Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = degree of acetylation (DA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2363 KB  
Article
Preparation and Paclitaxel-Loading of Regenerated Chitin Nanoparticles
by Yanping Li, Dan Qiu, Xuechen Zhuang, Zhiduo Pei, Tao Li and Shanggui Deng
Polymers 2025, 17(22), 3036; https://doi.org/10.3390/polym17223036 - 16 Nov 2025
Viewed by 2253
Abstract
This study aims to investigate biodegradable and biocompatible chitin as a natural carrier for loading the hydrophobic anti-cancer drug paclitaxel (PTX) for the first time, resulting in a new loading system of chitin nanoparticles–paclitaxel (ChNps–PTX). The well-dispersed chitin nanoparticles (ChNps) and ChNps–PTX were [...] Read more.
This study aims to investigate biodegradable and biocompatible chitin as a natural carrier for loading the hydrophobic anti-cancer drug paclitaxel (PTX) for the first time, resulting in a new loading system of chitin nanoparticles–paclitaxel (ChNps–PTX). The well-dispersed chitin nanoparticles (ChNps) and ChNps–PTX were prepared via a water-dripping regeneration method. The functional groups, crystal form, and the high degree of acetylation (DA = 96.03%) of ChNps did not change during regeneration, suggesting that ChNps retained the complete molecular structure of chitin. The average particle size of ChNps–PTX was approximately 93.11 nm, which was larger than that of ChNps (84.06 nm) because of loading PTX (the drug loading was approximately 8.01%). TEM and CLSM were employed to confirm PTX existence in ChNps–PTX, and the nano-strip PTX (30.52 ± 6.78 nm in length and 16.02 ± 2.77 nm in width) was found for the first time. Loading of PTX resulted in ChNps–PTX presenting a new characteristic peak at 1734 cm−1 in FT-IR spectra, a new peak at 2θ = 5.3° in XRD pattern, and a new exothermic peak (252 °C) in DSC curve. While ChNps–PTX showed a lower crystallinity (19.86%) compared with that of ChNps (24.11%) and chitin (36.77%), utilizing the chitin carrier and mild regeneration method to load PTX were highly beneficial for pharmaceutical fields. Full article
Show Figures

Graphical abstract

13 pages, 3925 KB  
Article
Extraction, Quantification, and Characterization of Chitin from Marine Biofouling Organisms Amphipods (Jassa sp.) and Hydroids (Coryne sp.)
by Christopher Selvoski, Camila Flor Lobarbio, Matthew Plowman-Holmes, Peter Bell, Benie Chambers and Mathew Cumming
Polysaccharides 2025, 6(4), 87; https://doi.org/10.3390/polysaccharides6040087 - 3 Oct 2025
Cited by 1 | Viewed by 893
Abstract
As the demand for chitin grows, new chitin sources with unique physicochemical properties are required. Abundant biofouling species, such as amphipods and hydroids, have chitinous skeletal systems that can be utilized for chitin production. However, little is known about these chitin sources. This [...] Read more.
As the demand for chitin grows, new chitin sources with unique physicochemical properties are required. Abundant biofouling species, such as amphipods and hydroids, have chitinous skeletal systems that can be utilized for chitin production. However, little is known about these chitin sources. This study investigated the viability of amphipods (Jassa sp.) and hydroids (Coryne sp.) obtained from aquaculture biofouling assemblages as novel sources of chitin. Chitin was extracted from these sources and characterized in terms of its degree of acetylation (DA), crystallinity index (CrI), molecular weight (MW), thermal stability, and surface morphology. Physiochemical characteristics where then compared against commercially available shrimp chitin. Results show that a 32.75% chitin yield can be obtained from hydroids. The percentage DA for amphipod (AC) and hydroid (HC) chitin is 58.4–59.2% and 64.8–66.7%, respectively. AC is characterized as α-chitin with a low molecular weight (MW), while HC is medium-MW β-chitin. This finding is significant because it shows hydroids to be a new source of rare β-chitin. In addition, AC has higher thermal stability than HC. AC and HC greatly differ in terms of surface morphology. Therefore, the chitin biomaterials extracted from amphipods and hydroids have different but favorable properties that can be used for diverse applications. Full article
Show Figures

