as a vital candidate of aerial base station in beyond Fifth Generation (B5G) systems. Accurate knowledge of air-to-ground (A2G) wireless propagation is important for A2G communication system development and testing where, however, there is still [...] Read more.
Fixed-wing unmanned aerial vehicles (UAVs) are widely considered as a vital candidate of aerial base station in beyond Fifth Generation (B5G) systems. Accurate knowledge of air-to-ground (A2G) wireless propagation is important for A2G communication system development and testing where, however, there is still a lack of A2G wideband channel models for such a purpose. In this paper, we present a wideband fixed-wing UAV-based A2G channel measurement campaign at 2.7 GHz, and consider typical flight phases, based on which a wide-sense stationary uncorrelated scattering (WSSUS)-based tapped delay line (TDL) wideband channel model is proposed. Parameters of individual channel taps are analyzed in terms of gain, amplitude distribution, Rice factor and delay-Doppler spectrum. It is shown that UAV flight phases significantly influence the channel tap parameters. Particularly, the “Bell”-type spectrum is found to be the most suitable model for the delay-Doppler spectrum under various flight scenarios for A2G propagation. The proposed channel model can provide valuable assistance and guidance for UAV communication system evaluation and network planning. Full article
Show Figures

Figure 1

18 pages, 759 KiB  
Article
Adaptive Channel Estimation Based on Multidirectional Structure in Delay-Doppler Domain for Underwater Acoustic OTFS System
by Wentao Shi, Mingqi Jin, Lianyou Jing, Nan Tu and Chengbing He
Remote Sens. 2024, 16(17), 3157; https://doi.org/10.3390/rs16173157 - 27 Aug 2024
Cited by 2 | Viewed by 1711
Abstract
Time-varying underwater acoustic (UWA) channels are the key challenge of underwater acoustic communication (UAC). Although UAC exhibits time-variance characteristics significantly in time domains, its delay-Doppler (DD) domain representation tends to be time-invariant. Orthogonal time–frequency space (OTFS) modulation has recently been proposed and has [...] Read more.
Time-varying underwater acoustic (UWA) channels are the key challenge of underwater acoustic communication (UAC). Although UAC exhibits time-variance characteristics significantly in time domains, its delay-Doppler (DD) domain representation tends to be time-invariant. Orthogonal time–frequency space (OTFS) modulation has recently been proposed and has acquired widespread interest due to its excellent performance over time-varying channels. In the UWA OTFS system, the novel DD domain channel estimation algorithm that employs a multidirectional adaptive moving average scheme is proposed. Specifically, the proposed scheme is cascaded by a channel estimator and moving average filter. The channel estimator can be employed to estimate the time-invariant channel of the DD domain multidirectionally, improving proportionate normalized least mean squares (IPNLMS). Meanwhile, the moving average filter is used to reduce the output noise of the IPNLMS. The performance of the proposed method is verified by simulation experiments and real-world lake experiments. The results demonstrate that the proposed channel estimation method can outperform those of benchmark algorithms. Full article
Show Figures

Graphical abstract

16 pages, 765 KiB  
Article
Progressive Inter-Path Interference Cancellation Algorithm for Channel Estimation Using Orthogonal Time–Frequency Space
by Mauro Marchese, Henk Wymeersch, Paolo Spallaccini and Pietro Savazzi
Sensors 2024, 24(13), 4414; https://doi.org/10.3390/s24134414 - 8 Jul 2024
Cited by 1 | Viewed by 1264
Abstract
Fractional delay-Doppler (DD) channel estimation in orthogonal time–frequency space (OTFS) systems poses a significant challenge considering the severe effects of inter-path interference (IPI). To this end, several algorithms have been extensively explored in the literature for accurate low-complexity channel estimation in both integer [...] Read more.
Fractional delay-Doppler (DD) channel estimation in orthogonal time–frequency space (OTFS) systems poses a significant challenge considering the severe effects of inter-path interference (IPI). To this end, several algorithms have been extensively explored in the literature for accurate low-complexity channel estimation in both integer and fractional DD scenarios. In this work, we develop a variant of the state-of-the-art delay-Doppler inter-path interference cancellation (DDIPIC) algorithm that progressively cancels the IPI as estimates are obtained. The key advantage of the proposed approach is that it requires only a final refinement procedure reducing the complexity of the algorithm. Specifically, the time difference in latency between the proposed approach and the DDIPIC algorithm is almost proportional to the square of the number of estimated paths. Numerical results show that the proposed algorithm outperforms the other channel estimation schemes achieving lower normalized mean square error (NMSE) and bit error rate (BER). Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 14988 KiB  
Article
Channel Estimation for Underwater Acoustic Communications in Impulsive Noise Environments: A Sparse, Robust, and Efficient Alternating Direction Method of Multipliers-Based Approach
by Tian Tian, Kunde Yang, Fei-Yun Wu and Ying Zhang
Remote Sens. 2024, 16(8), 1380; https://doi.org/10.3390/rs16081380 - 13 Apr 2024
Cited by 3 | Viewed by 2064
Abstract
Channel estimation in Underwater Acoustic Communication (UAC) faces significant challenges due to the non-Gaussian, impulsive noise in ocean environments and the inherent high dimensionality of the estimation task. This paper introduces a robust channel estimation algorithm by solving an [...] Read more.
Channel estimation in Underwater Acoustic Communication (UAC) faces significant challenges due to the non-Gaussian, impulsive noise in ocean environments and the inherent high dimensionality of the estimation task. This paper introduces a robust channel estimation algorithm by solving an l1l1 optimization problem via the Alternating Direction Method of Multipliers (ADMM), effectively exploiting channel sparsity and addressing impulsive noise outliers. A non-monotone backtracking line search strategy is also developed to improve the convergence behavior. The proposed algorithm is low in complexity and has robust performance. Simulation results show that it exhibits a small performance deterioration of less than 1 dB for Channel Impulse Response (CIR) estimation in impulsive noise environments, nearly matching its performance under Additive White Gaussian Noise (AWGN) conditions. For Delay-Doppler (DD) doubly spread channel estimation, it maintains Bit Error Rate (BER) performance comparable to using ground truth channel information in both AWGN and impulsive noise environments. At-sea experimental validations for channel estimation in Orthogonal Frequency Division Multiplexing (OFDM) systems further underscore the fast convergence speed and high estimation accuracy of the proposed method. Full article
(This article belongs to the Special Issue Advancement in Undersea Remote Sensing II)
Show Figures

