Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = deep geological sediments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15236 KiB  
Article
Sedimentary Characteristics and Model of Estuary Dam-Type Shallow-Water Delta Front: A Case Study of the Qing 1 Member in the Daqingzijing Area, Songliao Basin, China
by Huijian Wen, Weidong Xie, Chao Wang, Shengjuan Qian and Cheng Yuan
Appl. Sci. 2025, 15(15), 8327; https://doi.org/10.3390/app15158327 - 26 Jul 2025
Viewed by 248
Abstract
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. [...] Read more.
The sedimentary characteristics and model of the shallow-water delta front are of great significance for the development of oil and gas reservoirs. At present, there are great differences in the understanding of the distribution patterns of estuary dams in the shallow-water delta front. Therefore, this paper reveals the distribution characteristics of estuary dams through the detailed dissection of the Qing 1 Member in the Daqingzijing area and establishes a completely new distribution pattern of estuary dams. By using geological data such as logging and core measurements, sedimentary microfacies at the shallow-water delta front are classified and logging facies identification charts for each sedimentary microfacies are developed. Based on the analysis of single-well and profile facies, the sedimentary evolution laws of the Qing 1 Member reservoirs are analyzed. On this basis, the sedimentary characteristics and model of the lacustrine shallow-water delta front are established. The results indicate that the Qing 1 Member in the Daqingzijing area exhibits a transitional sequence from a delta front to pro-delta facies and finally to deep lacustrine facies, with sediments continuously retrograding upward. Subaqueous distributary channels and estuary dams constitute the skeletal sand bodies of the retrogradational shallow-water delta. The estuary dam sand bodies are distributed on both sides of the subaqueous distributary channels, with sand body development gradually decreasing in scale from bottom to top. These bodies are intermittently distributed, overlapping, and laterally connected in plan view, challenging the conventional understanding that estuary dams only occur at the bifurcation points of underwater distributary channels. Establishing the sedimentary characteristics and model of the shallow-water delta front is of great significance for the exploration and development of reservoirs with similar sedimentary settings. Full article
Show Figures

Figure 1

21 pages, 7866 KiB  
Article
Asteroid and Meteorite Impacts as a Cause of Large Sedimentary Basins: A Case Study of the Transylvanian Depression
by Dumitru Ioane, Irina Stanciu and Mihaela Scradeanu
Geosciences 2025, 15(7), 267; https://doi.org/10.3390/geosciences15070267 - 9 Jul 2025
Viewed by 692
Abstract
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events [...] Read more.
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events due to active plate tectonics, sedimentation, and volcanism, with these geological processes destroying and burying their impact geomorphological signatures. To enlarge the Earth’s impacts database, new concepts and research methods are necessary, as well as the reinterpretation of old geological and geophysical models. Geomorphological, Geological, and Geophysical (3G) signatures in concealed impacted areas are discussed in this paper; the first offers the target characteristics, while the others give means for detecting their unseen remnants. The 3G signatures have been applied to the Transylvanian Depression, a fascinating geological structure, with difficulties in explaining the direct overlapping of regionally developed thick tuff and thick salt layers, and undecided interpretation of the regional magnetic anomaly. Large and deep sedimentary basins, such as the Precaspian, Alexandria and Transylvanian depressions, are interpreted to have started as impacted areas during the Permian or the Lower Neogene. Geophysical and geological existing information have been reinterpreted, offering a new way in understanding deeply located geological structures. Full article
Show Figures