Figure 1

20 pages, 1921 KB  
Article
Surface Activity of Hydrophobized Modified Starch Hydrolysates in Mixed Systems
by Emilia Konował, Marta Sybis and Krystyna Prochaska
Materials 2024, 17(22), 5526; https://doi.org/10.3390/ma17225526 - 12 Nov 2024
Cited by 4 | Viewed by 1358
Abstract
The manuscript presents research focusing on the adsorption and emulsion properties of starch hydrolysates modified through acetylation, oxidation, and cross-linking. The techniques used in this study included measurements of equilibrium surface tension (du Noüy ring) dynamic surface tension (drop shape analysis), and the [...] Read more.
The manuscript presents research focusing on the adsorption and emulsion properties of starch hydrolysates modified through acetylation, oxidation, and cross-linking. The techniques used in this study included measurements of equilibrium surface tension (du Noüy ring) dynamic surface tension (drop shape analysis), and the preparation and evaluation of emulsion stability (TURBISCAN). The surface activity of the acetylated starch hydrolysates is affected by the degree of acetylation. The acetylated starch 0.02Ac-H exhibited higher surface activity than the more highly substituted derivative 0.1Ac-H. Furthermore, it was shown that the surface activity of the components increased as the acetylated oxidized starch underwent hydrolysis. The fractions collected after 180 min using a membrane with a low separation capability (8 kDa) revealed the highest capacity for reducing surface tension. In binary systems consisting of starch derivatives and surfactants, synergistic effects in reducing surface tension were particularly noticeable in systems containing ionic surfactants. The addition of a cationic surfactant to the modified starch hydrolysate solution (1:6 mol/mol) resulted in a significantly more efficient saturation of the air/water interface. This study demonstrated that emulsions stabilized with modified starch hydrolysates remained stable over time, even when these hydrolysates constituted up to 60% of the emulsifier mixture. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Materials and Their Applications)
Show Figures

Graphical abstract

18 pages, 1606 KB  
Article
1H-NMR, HPSEC-RID, and HPAEC-PAD Characterization of Polysaccharides Extracted by Hydrodynamic Cavitation from Apple and Pomegranate By-Products for Their Valorization: A Focus on Pectin
by Silvia D’Agostino, Lorenzo Cecchi, Mohamad Khatib, Paola Domizio, Gianni Zoccatelli, Valentina Civa, Federica Mainente, Carlotta Breschi, Tommaso Ugolini, Francesco Meneguzzo, Federica Zabini, Luca Tagliavento, Nadia Mulinacci and Bruno Zanoni
Processes 2024, 12(10), 2113; https://doi.org/10.3390/pr12102113 - 28 Sep 2024
Cited by 3 | Viewed by 2525
Abstract
Several chemical analytical methods were applied to characterize the chemical structure of polysaccharides extracted from discarded apples and pomegranate peels using hydrodynamic cavitation methods in a circular economy perspective. In particular, the purity of the polysaccharides and the degrees of acetylation and methylation [...] Read more.
Several chemical analytical methods were applied to characterize the chemical structure of polysaccharides extracted from discarded apples and pomegranate peels using hydrodynamic cavitation methods in a circular economy perspective. In particular, the purity of the polysaccharides and the degrees of acetylation and methylation were evaluated by proton Nuclear Magnetic Resonance (1H-NMR) analysis; simple sugars and galacturonic acid were analyzed simultaneously by High-Performance Anion Exchange Chromatography—Pulsed Amperometric Detector (HPAEC-PAD); the molecular weight of the extracted polysaccharides was determined by High-Performance Size Exclusion Chromatography-Refractive Index Detector (HPSEC-RID). The results showed a negligible presence of co-precipitated proteins/tannins, easily removed by dialysis, as well as other co-precipitated molecules such as monosaccharides and organic acids. Polysaccharides from apples consisted mainly of pectic material with a prevalence of homogalacturonans. Polysaccharides from pomegranate peels showed greater compositional variability with significant amounts of arabinose and galactose, a lower content of pectin, and the presence of rhamnogalacturonans I. Both polysaccharides were highly methylated and differed in the degree of acetylation, which could lead to different properties. Polysaccharides from apples presented two main molecular weights (>805 kDa and 348–805 kDa, respectively), while those from pomegranate peel showed a major fraction at 348 kDa and minor fractions < 23 kDa. In conclusion, the research tools proposed by this study have allowed defining the macrostructure of polysaccharides in a quick and efficient way to valorize these food by-products. Full article
Show Figures

