Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = deep belief networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1766 KiB  
Article
A Novel Optimized Hybrid Deep Learning Framework for Mental Stress Detection Using Electroencephalography
by Maithili Shailesh Andhare, T. Vijayan, B. Karthik and Shabana Urooj
Brain Sci. 2025, 15(8), 835; https://doi.org/10.3390/brainsci15080835 (registering DOI) - 4 Aug 2025
Viewed by 188
Abstract
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using [...] Read more.
Mental stress is a psychological or emotional strain that typically occurs because of threatening, challenging, and overwhelming conditions and affects human behavior. Various factors, such as professional, environmental, and personal pressures, often trigger it. In recent years, various deep learning (DL)-based schemes using electroencephalograms (EEGs) have been proposed. However, the effectiveness of DL-based schemes is challenging because of the intricate DL structure, class imbalance problems, poor feature representation, low-frequency resolution problems, and complexity of multi-channel signal processing. This paper presents a novel hybrid DL framework, BDDNet, which combines a deep convolutional neural network (DCNN), bidirectional long short-term memory (BiLSTM), and deep belief network (DBN). BDDNet provides superior spectral–temporal feature depiction and better long-term dependency on the local and global features of EEGs. BDDNet accepts multiple EEG features (MEFs) that provide the spectral and time-domain features of EEGs. A novel improved crow search algorithm (ICSA) was presented for channel selection to minimize the computational complexity of multichannel stress detection. Further, the novel employee optimization algorithm (EOA) is utilized for the hyper-parameter optimization of hybrid BDDNet to enhance the training performance. The outcomes of the novel BDDNet were assessed using a public DEAP dataset. The BDDNet-ICSA offers improved recall of 97.6%, precision of 97.6%, F1-score of 97.6%, selectivity of 96.9%, negative predictive value NPV of 96.9%, and accuracy of 97.3% to traditional techniques. Full article
Show Figures

Figure 1

14 pages, 2616 KiB  
Article
Novel Throat-Attached Piezoelectric Sensors Based on Adam-Optimized Deep Belief Networks
by Ben Wang, Hua Xia, Yang Feng, Bingkun Zhang, Haoda Yu, Xulehan Yu and Keyong Hu
Micromachines 2025, 16(8), 841; https://doi.org/10.3390/mi16080841 - 22 Jul 2025
Viewed by 279
Abstract
This paper proposes an Adam-optimized Deep Belief Networks (Adam-DBNs) denoising method for throat-attached piezoelectric signals. The method aims to process mechanical vibration signals captured through polyvinylidene fluoride (PVDF) sensors attached to the throat region, which are typically contaminated by environmental noise and physiological [...] Read more.
This paper proposes an Adam-optimized Deep Belief Networks (Adam-DBNs) denoising method for throat-attached piezoelectric signals. The method aims to process mechanical vibration signals captured through polyvinylidene fluoride (PVDF) sensors attached to the throat region, which are typically contaminated by environmental noise and physiological noise. First, the short-time Fourier transform (STFT) is utilized to convert the original signals into the time–frequency domain. Subsequently, the masked time–frequency representation is reconstructed into the time domain through a diagonal average-based inverse STFT. To address complex nonlinear noise structures, a Deep Belief Network is further adopted to extract features and reconstruct clean signals, where the Adam optimization algorithm ensures the efficient convergence and stability of the training process. Compared with traditional Convolutional Neural Networks (CNNs), Adam-DBNs significantly improve waveform similarity by 6.77% and reduce the local noise energy residue by 0.099696. These results demonstrate that the Adam-DBNs method exhibits substantial advantages in signal reconstruction fidelity and residual noise suppression, providing an efficient and robust solution for throat-attached piezoelectric sensor signal enhancement tasks. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