Figure 1

21 pages, 4887 KiB  
Article
The Formation Mechanisms of Ultra-Deep Effective Clastic Reservoir and Oil and Gas Exploration Prospects
by Yukai Qi, Zongquan Hu, Jingyi Wang, Fushun Zhang, Xinnan Wang, Hanwen Hu, Qichao Wang and Hanzhou Wang
Appl. Sci. 2025, 15(13), 6984; https://doi.org/10.3390/app15136984 - 20 Jun 2025
Viewed by 448
Abstract
This study systematically analyzes reservoir formation mechanisms under deep burial conditions, integrating macroscopic observations from representative ultra-deep clastic reservoirs in four major sedimentary basins in central and western China. Developing effective clastic reservoirs in ultra-deep strata (6000–8000 m) remains a critical yet debated [...] Read more.
This study systematically analyzes reservoir formation mechanisms under deep burial conditions, integrating macroscopic observations from representative ultra-deep clastic reservoirs in four major sedimentary basins in central and western China. Developing effective clastic reservoirs in ultra-deep strata (6000–8000 m) remains a critical yet debated topic in petroleum geology. Recent advances in exploration techniques and geological understanding have challenged conventional views, confirming the presence of viable clastic reservoirs at such depths. Findings reveal that reservoir quality in ultra-deep strata is preserved and enhanced through the interplay of sedimentary, diagenetic, and tectonic processes. Key controlling factors include (1) high-energy depositional environments promoting primary porosity development, (2) proximity to hydrocarbon source rocks enabling multi-phase hydrocarbon charging, (3) overpressure and low geothermal gradients reducing cementation and compaction, and (4) late-stage tectonic fracturing that significantly improves permeability. Additionally, dissolution porosity and fracture networks formed during diagenetic and tectonic evolution collectively enhance reservoir potential. The identification of favorable reservoir zones under the sedimentation–diagenesis-tectonics model provides critical insights for future hydrocarbon exploration in ultra-deep clastic sequences. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

21 pages, 1718 KiB  
Article
New Insight into Geochemistry and Mineralogy of Deep Caves in Croatian Karst and Its Implications for Environmental Impacts
by Dalibor Paar, Stanislav Frančišković-Bilinski, Nenad Buzjak and Krešimir Maldini
Water 2025, 17(7), 1001; https://doi.org/10.3390/w17071001 - 28 Mar 2025
Viewed by 486
Abstract
This study examines speleothems, sediments, rock, and water to assess geochemical and mineralogical processes in deep karst systems. Focusing on Slovačka jama cave (−1320 m deep) and the Velebita cave system (−1026 m deep), we identify elemental and mineralogical anomalies that provide valuable [...] Read more.
This study examines speleothems, sediments, rock, and water to assess geochemical and mineralogical processes in deep karst systems. Focusing on Slovačka jama cave (−1320 m deep) and the Velebita cave system (−1026 m deep), we identify elemental and mineralogical anomalies that provide valuable records of element transport, mineral formation, and paleoenvironmental changes. Heavy metal anomalies (Al, B, Co, Mn, Na, Tl, Ba, Be, Cr, Cu, Fe, K, Pb, Rb, Ti, U, Zn) at 300–400 m of depth in Slovačka jama indicate a complex interplay of geological conditions, geomorphological processes, atmospheric deposition, and potential anthropogenic influences. Factor analysis reveals two elemental associations: (1) Fe, Pb, Cu, and Zn, linked to terrigenous aluminosilicates, and (2) Cd, Cr, Mo, and Ni, suggesting airborne or geological sources. Mineralogical analysis confirms the dominance of calcite, with quartz, clay minerals, feldspars, magnetite, and goethite also detected. High magnetic susceptibility values in sediment-rich samples suggest Fe-rich mineral inputs from weathering, biogenic activity, or industrial sources. Ba anomalies in feldspar-rich samples and Sr accumulation at depth indicate distinct geochemical processes. These findings enhance our understanding of deep karst geochemistry, crucial for paleoenvironmental reconstructions and groundwater protection. Full article
(This article belongs to the Special Issue Recent Advances in Karstic Hydrogeology, 2nd Edition)
Show Figures

