Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = debye length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2783 KB  
Article
Tunable Filtering via Lossy Mode Resonance in Integrated Photonics
by Edvins Letko
Photonics 2025, 12(11), 1086; https://doi.org/10.3390/photonics12111086 - 3 Nov 2025
Viewed by 223
Abstract
This study explores an integrated tunable filter based on lossy mode resonance (LMR) in TiOx thin films, modeled in COMSOL Multiphysics using the Wave Optics and Semiconductor modules. By exploiting the electro-optic (EO) modulation of free carrier concentration in TiOx, [...] Read more.
This study explores an integrated tunable filter based on lossy mode resonance (LMR) in TiOx thin films, modeled in COMSOL Multiphysics using the Wave Optics and Semiconductor modules. By exploiting the electro-optic (EO) modulation of free carrier concentration in TiOx, the LMR wavelength can be actively tuned under an applied electric field. The results demonstrate a tuning efficiency of 4.0 nm/V, which surpasses many reported EO tunable filters. Optimization studies reveal that thinner ITO electrodes and TiOx layers enhance tuning efficiency, while the initial bulk free carrier concentration has limited influence due to the compensating effect of the Debye length. These findings extend the applicability of LMR beyond sensing, highlighting its potential for active photonic components in integrated optics. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

25 pages, 1611 KB  
Article
Interfacial Electrostatics of Low Salinity-Enhanced Oil Recovery: A Review of Theoretical Foundations, Applications and Correlation to Experimental Observations
by Adango Miadonye and Mumuni Amadu
Processes 2025, 13(10), 3255; https://doi.org/10.3390/pr13103255 - 13 Oct 2025
Viewed by 426
Abstract
Low salinity-enhanced oil recovery has gained universal recognition regarding its ability to provide an environmentally friendly and low-cost method of improved oil recovery. Research findings so far based on experimentation and simulation suggest that the success of the scheme stems considerably from double [...] Read more.
Low salinity-enhanced oil recovery has gained universal recognition regarding its ability to provide an environmentally friendly and low-cost method of improved oil recovery. Research findings so far based on experimentation and simulation suggest that the success of the scheme stems considerably from double layer expansion and wettability enhancement, among others. However, while the double layer expansion and wettability effects have robust theoretical foundations that can be sought within the Mean Field Poisson–Boltzmann theory, there is hardly any published research work that has tackled this task. In this paper, we fill the knowledge gap by using the MFPB theory to calculate electric double layer (EDL) parameters as functions of salinity and to successfully correlate theoretical findings to literature-based experimental observations. Additionally, we have, for the first time integrated the concept of free energy of formation of the EDL in LSWFOR research, given its intimate relationship to EDL parameters. The theoretical findings are, therefore, indicators that theoretical foundations also provide reliable and alternative means of understanding and predicting the success of LSWFOR. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

24 pages, 7133 KB  
Article
Critical Adsorption of Polyelectrolytes onto Patchy Particles with a Low-Dielectric Interior
by Dante A. Anhesini, Daniel L. Z. Caetano, Icaro P. Caruso, Andrey G. Cherstvy and Sidney J. de Carvalho
Polymers 2025, 17(16), 2205; https://doi.org/10.3390/polym17162205 - 12 Aug 2025
Cited by 1 | Viewed by 697
Abstract
A polyelectrolyte (PE) chain in the vicinity of an oppositely charged surface can exhibit a discontinuous transition from the adsorbed to the desorbed state once the electrostatic attractive interactions are not strong enough to overcome the entropic losses caused by the PE-surface adsorption. [...] Read more.
A polyelectrolyte (PE) chain in the vicinity of an oppositely charged surface can exhibit a discontinuous transition from the adsorbed to the desorbed state once the electrostatic attractive interactions are not strong enough to overcome the entropic losses caused by the PE-surface adsorption. In the context of PE–protein interactions, the heterogeneity of the charge distribution and the effects of a low dielectric permittivity underneath the surface are crucial. Studies of the combined effects of these two properties are very sparse, especially in the spherical geometry; we thus fill this gap here. We study the adsorption of PE chains onto spherical particles with heterogeneously charged surfaces, with the main focus on the critical-adsorption conditions and the effects of a low-dielectric core. Metropolis Monte Carlo simulations are employed, with the PE exploring the phase-space around the binding particle in the canonical ensemble. Two adsorption–desorption transitions are observed when the particle possesses a net charge of the same sign as that of the PE, resulting in nonmonotonic behavior of the critical charge density required for the PE–particle electrostatically driven adsorption. An increased affinity between the PEs and low-dielectric particles with variable heterogeneous charge distributions is observed, in contrast to the behavior detected for homogeneous low-dielectric particles. This higher affinity occurs when the Debye screening length in the solution becomes comparable to the dimensions of a patch of the opposite sign to the PE. A number of real-life applications of the considered PE–particle system is presented in the discussion, in particular regarding the properties of the complex formation between various PEs and globular proteins featuring a dipolar-type distribution of electric charges on their surfaces, such as insulin and bovine serum albumin. Full article
Show Figures