55 pages, 6352 KiB  
Review
A Deep Learning Framework for Enhanced Detection of Polymorphic Ransomware
by Mazen Gazzan, Bader Alobaywi, Mohammed Almutairi and Frederick T. Sheldon
Future Internet 2025, 17(7), 311; https://doi.org/10.3390/fi17070311 - 18 Jul 2025
Viewed by 458
Abstract
Ransomware, a significant cybersecurity threat, encrypts files and causes substantial damage, making early detection crucial yet challenging. This paper introduces a novel multi-phase framework for early ransomware detection, designed to enhance accuracy and minimize false positives. The framework addresses the limitations of existing [...] Read more.
Ransomware, a significant cybersecurity threat, encrypts files and causes substantial damage, making early detection crucial yet challenging. This paper introduces a novel multi-phase framework for early ransomware detection, designed to enhance accuracy and minimize false positives. The framework addresses the limitations of existing methods by integrating operational data with situational and threat intelligence, enabling it to dynamically adapt to the evolving ransomware landscape. Key innovations include (1) data augmentation using a Bi-Gradual Minimax Generative Adversarial Network (BGM-GAN) to generate synthetic ransomware attack patterns, addressing data insufficiency; (2) Incremental Mutual Information Selection (IMIS) for dynamically selecting relevant features, adapting to evolving ransomware behaviors and reducing computational overhead; and (3) a Deep Belief Network (DBN) detection architecture, trained on the augmented data and optimized with Uncertainty-Aware Dynamic Early Stopping (UA-DES) to prevent overfitting. The model demonstrates a 4% improvement in detection accuracy (from 90% to 94%) through synthetic data generation and reduces false positives from 15.4% to 14%. The IMIS technique further increases accuracy to 96% while reducing false positives. The UA-DES optimization boosts accuracy to 98.6% and lowers false positives to 10%. Overall, this framework effectively addresses the challenges posed by evolving ransomware, significantly enhancing detection accuracy and reliability. Full article
Show Figures

Figure 1

26 pages, 2912 KiB  
Article
A Novel Cooperative AI-Based Fall Risk Prediction Model for Older Adults
by Deepika Mohan, Peter Han Joo Chong and Jairo Gutierrez
Sensors 2025, 25(13), 3991; https://doi.org/10.3390/s25133991 - 26 Jun 2025
Viewed by 686
Abstract
Older adults make up about 12% of the public sector, primary care, and hospital use and represent a large proportion of the users of healthcare services. Older people are also more vulnerable to serious injury from unexpected falls due to tripping, slipping, or [...] Read more.
Older adults make up about 12% of the public sector, primary care, and hospital use and represent a large proportion of the users of healthcare services. Older people are also more vulnerable to serious injury from unexpected falls due to tripping, slipping, or illness. This underscores the immediate necessity of stable and cost-effective e-health technologies in maintaining independent living. Artificial intelligence (AI) and machine learning (ML) offer promising solutions for early fall prediction and continuous health monitoring. This paper introduces a novel cooperative AI model that forecasts the risk of future falls in the elderly based on behavioral and health abnormalities. Two AI models’ predictions are combined to produce accurate predictions: The AI1 model is based on vital signs using Fuzzy Logic, and the AI2 model is based on Activities of Daily Living (ADLs) using a Deep Belief Network (DBN). A meta-model then combines the outputs to generate a total fall risk prediction. The results show 85.71% sensitivity, 100% specificity, and 90.00% prediction accuracy when compared to the Morse Falls Scale (MFS). This emphasizes how deep learning-based cooperative systems can improve well-being for older adults living alone, facilitate more precise fall risk assessment, and improve preventive care. Full article
(This article belongs to the Special Issue Advanced Sensors for Health Monitoring in Older Adults)
Show Figures