Figure 1

18 pages, 5769 KB  
Article
Study on the Structural Features of Eight Dendrobium Polysaccharides and Their Protective Effects on Gastric Mucosa
by Haonan Wang, Ying Wang, Yuanxi Liu, Jinxin Xie, Yazhong Zhang, Hongyu Jin, Feng Wei and Shuangcheng Ma
Foods 2024, 13(18), 3011; https://doi.org/10.3390/foods13183011 - 23 Sep 2024
Cited by 7 | Viewed by 2590
Abstract
This study aimed to analyze the structure of polysaccharides from eight different Dendrobium species and their protective effects on gastric mucosa. Ultraviolet (UV) analysis showed that the contents of eight polysaccharides ranged from 51.89 ± 6.91% to 80.57 ± 11.63%; the degree of [...] Read more.
This study aimed to analyze the structure of polysaccharides from eight different Dendrobium species and their protective effects on gastric mucosa. Ultraviolet (UV) analysis showed that the contents of eight polysaccharides ranged from 51.89 ± 6.91% to 80.57 ± 11.63%; the degree of acetylation ranged from 0.17 ± 0.03 to 0.48 ± 0.03. High-performance liquid chromatography (HPLC) results showed that these polysaccharides were mainly composed of mannose (Man) and glucose (Glc) with a small amount of galactose (Gal) and arabinose (Ara), and the monosaccharide ratios of different Dendrobium species were different. High-performance size exclusion chromatography—multi angle light scattering—refractive index detector (HPSEC-MALS-RID) showed that the molecular weight (Mw) of all Dendrobium polysaccharides was >1 × 105 Da; D. huoshanense had the lowest molecular weight. Subsequently, an ethanol injured GES-1 cell model was constructed to evaluate the gastric mucosal protective potential of polysaccharides from eight different Dendrobium species. The results showed that the protective effect of the low concentration 50 μg/mL DHP treatment group was similar to that of the control group (p > 0.05), and the cell viability could reach 97.32% of that of the control group. Based on the polysaccharide composition, different kinds of Dendrobium have different degrees of migration and repair effects on GES-1 damaged cells, and the effect of DHP is slightly better than that of other varieties (83.13 ± 1.05%). Additionally, Dendrobium polysaccharides alleviated ethanol-induced oxidative stress and inflammatory response in gastric mucosal cells by enhancing the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) and reducing the levels of malondialdehyde and reactive oxygen species. Overall, DHP can most effectively protect gastric mucosa. These findings enhance our understanding of the relationship between the structure and biological activity of Dendrobium polysaccharides, providing a foundation for the quality control of Dendrobium. Furthermore, these findings offer theoretical support for the development of Dendrobium polysaccharides as nutraceuticals to treat digestive system diseases. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 5311 KB  
Article
Pectins Rich in RG-I Extracted from Watermelon Peel: Physicochemical, Structural, Emulsifying, and Antioxidant Properties
by Xiaojun Ma, Xinxin Cheng, Yuyi Du, Peiyao Tang, Liangxiao Chen, Wei Chen and Zhenjia Zheng
Foods 2024, 13(15), 2338; https://doi.org/10.3390/foods13152338 - 25 Jul 2024
Cited by 5 | Viewed by 4003
Abstract
RG-I pectin has excellent health benefits, but its raw materials are relatively scarce, and its complex structure often breaks down its side-chain structure during the extraction process. In this study, the physicochemical and antioxidant properties of a branched-chain-rich pectin gained from watermelon peel [...] Read more.
RG-I pectin has excellent health benefits, but its raw materials are relatively scarce, and its complex structure often breaks down its side-chain structure during the extraction process. In this study, the physicochemical and antioxidant properties of a branched-chain-rich pectin gained from watermelon peel were demonstrated, and the structure–function relationships of RG-I-enriched pectin and emulsification properties were investigated. Fourier transform infrared spectroscopy, high-performance anion exchange chromatography, high-performance gel permeation chromatography, nuclear magnetic resonance spectroscopy, and methylation analyses reveal it as acetylated, low-methoxylated pectin, rich in RG-I side chains (MW: 1991 kDa, RG-I = 66.17%, methylation degree: 41.45%, (Ara + Gal)/Rha: 20.59%). RPWP outperforms commercial citrus pectin in emulsification and stability, significantly preventing lipid oxidation in emulsions. It also exhibits free radical scavenging abilities, contributing to its effectiveness in preventing lipid oxidation. Emulsions made with RPWP show higher viscosity and form a weak gel network (G′ > G″), enhancing stability by preventing phase separation. These findings position watermelon peel as a good source of RG-I pectin and deepen our understanding of RPWP behavior in emulsion systems, which may be useful in the food and pharmaceutical fields. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