Figure 1

32 pages, 12213 KB  
Review
Capacitive Sensors for Label-Free Detection in High-Ionic-Strength Bodily Fluids: A Review
by Seerat Sekhon, Richard Bayford and Andreas Demosthenous
Biosensors 2025, 15(8), 491; https://doi.org/10.3390/bios15080491 - 30 Jul 2025
Cited by 1 | Viewed by 1958
Abstract
Capacitive sensors are platforms that enable label-free, real-time detection at low non-perturbing voltages. These sensors do not rely on Faradaic processes, thereby eliminating the need for redox-active species and simplifying system integration for point-of-care diagnostics. However, their sensitivity in high-ionic-strength solutions, such as [...] Read more.
Capacitive sensors are platforms that enable label-free, real-time detection at low non-perturbing voltages. These sensors do not rely on Faradaic processes, thereby eliminating the need for redox-active species and simplifying system integration for point-of-care diagnostics. However, their sensitivity in high-ionic-strength solutions, such as bodily fluids, is limited due to a reduced Debye length and non-specific interactions. The present review highlights advances in material integration, surface modification, and signal enhancement techniques to mitigate the challenges of deploying capacitive sensors in biofluids (sweat, saliva, blood, serum). This work further expands on the promise of such sensors for advancing liquid biopsies and highlights key technical challenges in translating capacitive systems to clinics. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

26 pages, 2219 KB  
Article
High-Frequency Impedance of Rotationally Symmetric Two-Terminal Linear Passive Devices: Application to Parallel Plate Capacitors with a Lossy Dielectric Core and Lossy Thick Plates
by José Brandão Faria
Energies 2025, 18(14), 3739; https://doi.org/10.3390/en18143739 - 15 Jul 2025
Viewed by 433
Abstract
Linear passive electrical devices/components are usually characterized in the frequency domain by their impedance, i.e., the ratio of the voltage and current phasors. The use of the impedance concept does not raise particular concerns in low-frequency regimes; however, things become more complicated when [...] Read more.
Linear passive electrical devices/components are usually characterized in the frequency domain by their impedance, i.e., the ratio of the voltage and current phasors. The use of the impedance concept does not raise particular concerns in low-frequency regimes; however, things become more complicated when it comes to rapid time-varying phenomena, mainly because the voltage depends not only on the position of the points between which it is defined but also on the choice of the integration path that connects them. In this article, based on first principles (Maxwell equations and Poynting vector flow considerations), we discuss the concept of impedance and define it unequivocally for a class of electrical devices/components with rotational symmetry. Two application examples are presented and discussed. One simple example concerns the per-unit-length impedance of a homogeneous cylindrical wire subject to the skin effect. The other, which is more elaborate, concerns a heterogeneous structure that consists of a dielectric disk sandwiched between two metal plates. For the lossless situation, the high-frequency impedance of this device (circular parallel plate capacitor) reaches zero when the frequency reaches a certain critical frequency fc; then, it becomes inductive and increases enormously when the frequency reaches another critical frequency at 1.6 fc. The influence of losses on the impedance of the device is thoroughly investigated and evaluated. Impedance corrections due to dielectric losses are analyzed using a frequency-dependent Debye permittivity model. The impedance corrections due to plate losses are analyzed by considering radial current distributions on the outer and inner surfaces of the plates, the latter exhibiting significant variations near the critical frequencies of the device. Full article
Show Figures