Figure 1

34 pages, 2216 KiB  
Article
An Optimized Transformer–GAN–AE for Intrusion Detection in Edge and IIoT Systems: Experimental Insights from WUSTL-IIoT-2021, EdgeIIoTset, and TON_IoT Datasets
by Ahmad Salehiyan, Pardis Sadatian Moghaddam and Masoud Kaveh
Future Internet 2025, 17(7), 279; https://doi.org/10.3390/fi17070279 - 24 Jun 2025
Viewed by 507
Abstract
The rapid expansion of Edge and Industrial Internet of Things (IIoT) systems has intensified the risk and complexity of cyberattacks. Detecting advanced intrusions in these heterogeneous and high-dimensional environments remains challenging. As the IIoT becomes integral to critical infrastructure, ensuring security is crucial [...] Read more.
The rapid expansion of Edge and Industrial Internet of Things (IIoT) systems has intensified the risk and complexity of cyberattacks. Detecting advanced intrusions in these heterogeneous and high-dimensional environments remains challenging. As the IIoT becomes integral to critical infrastructure, ensuring security is crucial to prevent disruptions and data breaches. Traditional IDS approaches often fall short against evolving threats, highlighting the need for intelligent and adaptive solutions. While deep learning (DL) offers strong capabilities for pattern recognition, single-model architectures often lack robustness. Thus, hybrid and optimized DL models are increasingly necessary to improve detection performance and address data imbalance and noise. In this study, we propose an optimized hybrid DL framework that combines a transformer, generative adversarial network (GAN), and autoencoder (AE) components, referred to as Transformer–GAN–AE, for robust intrusion detection in Edge and IIoT environments. To enhance the training and convergence of the GAN component, we integrate an improved chimp optimization algorithm (IChOA) for hyperparameter tuning and feature refinement. The proposed method is evaluated using three recent and comprehensive benchmark datasets, WUSTL-IIoT-2021, EdgeIIoTset, and TON_IoT, widely recognized as standard testbeds for IIoT intrusion detection research. Extensive experiments are conducted to assess the model’s performance compared to several state-of-the-art techniques, including standard GAN, convolutional neural network (CNN), deep belief network (DBN), time-series transformer (TST), bidirectional encoder representations from transformers (BERT), and extreme gradient boosting (XGBoost). Evaluation metrics include accuracy, recall, AUC, and run time. Results demonstrate that the proposed Transformer–GAN–AE framework outperforms all baseline methods, achieving a best accuracy of 98.92%, along with superior recall and AUC values. The integration of IChOA enhances GAN stability and accelerates training by optimizing hyperparameters. Together with the transformer for temporal feature extraction and the AE for denoising, the hybrid architecture effectively addresses complex, imbalanced intrusion data. The proposed optimized Transformer–GAN–AE model demonstrates high accuracy and robustness, offering a scalable solution for real-world Edge and IIoT intrusion detection. Full article
Show Figures

Figure 1

20 pages, 2036 KiB  
Article
Symmetry-Based Data Augmentation Method for Deep Learning-Based Structural Damage Identification
by Long Li, Xiaoming Tao, Hui Song, Xiaolong Li, Zhilong Ye, Yao Jin, Qiuyu He, Shiyin Wei and Wenli Chen
Infrastructures 2025, 10(6), 145; https://doi.org/10.3390/infrastructures10060145 - 12 Jun 2025
Viewed by 433
Abstract
The big data collected from structural health monitoring systems (SHMs), combined with the rapid advances in machine learning (ML), have enabled data-driven methods in practical SHM applications. These methods typically use ML algorithms to identify patterns within features extracted from data representing structural [...] Read more.
The big data collected from structural health monitoring systems (SHMs), combined with the rapid advances in machine learning (ML), have enabled data-driven methods in practical SHM applications. These methods typically use ML algorithms to identify patterns within features extracted from data representing structural conditions, thereby inferring damage from changes in these patterns. However, data-driven models often struggle to generalize effectively to unseen datasets. This study addresses this challenge through three key contributions: dataset augmentation, an efficient feature representation, and a probabilistic modeling approach. First, a data augmentation method leveraging the symmetric properties of bridge structures is introduced to enhance dataset diversity. Second, a novel damage indicator named Fre-GraRMSC1 is proposed, capable of distinguishing both damage locations and severity. Finally, a probabilistic generative model based on a deep belief network (DBN) is developed to predict damage locations and degrees. The proposed methods are validated using vibration data from a numerical three-span continuous bridge subjected to random vehicle excitations. Results demonstrate high accuracy in damage identification and improved generalization performance. Full article
Show Figures