Figure 1

18 pages, 3900 KiB  
Article
Resolving Subsurface Structure with Magnetotelluric Method in the Urban Area of Pingtung County, Southwestern Taiwan
by Haiyina Hasbia Amania, Ping-Yu Chang, Ding-Jiun Lin, Jordi Mahardika Puntu and Yekti Widyaningrum
Appl. Sci. 2025, 15(7), 3687; https://doi.org/10.3390/app15073687 - 27 Mar 2025
Viewed by 886
Abstract
This study presents the results of the Magnetotelluric (MT) survey aimed at resolving the subsurface structures in the northern part of the Pingtung Plain. Data analysis was conducted using ten local observation stations and one remote reference station. Due to the significant noise [...] Read more.
This study presents the results of the Magnetotelluric (MT) survey aimed at resolving the subsurface structures in the northern part of the Pingtung Plain. Data analysis was conducted using ten local observation stations and one remote reference station. Due to the significant noise of the urban environment, the process of obtaining high-quality results proved to be challenging. The impact of such noise on the transfer function estimation is demonstrated, emphasizing the need for careful data selection and processing to mitigate its effects. The results reveal a distinct low–high–low-resistivity trend in the subsurface, with the Quaternary–Neogene sediment boundary estimated to be up to 500 m deep. Additionally, this study maps depths of up to 4 km, where it indicates possible faulting structures below the study area, which may be related to the previously assumed structures south of the study area. Given the limited, available deep subsurface information of the study area, these findings offer a preliminary understanding of the subsurface characteristics of the northern Pingtung Plain, which may contribute to ongoing research on the geological characteristics of the region while taking into account the importance of addressing urban noise when interpreting MT data. Full article
(This article belongs to the Special Issue Applied Geophysical Imaging and Data Processing)
Show Figures

Figure 1

28 pages, 14530 KiB  
Article
A New Method of Geological Modeling for the Hydrocarbon Secondary Migration Research
by Yong Zhang, Chao Li, Jun Li, Xiaorong Luo, Ming Cheng, Xiaoying Zhang and Bin Lu
Appl. Sci. 2025, 15(6), 3377; https://doi.org/10.3390/app15063377 - 19 Mar 2025
Viewed by 750
Abstract
Reservoir geological modeling plays a crucial role in characterizing the spatial distribution and heterogeneity of subsurface reservoirs. The exploration of deep oil and gas resources is not only a global trend in the oil industry but also an inevitable choice for China to [...] Read more.
Reservoir geological modeling plays a crucial role in characterizing the spatial distribution and heterogeneity of subsurface reservoirs. The exploration of deep oil and gas resources is not only a global trend in the oil industry but also an inevitable choice for China to ensure energy security and achieve sustainable development in the oil and gas industry. Oil and gas exploration and development technologies have also made continuous breakthroughs, providing strong support for the sustained increase in China’s deep and ultra-deep oil and gas production. Deep and ultra-deep oil and gas reservoirs exhibit high levels of heterogeneity, which are governed by the original sedimentation processes and have a significant impact on oil and gas migration and accumulation. However, traditional pixel-based stochastic reservoir modeling encounters challenges when attempting to effectively simulate multiple facies simultaneously or objects with intricate internal hierarchical architectures. To address the characterization of highly heterogeneous deep and ultra-deep oil and gas reservoirs, this study defines unit architecture bodies, such as point bars, braided rivers, and mouth bars, incorporating internal nested hierarchies. Furthermore, a novel object-based stochastic modeling method is proposed, which leverages seismic and well logging interpretation data to construct and simulate reservoir bodies. The methodology is rooted in the unit element theory. In this approach, sedimentary facies models are stochastically constructed by selecting appropriate unit elements from a database of different sedimentary environments using Sequential Indicator Simulation. The modeling process is constrained by time sequence, event, and sedimentary microfacies distributions. Additionally, the porosity and permeability of each microfacies in the reservoir model are quantitatively characterized based on statistics derived from porosity and permeability data of different strata, sedimentary microfacies, and rock facies in the study area. To demonstrate the superiority and reliability of this novel modeling method, a modeling case is presented. The case utilizes braided river unit elements as objects for the stochastic simulation of the target reservoir. The results of the case study highlight the advantages and robustness of the proposed modeling approach. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