16 pages, 3123 KB  
Article
Heterologous Expression and Characterization of a pH-Stable Chitinase from Micromonospora aurantiaca with a Potential Application in Chitin Degradation
by Han-Zhong Guo, Dou Wang, Hui-Ting Yang, Yu-Le Wu, Yong-Cheng Li, Guang-Hua Xia and Xue-Ying Zhang
Mar. Drugs 2024, 22(6), 287; https://doi.org/10.3390/md22060287 - 20 Jun 2024
Cited by 6 | Viewed by 2689
Abstract
To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is [...] Read more.
To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0–10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Graphical abstract

18 pages, 1882 KB  
Review
Green-Chemical Strategies for Production of Tailor-Made Chitooligosaccharides with Enhanced Biological Activities
by Reeba Thomas, Tamo Fukamizo and Wipa Suginta
Molecules 2023, 28(18), 6591; https://doi.org/10.3390/molecules28186591 - 13 Sep 2023
Cited by 7 | Viewed by 2372
Abstract
Chitooligosaccharides (COSs) are b-1,4-linked homo-oligosaccharides of N-acetylglucosamine (GlcNAc) or glucosamine (GlcN), and also include hetero-oligosaccharides composed of GlcNAc and GlcN. These sugars are of practical importance because of their various biological activities, such as antimicrobial, anti-inflammatory, antioxidant and antitumor activities, as well [...] Read more.
Chitooligosaccharides (COSs) are b-1,4-linked homo-oligosaccharides of N-acetylglucosamine (GlcNAc) or glucosamine (GlcN), and also include hetero-oligosaccharides composed of GlcNAc and GlcN. These sugars are of practical importance because of their various biological activities, such as antimicrobial, anti-inflammatory, antioxidant and antitumor activities, as well as triggering the innate immunity in plants. The reported data on bioactivities of COSs used to contain some uncertainties or contradictions, because the experiments were conducted with poorly characterized COS mixtures. Recently, COSs have been satisfactorily characterized with respect to their structures, especially the degree of polymerization (DP) and degree of N-acetylation (DA); thus, the structure–bioactivity relationship of COSs has become more unambiguous. To date, various green-chemical strategies involving enzymatic synthesis of COSs with designed sequences and desired biological activities have been developed. The enzymatic strategies could involve transglycosylation or glycosynthase reactions using reducing end-activated sugars as the donor substrates and chitinase/chitosanase and their mutants as the biocatalysts. Site-specific chitin deacetylases were also proposed to be applicable for this purpose. Furthermore, to improve the yields of the COS products, metabolic engineering techniques could be applied. The above-mentioned approaches will provide the opportunity to produce tailor-made COSs, leading to the enhanced utilization of chitin biomass. Full article
(This article belongs to the Special Issue Chitosan, Chitosan Derivatives and Their Applications)
Show Figures

Graphical abstract

12 pages, 1049 KB  
Article
Comparative Evaluation of the In Vitro Cytotoxicity of a Series of Chitosans and Chitooligosaccharides Water-Soluble at Physiological pH
by Catia Dias, Loris Commin, Catherine Bonnefont-Rebeix, Samuel Buff, Pierre Bruyère and Stéphane Trombotto
Polymers 2023, 15(18), 3679; https://doi.org/10.3390/polym15183679 - 6 Sep 2023
Cited by 9 | Viewed by 3078
Abstract
Chitosans (CS) have been of great interest due to their properties and numerous applications. However, CS have poor solubility in neutral and basic media, which limits their use in these conditions. In contrast, chitooligosaccharides (COS) have better solubility in water and lower viscosity [...] Read more.
Chitosans (CS) have been of great interest due to their properties and numerous applications. However, CS have poor solubility in neutral and basic media, which limits their use in these conditions. In contrast, chitooligosaccharides (COS) have better solubility in water and lower viscosity in aqueous solutions whilst maintaining interesting biological properties. CS and COS, unlike other sugars, are not single polymers with a defined structure but are groups of molecules with modifiable structural parameters, allowing the adaptation and optimization of their properties. The great versatility of CS and COS makes these molecules very attractive for different applications, such as cryopreservation. Here, we investigated the effect of the degree of polymerization (DP), degree of N-acetylation (DA) and concentration of a series of synthesized CS and COS, water-soluble at physiological pH, on their cytotoxicity in an L929 fibroblast cell culture. Our results demonstrated that CS and COS showed no sign of toxicity regarding cell viability at low concentrations (≤10 mg/mL), independently of their DP and DA, whereas a compromising effect on cell viability was observed at a high concentration (100 mg/mL). Full article
Show Figures