Figure 1

21 pages, 922 KiB  
Article
DBN-BAAE: Enhanced Lightweight Anomaly Detection Mechanism with Boosting Adversarial Autoencoder
by Yanru Chen, Bei Wu, Wang Zhong, Yanru Guo, Dizhi Wu, Yi Ren and Yuanyuan Zhang
Sensors 2025, 25(10), 3249; https://doi.org/10.3390/s25103249 - 21 May 2025
Viewed by 548
Abstract
The growing digitalization of Industrial Control Systems (ICSs) presents both significant benefits and security challenges, especially for small and medium-sized factories with limited resources. Effective anomaly detection is essential to safeguard these facilities and prevent costly disruptions. Although current research has advanced anomaly [...] Read more.
The growing digitalization of Industrial Control Systems (ICSs) presents both significant benefits and security challenges, especially for small and medium-sized factories with limited resources. Effective anomaly detection is essential to safeguard these facilities and prevent costly disruptions. Although current research has advanced anomaly detection, it is still challenging for algorithms to be capable of effectively balancing the interplay between training speed, computational cost, and accuracy while simultaneously exhibiting robust stability and adaptability. This gap often leaves small and medium-sized factories without efficient solutions. To address these issues, this work introduces a deep belief network-based boosting adversarial autoencoder termed DBN-BAAE, a novel lightweight anomaly detection mechanism based on boosting adversarial learning. The proposed lightweight mechanism saves computational overhead, enhances autoencoder training stability with an improved deep belief network (DBN) for pre-training, boosts encoder expression through ensemble learning, achieves high detection accuracy via an adversarial decoder, and employs a dynamic threshold to enhance adaptability and reduce the need for retraining. Experiments reveal that the mechanism not only achieves an F1 score of 0.82, surpassing the best baseline by 1%, but also accelerates training speed by 2.2 times, demonstrating its effectiveness and efficiency in ICS environments, particularly for small and medium-sized factories. Full article
Show Figures

Figure 1

16 pages, 1509 KiB  
Article
A Reliable Deep Learning Model for ECG Interpretation: Mitigating Overconfidence and Direct Uncertainty Quantification
by Xuedong Li, Qingxiao Zheng, Shibin Zhang, Shipeng Fu, Yingke Chen and Ke Ye
Symmetry 2025, 17(5), 794; https://doi.org/10.3390/sym17050794 - 20 May 2025
Viewed by 980
Abstract
Electrocardiogram (ECG) interpretation using deep learning models holds immense potential for improving cardiac diagnosis. However, existing models often suffer from overconfident predictions and lack the capability to directly quantify uncertainty, leading to unreliable clinical guidance. To address this challenge, we propose a model [...] Read more.
Electrocardiogram (ECG) interpretation using deep learning models holds immense potential for improving cardiac diagnosis. However, existing models often suffer from overconfident predictions and lack the capability to directly quantify uncertainty, leading to unreliable clinical guidance. To address this challenge, we propose a model for uncertainty-aware ECG interpretation. The model employs a deep convolutional architecture with max-pooling residual modules to capture both local and global spatiotemporal features from raw ECG signals. The architectural design respects the symmetry inherent in ECG waveforms—such as periodicity and morphological consistency across cardiac cycles—enabling the network to extract clinically relevant features more effectively. Then, unlike conventional models that rely on softmax-based probability outputs, our approach parameterizes class distributions using the Dirichlet distribution, while Subjective Logic translates these parameters into interpretable belief masses and uncertainty scores. We evaluate the model on the PhysioNet Challenge 2017 dataset, our model achieves an accuracy of 86.12%, an F1 score of 83.14%, a Precision-Recall Area Under the Curve (PR-AUC) of 85.25%, and a Receiver Operating Characteristic Area Under the Curve (ROC-AUC) of 92.87%—outperforming baseline models in three out of four metrics. Critically, the model reduces overconfidence to 0.59% (compared to 12–22% in softmax-based baselines), aligning prediction confidence with true accuracy. By progressively increasing the uncertainty threshold u, the model dynamically filters low-confidence predictions, leading to consistently improved performance—reaching up to 93.59% accuracy, 93.22% F1 score, 89.17% PR-AUC, and 95.10% ROC-AUC at u = 0.1. These results validate the model’s capacity for reliable ECG interpretation while leveraging physiological signal symmetry for enhanced feature extraction. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 7916 KiB  
Article
A Novel Sea Surface Temperature Prediction Model Using DBN-SVR and Spatiotemporal Secondary Calibration
by Yibo Liu, Zichen Zhao, Zhe Zhang and Yi Yang
Remote Sens. 2025, 17(10), 1681; https://doi.org/10.3390/rs17101681 - 10 May 2025
Viewed by 572
Abstract
Sea surface temperature (SST) is crucial for weather forecasting, climate modeling, and environmental monitoring. This study proposes a novel prediction model that achieves a 60-day forecast with a root mean square error (RMSE) consistently below 0.9 °C. The model combines the nonlinear feature [...] Read more.
Sea surface temperature (SST) is crucial for weather forecasting, climate modeling, and environmental monitoring. This study proposes a novel prediction model that achieves a 60-day forecast with a root mean square error (RMSE) consistently below 0.9 °C. The model combines the nonlinear feature extraction of a deep belief network (DBN) with the high-precision regression of support vector regression (SVR), enhanced by spatiotemporal secondary calibration (SSC) to better capture SST variation patterns. Using satellite-derived remote sensing data, the DBN-SVR model outperforms baseline methods in both the Indian Ocean and North Pacific regions, demonstrating strong applicability across diverse marine environments. This work advances long-term SST prediction capabilities, providing a reliable foundation for extended-range marine forecasts. Full article
(This article belongs to the Special Issue Artificial Intelligence and Big Data for Oceanography (2nd Edition))
Show Figures