18 pages, 3086 KiB  
Article
Earth Fissures During Groundwater Depletion and Recovery: A Case Study at Shitangwan, Wuxi, Jiangsu, China
by Guang-Ya Wang, Jin-Qi Zhu, Greg G. You, Dan Zhang, Jun Yu, Fu-Gang Gou and Jian-Qiang Wu
Hydrology 2025, 12(3), 62; https://doi.org/10.3390/hydrology12030062 - 19 Mar 2025
Viewed by 582
Abstract
The Shitangwan earth fissure is a resultant geological hazard due to prolonged groundwater depletion and land subsidence in Wuxi, China, since the 1980s. Initially observed in 1991, the earth fissure experienced continuous development over the next several decades. Employing a diverse array of [...] Read more.
The Shitangwan earth fissure is a resultant geological hazard due to prolonged groundwater depletion and land subsidence in Wuxi, China, since the 1980s. Initially observed in 1991, the earth fissure experienced continuous development over the next several decades. Employing a diverse array of techniques, including field monitoring via multilayered borehole extensometers, earth fissure monitoring for lateral and vertical movements, advanced geophysical exploration, and conventional geological investigations, this study aims to mitigate the risks associated with land subsidence and earth fissures. It is found that the groundwater has recovered to the levels in the 1980s, land subsidence and earth fissuring have ceased, and the earth fissuring is closely linked to the land subsidence. A bedrock ridge and a river course are underlying porous Quaternary sediments beneath the earth fissure. The formation of the earth fissure is the result of a combination of factors, including spatial and temporal variations in strata compression, rugged bedrock terrain, and the heterogeneity of the strata profile. Land subsidence is primarily attributed to the deep pumping aquifer and its adjacent aquitards, which are responsive to groundwater recovery with a time lag of a decade, and the land rebound accounts for 2% of the accumulated land subsidence. Estimations suggest that the depth of the earth fissure may have reached the bedrock ridge. The mechanism of the earth fissuring is the coupled effect of tension from the rotation of shallow soil strata along the bedrock ridge and shearing of strata driven by the differential compression of deep strata below the ridge level. Full article
(This article belongs to the Section Soil and Hydrology)
Show Figures

Figure 1

23 pages, 25801 KiB  
Article
A Large-Scale Focused Fluid Flow Zone Between Atolls in the Xisha Islands (South China Sea): Types, Characteristics, and Evolution
by Jixiang Zhao, Benjun Ma, Zhiliang Qin, Wenjian Lan, Benyu Zhu, Shuyi Pang, Mingzhe Li and Ruining Wang
J. Mar. Sci. Eng. 2025, 13(2), 216; https://doi.org/10.3390/jmse13020216 - 23 Jan 2025
Viewed by 785
Abstract
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow [...] Read more.
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow system, five geological structures are recognized and described in detail, including pockmarks, volcanic mounds, pipes, faults, and forced folds. Pockmarks and volcanic mounds occur as clustered groups and their distributions are related to two large-scale volcanic zones with chaotic seismic reflections. Pipes, characterized by disordered seismic reflections, mainly occur within the focused fluid flow zone (FFFZ) and directly link with the large-scale deep volcano and its surrounding areas. Faults and fractures mainly occur along pipes and extend to the seafloor, commonly presenting lateral walls of mega-pockmarks. Forced folds are primarily clustered above volcanic zones and commonly restricted between faults or pipes, characterized by sediment deformations as indicated in seismic profiles. By comprehensive analysis of the above observations and a simplified simulation model, the volcanism-induced hydrothermal fluid activities are argued herein to contribute to these focused fluid flow structures. In addition, traces of suspected submarine instability disasters such as landslides have been found in this sea area, and more observational data will be needed to determine whether seafloor fluid flow zones can be used as a predictor of seafloor instability in the future. Full article
Show Figures