Figure 1

8 pages, 1988 KB  
Article
Acetylation of Scaled-Down Chitin Nanofiber Films to Improve Mechanical Properties
by Jun-ichi Kadokawa, Chiharu Iiyama and Aoi Nakashima
Surfaces 2023, 6(3), 249-256; https://doi.org/10.3390/surfaces6030017 - 27 Jul 2023
Cited by 1 | Viewed by 2391
Abstract
A flexible chitin nanofiber (ChNF) film with a thin fiber morphology, named, scaled-down (SD)-ChNF film, was previously found to be formed via successive partial deacetylation of the parent self-assembled ChNFs, cationization/dispersion via electrostatic repulsion in aqueous acetic acid, and suction filtration/drying. In this [...] Read more.
A flexible chitin nanofiber (ChNF) film with a thin fiber morphology, named, scaled-down (SD)-ChNF film, was previously found to be formed via successive partial deacetylation of the parent self-assembled ChNFs, cationization/dispersion via electrostatic repulsion in aqueous acetic acid, and suction filtration/drying. In this study, acetylation of a SD-ChNF film using acetic anhydride in pyridine was carried out to improve the mechanical properties. The FT-IR spectra of the acetylated SD-ChNF films suggested that acetylation progressed from the surface to the interior of the films with the increasing amounts of pyridine and elevating temperatures. The degrees of acetylation (DA) strongly affected the chitin crystallinity and surface morphology of the acetylated SD-ChNF films. Tensile testing of the acetylated SD-ChNF films indicated that the mechanical properties were improved by adjusting the DA values of the films. For example, the acetylated SD-ChNF film with an 1.84 DA value on surface showed values of 44.1 MPa and 24.9% for tensile strength and elongation at break, respectively. Full article
Show Figures

Graphical abstract

15 pages, 2188 KB  
Article
Evaluation of Acemannan in Different Commercial Beverages Containing Aloe Vera (Aloe barbadensis Miller) Gel
by Francesca Comas-Serra, Paula Estrada, Rafael Minjares-Fuentes and Antoni Femenia
Gels 2023, 9(7), 552; https://doi.org/10.3390/gels9070552 - 6 Jul 2023
Cited by 9 | Viewed by 7072
Abstract
Aloe vera (Aloe barbadensis Miller) gel is a frequently used ingredient in many food pro-ducts, particularly beverages, due to its reported health benefits. Studies have identified acemannan, a polysaccharide rich in mannose units which are partially or fully acetylated, as the primary [...] Read more.
Aloe vera (Aloe barbadensis Miller) gel is a frequently used ingredient in many food pro-ducts, particularly beverages, due to its reported health benefits. Studies have identified acemannan, a polysaccharide rich in mannose units which are partially or fully acetylated, as the primary bioactive compound in Aloe vera gel. The acemannan content and its degree of acetylation (DA) were measured in 15 different commercial beverages containing Aloe vera at varying concentrations (from 30% to 99.8%) as listed on the label. Other biopolymers such as pectins, hemicelluloses, and cellulose were also evaluated. Flavoured beverages (seven samples labelled as containing from 30% to 77% Aloe vera) presented low levels of acemannan (<30 mg/100 g of fresh sample) and were fully deacetylated in most cases. These samples had high levels of other polymers such as pectins, hemicelluloses, and cellulose, likely due to the addition of fruit juices for flavour. Unflavoured beverages (eight samples, with Aloe vera concentrations above 99% according to their labels) had variable levels of acemannan, with only three containing more than 160 mg/100 g of fresh sample. In fact, four samples had less than 35 mg acemannan/100 g of fresh sample. DA levels in all but one sample were lower than 35%, possibly due to processing techniques such as pasteurization causing degradation and deacetylation of the acemannan polymer. Legislation regarding Aloe vera products is limited, and manufacturers are not required to disclose the presence or quality of bioactive compounds in their products, leaving consumers uncertain about the true properties of the products they purchase. Full article
(This article belongs to the Special Issue Food Gels and Edible Gels)
Show Figures