Graphical abstract

19 pages, 1315 KiB  
Article
Advancing Structural Health Monitoring with Deep Belief Network-Based Classification
by Álvaro Presno Vélez, Zulima Fernández Muñiz and Juan Luis Fernández Martínez
Mathematics 2025, 13(9), 1435; https://doi.org/10.3390/math13091435 - 27 Apr 2025
Viewed by 540
Abstract
Structural health monitoring (SHM) plays a critical role in ensuring the safety and longevity of civil infrastructure by enabling the early detection of structural changes and supporting preventive maintenance strategies. In recent years, deep learning techniques have emerged as powerful tools for analyzing [...] Read more.
Structural health monitoring (SHM) plays a critical role in ensuring the safety and longevity of civil infrastructure by enabling the early detection of structural changes and supporting preventive maintenance strategies. In recent years, deep learning techniques have emerged as powerful tools for analyzing the complex data generated by SHM systems. This study investigates the use of deep belief networks (DBNs) for classifying structural conditions before and after retrofitting, using both ambient and train-induced acceleration data. Dimensionality reduction techniques such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) enabled a clear separation between structural states, emphasizing the DBN’s ability to capture relevant classification features. The DBN architecture, based on stacked restricted Boltzmann machines (RBMs) and supervised fine-tuning, was optimized via grid search and cross-validation. Compared to traditional unsupervised methods like K-means and PCA, DBNs demonstrated a superior performance in feature representation and classification accuracy. Experimental results showed median cross-validation accuracies of 98.04% for ambient data and 96.96% for train-induced data, with low variability. Although random forests slightly outperformed DBNs in classifying ambient data (99.19%), DBNs achieved better results with more complex train-induced signals (95.91%). Robustness analysis under Gaussian noise further demonstrated the DBN’s resilience, maintaining over 90% accuracy for ambient data at noise levels up to σnoise=0.5. These findings confirm that DBNs are a reliable and effective approach for data-driven structural condition assessment in SHM systems. Full article
Show Figures