Figure 1

23 pages, 10471 KiB  
Article
Advancing Seabed Bedform Mapping in the Kuźnica Deep: Leveraging Multibeam Echosounders and Machine Learning for Enhanced Underwater Landscape Analysis
by Łukasz Janowski
Remote Sens. 2025, 17(3), 373; https://doi.org/10.3390/rs17030373 - 22 Jan 2025
Cited by 3 | Viewed by 1185
Abstract
The ocean, covering 71% of Earth’s surface, remains largely unexplored due to the challenges of the marine environment. This study focuses on the Kuźnica Deep in the Baltic Sea, aiming to develop an automatic seabed mapping methodology using multibeam echosounders (MBESs) and machine [...] Read more.
The ocean, covering 71% of Earth’s surface, remains largely unexplored due to the challenges of the marine environment. This study focuses on the Kuźnica Deep in the Baltic Sea, aiming to develop an automatic seabed mapping methodology using multibeam echosounders (MBESs) and machine learning. The research integrates various scientific fields to enhance understanding of the Kuźnica Deep’s underwater landscape, addressing sediment composition, backscatter intensity, and geomorphometric features. Advances in remote sensing, particularly, object-based image analysis (OBIA) and machine learning, have significantly improved geospatial data analysis for underwater landscapes. The study highlights the importance of using a reduced set of relevant features for training models, as identified by the Boruta algorithm, to improve accuracy and robustness. Key geomorphometric features were crucial for seafloor composition mapping, while textural features were less significant. The study found that models with fewer, carefully selected features performed better, reducing overfitting and computational complexity. The findings support hydrographic, ecological, and geological research by providing reliable seabed composition maps and enhancing decision-making and hypothesis generation. Full article
Show Figures

Figure 1

18 pages, 15965 KiB  
Article
On Tectonic and Hydro Meteorological Conditions of Methane Genesis and Migration in the Offshore Waters of East Vietnam
by Andrey Kholmogorov, Ruslan Kulinich, Galina Vlasova, Nadezhda Syrbu, Nengyou Wu and Yizhao Wan
Water 2025, 17(2), 150; https://doi.org/10.3390/w17020150 - 8 Jan 2025
Viewed by 845
Abstract
Complex geological, gas geochemical and hydro meteorological studies were conducted to investigate the methane fields present in the bottom sediments and seawater of the Red River and Phu Khanh sedimentary basins. We demonstrate that the system of tectonic faults that formed the sedimentary [...] Read more.
Complex geological, gas geochemical and hydro meteorological studies were conducted to investigate the methane fields present in the bottom sediments and seawater of the Red River and Phu Khanh sedimentary basins. We demonstrate that the system of tectonic faults that formed the sedimentary basins of the Red River and the Phu Khanh (the eastern shelf and slope of Vietnam) created the necessary conditions for the generation and migration of endogenous methane into the bottom sediments and seawater. It is shown that dissolved methane in seawater can be transported by marine currents, which in turn can be influenced by seasonal and irregular synoptic processes. The research shows that part of the dissolved methane contained in the waters above the Ken Bau gas field can be transported to the south by the coastal Vietnamese current, which adapts to the conditions of the winter northeast monsoon. It is concluded that there could be at least two deep sources of hydrocarbon gas emissions in the Phu Khanh basin. The impact of Typhoon Nakri on the transport of dissolved methane in the water column of the Phu Khanh sedimentary basin has been investigated. The typhoon could create favorable hydrodynamic conditions for the movement of dissolved gases from oil and gas deposits near the coasts of the islands of Kalimantan and Palawan to the Phu Khanh basin. A possible route for this transfer has been identified. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