Figure 1

26 pages, 2138 KB  
Review
Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight
by Ramón Román-Doval, Sandra P. Torres-Arellanes, Aldo Y. Tenorio-Barajas, Alejandro Gómez-Sánchez and Anai A. Valencia-Lazcano
Polymers 2023, 15(13), 2867; https://doi.org/10.3390/polym15132867 - 28 Jun 2023
Cited by 197 | Viewed by 29188
Abstract
Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified [...] Read more.
Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified into three different types, namely, high molecular weight chitosan (HMWC, >700 kDa), medium molecular weight chitosan (MMWC, 150–700 kDa), and low molecular weight chitosan (LMWC, less than 150 kDa). Chitosan shows several properties that can be applied in horticultural crops, such as plant root growth enhancer, antimicrobial, antifungal, and antiviral activities. Nevertheless, these properties depend on its molecular weight (MW) and acetylation degree (DD). Therefore, this article seeks to extensively review the properties of chitosan applied in the agricultural sector, classifying them in relation to chitosan’s MW, and its use as a material for sustainable agriculture. Full article
Show Figures

Figure 1

17 pages, 7848 KB  
Article
Comparative Analysis of Water-Soluble Polysaccharides from Dendrobium Second Love ‘Tokimeki’ and Dendrobium nobile in Structure, Antioxidant, and Anti-Tumor Activity In Vitro
by Guangying Ye, Jinhui Zhang, Xiaoli Xu, Canbiao Zeng, Qingsheng Ye and Zaihua Wang
Int. J. Mol. Sci. 2023, 24(12), 10361; https://doi.org/10.3390/ijms241210361 - 20 Jun 2023
Cited by 10 | Viewed by 2540
Abstract
With potential anti-tumor and antioxidant properties, the polysaccharide content of D. nobile is relatively lower than that of the other medicinal Dendrobium. To find high-content polysaccharide resources, the polysaccharide (DHPP-Ⅰs) was prepared from D. Second Love ‘Tokimeki’ (a D. nobile hybrid) and compared with [...] Read more.
With potential anti-tumor and antioxidant properties, the polysaccharide content of D. nobile is relatively lower than that of the other medicinal Dendrobium. To find high-content polysaccharide resources, the polysaccharide (DHPP-Ⅰs) was prepared from D. Second Love ‘Tokimeki’ (a D. nobile hybrid) and compared with DNPP-Ⅰs from D. nobile. DHPP-Is (Mn 31.09 kDa) and DNPP-Is (Mn 46.65 kDa) were found to be O-acetylated glucomannans (-Glcp-(1,4) and O-acetylated-D-Manp-(1,4) backbones), analogous to other Dendrobium polysaccharides. DHPP-Ⅰs had higher glucose content (31.1%) and a lower degree (0.16) of acetylation than DNPP-Ⅰs (15.8%, 0.28). Meanwhile, DHPP-Ⅰs and DNPP-Ⅰs had the same ability in the radical scavenging assay, which was milder than the control of Vc. Both DHPP-Is and DNPP-Is inhibited SPC-A-1 cell proliferation in vitro, with obvious differences in dose concentrations (0.5–2.0 mg/mL) and treatment times (24–72 h). Therefore, the antioxidant activity of DHPP-Ⅰs and DNPP-Ⅰs is not associated with distinction in anti-proliferative activity. As a glucomannan derived from non-medicinal Dendrobium, DHPP-Ⅰs has similar bioactivity to other medicinal Dendrobium, and this could serve as a starting point for studying the conformational–bioactivity relationship of Dendrobium polysaccharides. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 1178 KB  
Article
Description of the Wild Strain Rhizobium rosettiformans DSM26376, Reclassified under Peteryoungia rosettiformans comb.nov., for Producing Glucuronan
by Gwendoline Christophe, Xiaoyang Hou, Emmanuel Petit, Mounir Traikia, Didier Le Cerf, Christophe Rihouey, Christine Gardarin, Cédric Delattre, Philippe Michaud, Guillaume Pierre and Pascal Dubessay
Polymers 2023, 15(9), 2177; https://doi.org/10.3390/polym15092177 - 3 May 2023
Cited by 4 | Viewed by 2522
Abstract
Glucuronan is a polysaccharide composed of β-(1,4)-linked d-glucuronic acids having intrinsic properties and biological activities recoverable in many fields of application. Currently, the description of Sinorhyzobium meliloti M5N1CS mutant bacterial strain as the sole source of glucuronan makes it relevant to the [...] Read more.
Glucuronan is a polysaccharide composed of β-(1,4)-linked d-glucuronic acids having intrinsic properties and biological activities recoverable in many fields of application. Currently, the description of Sinorhyzobium meliloti M5N1CS mutant bacterial strain as the sole source of glucuronan makes it relevant to the exploration of new microorganisms producing glucuronan. In this study, the Peteryoungia rosettifformans strain (Rhizobia), was identified as a wild producer of an exopolysaccharide (RhrBR46) related to glucuronan. Structural and biochemical features, using colorimetric assays, Fourier infrared spectroscopy, nuclear magnetic resonance, high pressure size exclusion chromatography coupled to multi-angle light laser scattering, and enzymatic assays allowed the characterization of a polyglucuronic acid, having a molecular mass (Mw¯) of 1.85 × 105 Da, and being partially O-acetylated at C-2 and/or C-3 positions. The concentration of Mg2+ ions in the cultivation medium has been shown to impact the structure of RhrBR46, by reducing drastically its Mw¯ (73%) and increasing its DA (10%). Comparative structural analyses between RhrBR46 and the glucuronan from Sinorhyzobium meliloti M5N1CS strain revealed differences in terms of molecular weight, degree of acetylation (DA), and the distribution of acetylation pattern. These structural divergences of RhrBR46 might contribute to singular properties or biological activities of RhrBR46, offering new perspectives of application. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