Figure 1

16 pages, 2342 KiB  
Article
Improving Safety Awareness Campaigns Through the Use of Graph Neural Networks
by Jose D. Hernández Guillén and Angel Martín del Rey
Axioms 2025, 14(5), 328; https://doi.org/10.3390/axioms14050328 - 24 Apr 2025
Viewed by 332
Abstract
Phishing is one of the main threats against companies where the main weakness against this type of threat is the worker. For this reason, it is essential that workers have a high security awareness for which it is fundamental to carry out a [...] Read more.
Phishing is one of the main threats against companies where the main weakness against this type of threat is the worker. For this reason, it is essential that workers have a high security awareness for which it is fundamental to carry out a good safety-awareness campaign. However, as far as we are concerned, a mathematical study of the evolution of security awareness taking into account interactions with other people has not been considered. In this paper, we study how security awareness evolves through two belief-propagation models and Graph Neural Networks. Since this approach is new, the two most basic models were chosen to simulate propagation of beliefs: Sznajd model variant and Hegselmann–Krause model. On the other hand, because Graph Neural Networks are a current and very powerful tool, it was decided to use them to analyze the evolution of beliefs. We consider that with them information-awareness campaigns can be improved. As an example, we propose different awareness measures according to future beliefs and social influence. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure A1

17 pages, 8594 KiB  
Article
Evolutionary-Driven Convolutional Deep Belief Network for the Classification of Macular Edema in Retinal Fundus Images
by Rafael A. García-Ramírez, Ivan Cruz-Aceves, Arturo Hernández-Aguirre, Gloria P. Trujillo-Sánchez and Martha A. Hernandez-González
J. Imaging 2025, 11(4), 123; https://doi.org/10.3390/jimaging11040123 - 21 Apr 2025
Viewed by 419
Abstract
Early detection of diabetic retinopathy is critical for preserving vision in diabetic patients. The classification of lesions in Retinal fundus images, particularly macular edema, is an essential diagnostic tool, yet it presents a significant learning curve for both novice and experienced ophthalmologists. To [...] Read more.
Early detection of diabetic retinopathy is critical for preserving vision in diabetic patients. The classification of lesions in Retinal fundus images, particularly macular edema, is an essential diagnostic tool, yet it presents a significant learning curve for both novice and experienced ophthalmologists. To address this challenge, a novel Convolutional Deep Belief Network (CDBN) is proposed to classify image patches into three distinct categories: two types of macular edema—microhemorrhages and hard exudates—and a healthy category. The method leverages high-level feature extraction to mitigate issues arising from the high similarity of low-level features in noisy images. Additionally, a Real-Coded Genetic Algorithm optimizes the parameters of Gabor filters and the network, ensuring optimal feature extraction and classification performance. Experimental results demonstrate that the proposed CDBN outperforms comparative models, achieving an F1 score of 0.9258. These results indicate that the architecture effectively overcomes the challenges of lesion classification in retinal images, offering a robust tool for clinical application and paving the way for advanced clinical decision support systems in diabetic retinopathy management. Full article
Show Figures