Figure 1

14 pages, 1729 KB  
Article
Aptamer-Based Planar Electric Double-Layer Field-Effect Transistor: A Novel Approach for Sensitive Troponin I Sensing
by Sheng-Chun Hung and Yi-Hua Lee
Biosensors 2025, 15(5), 285; https://doi.org/10.3390/bios15050285 - 30 Apr 2025
Cited by 2 | Viewed by 1848
Abstract
This study introduces a cutting-edge, aptamer-based, planar electric, double-layer field-effect transistor (FET) system that offers both high sensitivity and specificity for the detection of troponin I (TnI). The proposed sensing platform leverages the signal amplification capabilities of FETs alongside the unique attributes of [...] Read more.
This study introduces a cutting-edge, aptamer-based, planar electric, double-layer field-effect transistor (FET) system that offers both high sensitivity and specificity for the detection of troponin I (TnI). The proposed sensing platform leverages the signal amplification capabilities of FETs alongside the unique attributes of a planar electric double-layer design to address the limitations inherent in traditional ion-sensitive detectors, which are impacted by Debye length effects. By integrating TnI-specific aptamers, the system markedly enhances molecular recognition and transduction efficiency, achieving an impressive detection limit of 0.0001467 decade. Furthermore, the sensor demonstrates a strong exponential linear response across a clinically relevant concentration range of 1 ng/mL to 100 ng/mL. This innovative approach underscores the potential of electric double-layer FET systems to advance biomarker detection technologies for medical diagnostics and point-of-care applications. Full article
Show Figures

Graphical abstract

30 pages, 3463 KB  
Article
A New Analytical Formulation for the Electrophoretic Mobility of a Colloidal Sphere
by Angela Casarella, Simon Gourdin-Bertin and Claire Chassagne
Entropy 2025, 27(4), 336; https://doi.org/10.3390/e27040336 - 24 Mar 2025
Viewed by 777
Abstract
A new analytical equation for the electrophoretic mobility of a colloidal sphere, homogeneously charged, is derived. This equation reduces to the well-known Henry’s formulation for low surface potentials. For high surface potentials, the equation is compared to the full numerical result. It is [...] Read more.
A new analytical equation for the electrophoretic mobility of a colloidal sphere, homogeneously charged, is derived. This equation reduces to the well-known Henry’s formulation for low surface potentials. For high surface potentials, the equation is compared to the full numerical result. It is found that the equation performs well up to surface potentials of 50 mV. For larger surface potentials, the equation performs well for κa>10, where κ is the inverse of Debye’ s length and a the radius of the particle. Differences between analytical and numerical solutions for κa<10 are studied. The case of a particle with a constant surface charge is discussed. In that case, a very simple equation relates the surface charge of the particle to the electrophoretic mobility for κa>10. Full article
Show Figures