26 pages, 3871 KB  
Article
On the Fractionation and Physicochemical Characterisation of Self-Assembled Chitosan–DNA Polyelectrolyte Complexes
by Ayesha Sajid, Matteo Castronovo and Francisco M. Goycoolea
Polymers 2023, 15(9), 2115; https://doi.org/10.3390/polym15092115 - 28 Apr 2023
Cited by 5 | Viewed by 2523
Abstract
Chitosan is extensively studied as a carrier for gene delivery and is an attractive non-viral gene vector owing to its polycationic, biodegradable, and biocompatible nature. Thus, it is essential to understand the chemistry of self-assembled chitosan–DNA complexation and their structural and functional properties, [...] Read more.
Chitosan is extensively studied as a carrier for gene delivery and is an attractive non-viral gene vector owing to its polycationic, biodegradable, and biocompatible nature. Thus, it is essential to understand the chemistry of self-assembled chitosan–DNA complexation and their structural and functional properties, enabling the formation of an effective non-viral gene delivery system. In this study, two parent chitosans (samples NAS-032 and NAS-075; Mw range ~118–164 kDa) and their depolymerised derivatives (deploy nas-032 and deploy nas-075; Mw range 6–14 kDa) with degrees of acetylation 43.4 and 4.7%, respectively, were used to form polyelectrolyte complexes (PECs) with DNA at varying [–NH3+]/[–PO4] (N/P) molar charge ratios. We investigated the formation of the PECs using ζ-potential, asymmetric flow field-flow fractionation (AF4) coupled with multiangle light scattering (MALS), refractive index (RI), ultraviolet (UV) and dynamic light scattering (DLS) detectors, and TEM imaging. PEC formation was confirmed by ζ-potential measurements that shifted from negative to positive values at N/P ratio ~2. The radius of gyration (Rg) was determined for the eluting fractions by AF4-MALS-RI-UV, while the corresponding hydrodynamic radius (Rh), by the DLS data. We studied the influence of different cross-flow rates on AF4 elution patterns for PECs obtained at N/P ratios 5, 10, and 20. The determined rho shape factor (ρ = Rg/Rh) values for the various PECs corresponded with a sphere morphology (ρ ~0.77–0.85), which was consistent with TEM images. The results of this study represent a further step towards the characterisation of chitosan–DNA PECs by the use of multi-detection AF4 as an important tool to fractionate and infer aspects of their morphology. Full article
(This article belongs to the Special Issue New Progress in Polymer Self-Assembly)
Show Figures

Figure 1

Back to TopTop