Figure 1

21 pages, 5488 KiB  
Article
Doppler and Channel Estimation Using Superimposed Linear Frequency Modulation Preamble Signal for Underwater Acoustic Communication
by Chenglei Lv, Qiushi Sun, Huifang Chen and Lei Xie
J. Mar. Sci. Eng. 2024, 12(2), 338; https://doi.org/10.3390/jmse12020338 - 16 Feb 2024
Cited by 2 | Viewed by 2022
Abstract
Due to the relative motion between transmitters and receivers and the multipath characteristic of wideband underwater acoustic channels, Doppler and channel estimations are of great significance for an underwater acoustic (UWA) communication system. In this paper, a preamble signal based on superimposed linear [...] Read more.
Due to the relative motion between transmitters and receivers and the multipath characteristic of wideband underwater acoustic channels, Doppler and channel estimations are of great significance for an underwater acoustic (UWA) communication system. In this paper, a preamble signal based on superimposed linear frequency modulation (LFM) signals is first designed. Based on the designed preamble signal, a real-time Doppler factor estimation algorithm is proposed. The relative correlation peak shift of two LFM signals in the designed preamble signal is utilized to estimate the Doppler factor. Moreover, an enhanced channel estimation algorithm, the correlation-peak-search-based improved orthogonal matching pursuit (CPS-IOMP) algorithm, is also proposed. In the CPS-IOMP algorithm, the excellent autocorrelation characteristic of the designed preamble signal is used to estimate the channel sparsity and multipath delays, which are utilized to construct the simplified dictionary matrix. The simulation and sea trial data analysis results validated the designed preamble, the proposed Doppler estimation algorithm, and the channel estimation algorithm. The performance of the proposed Doppler factor estimation is better than that of the block estimation algorithm. Compared with the original OMP algorithm with known channel sparsity, the proposed CPS-IOMP algorithm achieves a similar estimation accuracy with a smaller computational complexity, as well as requiring no prior knowledge about the channel sparsity. Full article
(This article belongs to the Topic Advances in Underwater Acoustics and Aeroacoustics)
Show Figures

Figure 1

19 pages, 4843 KiB  
Article
A Robust Timing Synchronization Algorithm Based on PSSS for LTE-V2X
by Ju Zhang, Bin Chen, Jiahui Qiu, Lingfan Zhuang, Zhiyuan Wang and Liu Liu
Computers 2024, 13(1), 12; https://doi.org/10.3390/computers13010012 - 30 Dec 2023
Viewed by 2558
Abstract
In recent years, Long-Term Evolution Vehicle-to-Everything (LTE-V2X) communication technology has received extensive attention. Timing synchronization is a crucial step in the receiving process, addressing Timing Offsets (TOs) resulting from random propagation delays, sampling frequency mismatches between the transmitter and receiver or a combination [...] Read more.
In recent years, Long-Term Evolution Vehicle-to-Everything (LTE-V2X) communication technology has received extensive attention. Timing synchronization is a crucial step in the receiving process, addressing Timing Offsets (TOs) resulting from random propagation delays, sampling frequency mismatches between the transmitter and receiver or a combination of both. However, the presence of high-speed relative movement between nodes and a low antenna height leads to a significant Doppler frequency offset, resulting in a low Signal-to-Noise Ratio (SNR) for received signals in LTE-V2X communication scenarios. This paper aims to investigate LTE-V2X technology with a specific focus on time synchronization. The research centers on the time synchronization method utilizing the Primary Sidelink Synchronization Signal (PSSS) and conducts a comprehensive analysis of existing algorithms, highlighting their respective advantages and disadvantages. On this basis, a robust timing synchronization algorithm for LTE-V2X communication scenarios is proposed. The algorithm comprises three key steps: coarse synchronization, frequency offset estimation and fine synchronization. Enhanced robustness is achieved through algorithm fusion, optimal decision threshold design and predefined frequency offset values. Furthermore, a hardware-in-the-loop simulation platform is established. The simulation results demonstrate a substantial performance improvement for the proposed algorithm compared to existing methods under adverse channel conditions characterized by high frequency offsets and low SNR. Full article
(This article belongs to the Special Issue Vehicular Networking and Intelligent Transportation Systems 2023)
Show Figures

Figure 1

Back to TopTop