Figure 1

16 pages, 465 KB  
Article
Improved Ionization Potential Depression Model Incorporating Dynamical Structure Factors and Electron Degeneracy for Non-Ideal Plasma Composition
by Yeldos Seitkozhanov, Karlygash Dzhumagulova and Erik Shalenov
Entropy 2025, 27(3), 253; https://doi.org/10.3390/e27030253 - 27 Feb 2025
Cited by 2 | Viewed by 1241
Abstract
In this work, we present an improved model for ionization potential depression (IPD) in dense plasmas that builds upon the approach introduced by Lin et al., which utilizes a dynamical structure factor (SF) to account for ionic microfield fluctuations. The main refinements include [...] Read more.
In this work, we present an improved model for ionization potential depression (IPD) in dense plasmas that builds upon the approach introduced by Lin et al., which utilizes a dynamical structure factor (SF) to account for ionic microfield fluctuations. The main refinements include the following: (1) replacing the Wigner–Seitz radius with an ion-sphere radius, thereby treating individual ionization events as dynamically independent; (2) incorporating electron degeneracy through a tailored interpolation between Debye–Hückel and Thomas–Fermi screening lengths. Additionally, we solve the Saha equation iteratively, ensuring self-consistent determination of the ionization balance and IPD corrections. These modifications yield significantly improved agreement with recent high-density and high-temperature experimental data on warm dense aluminum, especially in regimes where strong coupling and partial degeneracy are crucial. The model remains robust over a broad parameter space, spanning temperatures from 1 eV up to 1 keV and pressures beyond the Mbar range, thus making it suitable for applications in high-energy-density physics, inertial confinement fusion, and astrophysical plasma research. Our findings underscore the importance of accurately capturing ion microfield fluctuations and electron quantum effects to properly describe ionization processes in extreme environments. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

22 pages, 7535 KB  
Article
A Novel Method for Online Diagnosis of the Aging State of High-Voltage (HV) Cables Based on Impedance Spectroscopy
by Yuli Wang, Benhong Ouyang, Ge Wang, Anzhe Wang and Jianjun Yuan
Energies 2025, 18(5), 1128; https://doi.org/10.3390/en18051128 - 25 Feb 2025
Cited by 2 | Viewed by 650
Abstract
In order to facilitate online monitoring of the aging state of high-voltage (HV) cables, a novel method based on impedance spectroscopy has been proposed. Firstly, the method uses the Debye model to restore the dielectric response of the insulating material of the mechanism. [...] Read more.
In order to facilitate online monitoring of the aging state of high-voltage (HV) cables, a novel method based on impedance spectroscopy has been proposed. Firstly, the method uses the Debye model to restore the dielectric response of the insulating material of the mechanism. Secondly, based on the transmission line equation, a calculation model for the impedance spectroscopy of HV cables was established. Then, the characteristics of impedance spectroscopy under different overall aging and local deterioration states were analyzed. Further, simulation analysis of the influence of factors such as load factor, length, metal resistivity, and geometric parameters on impedance spectroscopy was carried out. Finally, diagnostic criteria were proposed, which are divided into two major categories: known cable parameters and unknown cable parameters. If the geometric parameters are known, the aging state can be determined using the resonance peak values and the resonance peak frequencies. If the geometric parameters are unknown, it is necessary to test impedance spectroscopy using the healthy condition of the cable as the baseline curve. By comparing the impedance spectroscopy of the cable during tests with the baseline curve, the aging development trend of the cable can also be determined. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

12 pages, 6270 KB  
Article
Aptamer-Based Graphene Field-Effect Transistor Biosensor for Cytokine Detection in Undiluted Physiological Media for Cervical Carcinoma Diagnosis
by Ziran Wang, Wenting Dai, Zaiyu Zhang and Haipeng Wang
Biosensors 2025, 15(3), 138; https://doi.org/10.3390/bios15030138 - 23 Feb 2025
Cited by 4 | Viewed by 2841
Abstract
Personalized monitoring of disease biomarkers is of great interest in women’s health. However, existing approaches typically involve invasive inspection or bulky equipment, making them challenging to implement at home. Hence, we present a general strategy for label-free and specific detection of disease biomarkers [...] Read more.
Personalized monitoring of disease biomarkers is of great interest in women’s health. However, existing approaches typically involve invasive inspection or bulky equipment, making them challenging to implement at home. Hence, we present a general strategy for label-free and specific detection of disease biomarkers in physiological media using an aptamer-based biosensor. The biosensor is a graphene field-effect transistor that involves immobilizing the aptamer and a biomolecule-permeable polyethylene glycol (PEG) layer on the graphene surface. The aptamer is capable of specifically binding with the target biomarker, thus inducing a change in the sensing responses. The PEG layer can effectively reduce the nonspecific adsorption of nontarget molecules in the solution, and increase the effective Debye screening length in the region directly adjacent to the graphene. In this work, studies of a biosensor with modification of the aptamer and PEG show that cervical carcinoma biomarkers such as tumor necrosis factor-α and interleukin 6 can be sensitively and specifically detected in undiluted physiological media, with detection limits as low as 0.13 pM for TNF-a and 0.20 pM for IL-6. This work presents a significant method for the general application of the biosensor for disease diagnosis in women’s health. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