Figure 1

28 pages, 6012 KiB  
Article
Intention Recognition for Multiple AUVs in a Collaborative Search Mission
by Yinhuan Wang, Kaizhou Liu, Lingbo Geng and Shaoze Zhang
J. Mar. Sci. Eng. 2025, 13(3), 591; https://doi.org/10.3390/jmse13030591 - 17 Mar 2025
Viewed by 551
Abstract
This paper addresses the challenges of intent recognition in collaborative Autonomous Underwater Vehicle (AUV) search missions, where multiple AUVs must coordinate effectively despite environmental uncertainties and communication limitations. We propose a consensus-based intent recognition (CBIR) method grounded in the Belief–Desire–Intention (BDI) framework. The [...] Read more.
This paper addresses the challenges of intent recognition in collaborative Autonomous Underwater Vehicle (AUV) search missions, where multiple AUVs must coordinate effectively despite environmental uncertainties and communication limitations. We propose a consensus-based intent recognition (CBIR) method grounded in the Belief–Desire–Intention (BDI) framework. The CBIR approach incorporates fuzzy inference and deep learning techniques to predict AUV intentions with minimal data exchange, improving the robustness and efficiency of collaborative decision making. The system uses a behavior modeling phase to map state features to actions and a deep learning-based intent inference phase, leveraging a residual convolutional neural network (ResCNN) for accurate intent prediction. The experimental results demonstrate that the proposed ResCNN network improves intent recognition accuracy, enhances the efficiency of collaborative search missions, and increases the success rate. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 3575 KiB  
Article
Design of Soft-Sensing Model for Alumina Concentration Based on Improved Grey Wolf Optimization Algorithm and Deep Belief Network
by Jianheng Li, Zhiwen Chen, Xiaoting Zhong, Xiangquan Li, Xiang Xia and Bo Liu
Processes 2025, 13(3), 606; https://doi.org/10.3390/pr13030606 - 20 Feb 2025
Cited by 1 | Viewed by 497
Abstract
To address the challenge of the real-time monitoring of alumina concentrations during the production process, this paper employs a Deep Belief Network (DBN) within the framework of deep learning to predict alumina concentration. Additionally, the improved Grey Wolf Optimizer (IGWO) is utilized to [...] Read more.
To address the challenge of the real-time monitoring of alumina concentrations during the production process, this paper employs a Deep Belief Network (DBN) within the framework of deep learning to predict alumina concentration. Additionally, the improved Grey Wolf Optimizer (IGWO) is utilized to optimize key parameters of the DBN model, including the number of hidden layer nodes, reverse iteration count, and learning rate. An IGWO-DBN hybrid model is then constructed and compared against DBN models optimized by other techniques, such as the Sparrow Search Algorithm (SSA) and Particle Swarm Optimization (PSO), to evaluate the predictive performance. The comparative analysis reveals that, in terms of predictive accuracy, the IGWO-DBN model outperforms both the SSA-DBN and PSO-DBN models. Specifically, it achieves lower root mean square errors (RMSE) and mean absolute errors (MAE), alongside a higher coefficient of determination (R2). Furthermore, the IGWO-DBN model exhibits a faster convergence rate and a lower final convergence value, indicating superior generalization ability and robustness. Furthermore, the IGWO-DBN model not only demonstrates significant advantages in prediction accuracy for alumina concentration but also substantially reduces model training time through its efficient parameter optimization mechanism. The successful implementation of this model provides robust support for the intelligent and refined management of the aluminum electrolysis industry, aiding enterprises in reducing costs, improving production efficiency, and advancing the green and sustainable development of the industry. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 5428 KiB  
Article
Research on Fault Diagnosis of Marine Diesel Engines Based on CNN-TCN–ATTENTION
by Ao Ma, Jundong Zhang, Haosheng Shen, Yang Cao, Hongbo Xu and Jiale Liu
Appl. Sci. 2025, 15(3), 1651; https://doi.org/10.3390/app15031651 - 6 Feb 2025
Cited by 3 | Viewed by 1175
Abstract
In response to the typical fault issues encountered during the operation of marine diesel engines, a fault diagnosis method based on a convolutional neural network (CNN), a temporal convolutional network (TCN), and the attention mechanism (ATTENTION) is proposed, referred to as CNN-TCN–ATTENTION. This [...] Read more.
In response to the typical fault issues encountered during the operation of marine diesel engines, a fault diagnosis method based on a convolutional neural network (CNN), a temporal convolutional network (TCN), and the attention mechanism (ATTENTION) is proposed, referred to as CNN-TCN–ATTENTION. This method successfully addresses the issue of insufficient feature extraction in previous fault diagnosis algorithms. The CNN is employed to capture the local features of diesel engine faults; the TCN is employed to explore the correlations and temporal dependencies in sequential data, further obtaining global features; and the attention mechanism is introduced to assign different weights to the features, ultimately achieving intelligent fault diagnosis for marine diesel engines. The results of the experiments demonstrate that the CNN-TCN–ATTENTION-based model achieves an accuracy of 100%, showing superior performance compared to the individual CNN, TCN, and CNN-TCN methods. Compared with commonly used algorithms such as Transformer, long short-term memory (LSTM), Gated Recurrent Unit (GRU), and Deep Belief Network (DBN), the proposed method demonstrates significantly higher accuracy. Furthermore, the model maintains an accuracy of over 90% in noise environments such as random noise, Gaussian noise, and salt-and-pepper noise, demonstrating strong diagnostic performance, generalization capability, and noise robustness. This provides a theoretical basis for its practical application in the fault diagnosis of marine diesel engines. Full article
Show Figures

Figure 1

Back to TopTop