18 pages, 19589 KiB  
Article
Geological Conditions and Sedimentary Models of Oligocene and Eocene Effective Source Rocks in the Northern Yinggehai Basin
by Jianxiang Pei, Gaowei Hu, Zhipeng Huo, Zhihong Chen, Yabing Chen, Xiaofei Fu, Weihong Wang, Haiyu Liu, Yanan Wang, Jingshuang Luo and Guofei Chen
J. Mar. Sci. Eng. 2025, 13(1), 100; https://doi.org/10.3390/jmse13010100 - 7 Jan 2025
Viewed by 822
Abstract
The development of the effective source rocks of the Eocene and Oligocene directly determines the oil and gas exploration potential in the northern Yinggehai Basin in China. Based on the analogy with the Hanoi Depression in Vietnam and the Yacheng District in the [...] Read more.
The development of the effective source rocks of the Eocene and Oligocene directly determines the oil and gas exploration potential in the northern Yinggehai Basin in China. Based on the analogy with the Hanoi Depression in Vietnam and the Yacheng District in the Qiongdongnan Basin and the comprehensive analysis of self-geological conditions, the development conditions of Eocene and Oligocene source rocks in the northern Yinggehai Basin are examined, focusing on tectonic evolution, sedimentary facies, and the paleoenvironment. Finally, the sedimentary models for the effective source rocks are established. The tectonic activity controlled the formation of the sedimentary deep depression and the migration of the sedimentary trough center, which migrated from east to west and then south from the Eocene to the Oligocene, leading to the sedimentary migration of good muddy source rocks. There are multiple sedimentary facies in favor of source rocks, including lacustrine facies, shallow marine facies, and delta plain swamps. The paleoenvironment indicates that the paleoclimate transitioned from warm and humid to cold and arid, the redox conditions evolved from semi-reducing to oxic, and paleoproductivity increased from the early to late Oligocene. Therefore, the early Oligocene was more conducive to the enrichment of organic matter. It is speculated that the warm and humid paleoclimate, reducing environment, and high paleoproductivity of the Eocene promoted the sedimentation and preservation of more organic matter. The above studies show that the northern Yinggehai Basin, especially the sedimentary period of the Eocene and Oligocene, has favorable geological conditions for the development of effective source rocks. The sedimentary models for Eocene lacustrine mudstones and Oligocene marine mudstones and marine–continental transitional coal-measure source rocks were established. These studies make up for the serious deficiency of previous research and mean that there is great exploration potential for oil and gas in the northern Yinggehai Basin in China. Full article
Show Figures

Figure 1

27 pages, 81739 KiB  
Article
Geological and Ecological Insights on the Lake Faro Global Geosite Within the Messina Strait Framework (Italy)
by Roberta Somma, Ezio Giuffrè, Sakho Amonullozoda, Sebastiano Ettore Spoto, Arturo Giacobbe and Salvatore Giacobbe
Geosciences 2024, 14(12), 319; https://doi.org/10.3390/geosciences14120319 - 24 Nov 2024
Cited by 1 | Viewed by 1305
Abstract
The Lake Faro brackish basin (Sicily, Italy) was established as a Global Geosite as a key locality of tectonic coastal lakes, but little research has been devoted to this rare geological and ecological framework. To fill this gap, the main stratigraphical, sedimentological, ecological, [...] Read more.
The Lake Faro brackish basin (Sicily, Italy) was established as a Global Geosite as a key locality of tectonic coastal lakes, but little research has been devoted to this rare geological and ecological framework. To fill this gap, the main stratigraphical, sedimentological, ecological, morpho-bathymetric, and structural features were reported, linking geodiversity with biodiversity. In Lake Faro, a shallow platform develops alongside a deep funnel-shaped basin, reaching a maximum depth of 29 m. A NNW-SSE trending steep cliff, representing the abrupt transition from the platform to the basin, was interpreted as a dextral transtensional fault (Lake Faro Fault), presumably active since the middle-late(?) Pleistocene. The switches of the steep cliff NW-wards, acquiring an E-W trend, was interpreted as being due to the occurrence of the normal Mortelle Fault, cut by the Faro Lake Fault. Bottom terrigenous deposits consisted of coarse- to fine-grained quartzo-lithic rich sediments deriving from high-grade metamorphic and igneous rocks, whereas bioclasts mainly derived from clam farming actives for several centuries up until today. The Quaternary shallow platform, from top to base, includes the following: (i) soft cover composed of coarse terrigenous and prevalent bioclastic deposits; (ii) hard conglomerates cemented by carbonates; and (iii) siliciclastic coarse deposits of the Messina Fm. In the deep basin, siliciclastic silty loams with minor amounts of bioclastic deposits prevailed in the soft cover. Substrate heterogeneity coupled with brackish-marine gradients are the main factors responsible for an articulate patchiness of different lagoon habitats and related benthic associations, which, according to the Barcelona Convention classification, can be summarized as follows: (i) MB1.541 (marine angiosperms or other halophytes), (ii) MB1.542 (Fucales), (iii) MB5.543 (photophilic algae, except Fucales), (iv) MB5.544 (Facies with Polychaeta), and (v) MB5.545 (Facies with Bivalvia). Typical marine associations, such as rhodolite beds, also occur. Finally, the lake, which has been exploited since the prehistoric age because of its high biodiversity and productivity, maintains some evidence of millennial relationships with the resident human cultures, attracted there by the favorable geomorphological and ecological peculiarities. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

14 pages, 44187 KiB  
Article
Spatiotemporal Variation in Mature Source Rocks Linked to the Generation of Various Hydrocarbons in the Fuxin Basin, Northeast China
by Xin Su, Jianliang Jia and Xiaoming Wang
Energies 2024, 17(22), 5654; https://doi.org/10.3390/en17225654 - 12 Nov 2024
Viewed by 844
Abstract
The assessment of highly mature source rocks linked to hydrocarbon generation remains a challenge in oil and gas exploration. However, substantial terrigenous influences and thermal variations have complicated the formation and evolution of source rocks. This study presents an integrated assessment of highly [...] Read more.
The assessment of highly mature source rocks linked to hydrocarbon generation remains a challenge in oil and gas exploration. However, substantial terrigenous influences and thermal variations have complicated the formation and evolution of source rocks. This study presents an integrated assessment of highly mature source rocks in the Fuxin Basin, based on sedimentological, geochemical, and organic petrological analyses. Two types of oil- and coal-bearing source rocks were deposited in the semi-deep lake and shore–shallow lake facies during the Jiufotang and Shahai periods. The development of source rocks migrated eastward alongside the lacustrine depocenter, influenced by basin evolution related to extensional detachment tectonism. Furthermore, a gradual increase in thermal records was detected from the western to eastern basins. Consequently, thermal decomposition of source rocks in the Jiufotang formation reduced the organic matter (OM) abundance in the central and eastern basins. Meanwhile, OM types of source rocks range from kerogen type-II1/-I to type-II2/-III, with intense hydrogen generation observed from the western to eastern basins. Consequently, the quality and hydrocarbon accumulation of source rocks are influenced by sedimentation and thermal maturity variation. The spatiotemporal variation in mature source rocks enhances the potential for exploring conventional petroleum, coalbed methane, and shale gas across different strata and locations. Our findings illustrate the significance of the sedimentary and thermal effects in characterizing the evolution of highly mature source rocks, which is relevant to determine oil and gas exploration in similar geological settings. Full article
Show Figures

Figure 1

13 pages, 12964 KiB  
Article
Isotopic and Geophysical Investigations of Groundwater in Laiyuan Basin, China
by Weiqiang Wang, Zilong Meng, Chenglong Wang and Jianye Gui
Sensors 2024, 24(21), 7001; https://doi.org/10.3390/s24217001 - 31 Oct 2024
Cited by 1 | Viewed by 919
Abstract
Due to the complex intersection and control of multiple structural systems, the hydrogeological conditions of the Laiyuan Basin in China are complex. The depth of research on the relationship between geological structure and groundwater migration needs to be improved. The supply relationship of [...] Read more.
Due to the complex intersection and control of multiple structural systems, the hydrogeological conditions of the Laiyuan Basin in China are complex. The depth of research on the relationship between geological structure and groundwater migration needs to be improved. The supply relationship of each aquifer is still uncertain. This paper systematically conducts research on the characteristics of hydrogen and oxygen isotopes, and combines magnetotelluric impedance tensor decomposition and two-dimensional fine inversion technology to carry out fine exploration of the strata and structures in the Laiyuan Basin, as well as comprehensive characteristics of groundwater migration and replenishment. The results indicate the following: (i) The hydrogen and oxygen values all fall near the local meteoric water line, indicating that precipitation is the main groundwater recharge source. (ii) The excess deuterium decreased gradually from karst mountain to basin, and karst water and pore water experienced different flow processes. (iii) The structure characteristics of three main runoff channels are described by MT fine processing and inversion techniques. Finally, it is concluded that limestone water moved from the recharge to the discharge area, mixed with the deep dolomite water along the fault under the control of fault F2, and eventually rose to the surface of the unconsolidated sediment blocked by fault F1 to emerge into an ascending spring. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 27402 KiB  
Article
Influencing Factors and Model of Shallow Gas Enrichment in the Quaternary Sediments of the Qiongdongnan Basin, South China Sea
by Jianxiang Pei, Entao Liu, Peng Song, Detian Yan, Wei Luo, Junming Zhan, Zhenzhen Wang, Gupan Li, I. Tonguç Uysal and Peifeng Yang
J. Mar. Sci. Eng. 2024, 12(11), 1928; https://doi.org/10.3390/jmse12111928 - 28 Oct 2024
Cited by 2 | Viewed by 1422
Abstract
Investigating the primary influencing factors that regulate the enrichment of shallow gas not only deepens our understanding of the rules governing shallow gas enrichment in deep-ocean environments but also has the potential to enhance the success rate of locating shallow gas reservoirs. Recent [...] Read more.
Investigating the primary influencing factors that regulate the enrichment of shallow gas not only deepens our understanding of the rules governing shallow gas enrichment in deep-ocean environments but also has the potential to enhance the success rate of locating shallow gas reservoirs. Recent drilling activities in the LS36 gas field located in the central Qiongdongnan Basin have revealed a substantial shallow gas reserve within the sediments of the Quaternary Ledong Formation, marking it as the first shallow gas reservoir discovered in the offshore region of China with confirmed natural gas geological reserves surpassing 100 billion cubic meters. However, the formation mechanism and influencing factors of shallow gas enrichment remain elusive due to the limited availability of 3D seismic and well data. This study employs seismic interpretation and digital simulation to decipher the dynamics of shallow gas accumulation and utilizes the carbon isotope composition of methane to ascertain the origin of the shallow gas. Our results show that the shallow gas is primarily concentrated within a large-scale submarine fan, covering a distribution region of up to 2800 km2, situated in the deep-sea plain. The δ13 C1 methane carbon isotope data ranges from −69.7‰ to −45.2‰ and all δ13 C2 values are above −28‰, suggesting that the shallow gas within the Ledong Formation is derived from a mix of biogenic gas produced in shallow strata and thermogenic gas generated in deeper source rocks. The results of gas sources, seismic profiles, and digital simulations suggest that thermogenic gas originating from the Lingshui and Beijiao sags was transported to the Quaternary submarine fan via a complex system that includes faults, gas chimneys, and channel sands. The mass-transported deposits (MTDs) in the upper reaches of the submarine fan have effectively acted as a seal, preventing the escape of shallow gas from the fan. Therefore, the factors contributing to the enrichment of shallow gas in the Qiongdongnan Basin include the presence of favorable submarine fan reservoirs, the availability of two distinct gas sources, the effective sealing of MTDs, and the presence of two efficient transport pathways. A conceptual model for the accumulation of shallow gas is developed, illuminating the complex formation–migration–accumulation process. This study underscores the importance of aligning multiple influencing factors in the process of shallow gas accumulation, and the suggested accumulation model may be pertinent to shallow gas exploration in other marginal sea basins. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

Back to TopTop