11 pages, 3570 KB  
Article
Starting Electroosmosis in a Fibrous Porous Medium with Arbitrary Electric Double-Layer Thickness
by Wei Z. Chen and Huan J. Keh
Chemistry 2025, 7(1), 5; https://doi.org/10.3390/chemistry7010005 - 8 Jan 2025
Viewed by 1167
Abstract
The transient electroosmotic response in a charged porous medium consisting of a uniform array of parallel circular cylindrical fibers with arbitrary electric double layers filled with an electrolyte solution, for the stepwise application of a transverse electric field, is analyzed. The fluid momentum [...] Read more.
The transient electroosmotic response in a charged porous medium consisting of a uniform array of parallel circular cylindrical fibers with arbitrary electric double layers filled with an electrolyte solution, for the stepwise application of a transverse electric field, is analyzed. The fluid momentum conservation equation is solved for each cell by using a unit cell model, where a single cylinder is surrounded by a coaxial shell of the electrolyte solution. A closed-form expression for the transient electroosmotic velocity of the bulk fluid in the Laplace transform is obtained as a function of the ratio of the cylinder radius to the Debye screening length and the porosity of the fiber matrix. The effect of the fiber matrix porosity on the continuous growth of the electroosmotic velocity over time is substantial and complicated. For a fiber matrix with larger porosity, the bulk fluid velocity takes longer to reach a certain percentage of its final value. Although the final value of the bulk fluid velocity generally increases with increasing porosity, early velocities may decrease with increasing porosity. For a given fiber matrix porosity, the transient electroosmotic velocity is a monotonically increasing function of the ratio of the cylinder radius to the Debye length. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

20 pages, 306 KB  
Article
Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions
by Hong Li, Zhantao Li, Chaohong Pan, Jie Song and Mingji Zhang
Axioms 2024, 13(11), 790; https://doi.org/10.3390/axioms13110790 - 15 Nov 2024
Cited by 5 | Viewed by 863
Abstract
We focus on higher-order matched asymptotic expansions of a one-dimensional classical Poisson–Nernst–Planck system for ionic flow through membrane channels with two oppositely charged ion species under relaxed electroneutrality boundary conditions. Of particular interest are the current–voltage (I–V) relations, which are used to characterize [...] Read more.
We focus on higher-order matched asymptotic expansions of a one-dimensional classical Poisson–Nernst–Planck system for ionic flow through membrane channels with two oppositely charged ion species under relaxed electroneutrality boundary conditions. Of particular interest are the current–voltage (I–V) relations, which are used to characterize the two most relevant biological properties of ion channels—permeation and selectivity—experimentally. Our result shows that, up to the second order in ε=λ/r, where λ is the Debye length and r is the characteristic radius of the channel, the cubic I–V relation has either three distinct real roots or a unique real root with a multiplicity of three, which sensitively depends on the boundary layers because of the relaxation of the electroneutrality boundary conditions. This indicates more rich dynamics of ionic flows under our more realistic setups and provides a better understanding of the mechanism of ionic flows through membrane channels. Full article
10 pages, 909 KB  
Article
Strong Impact of Particle Size Polydispersity on the Thermal Conductivity of Yukawa Crystals
by Konstantin V. Tretiakov and Krzysztof Hyżorek
Materials 2024, 17(20), 4955; https://doi.org/10.3390/ma17204955 - 10 Oct 2024
Viewed by 1105
Abstract
Control of thermal transport in colloidal crystals plays an important role in modern technologies. A deeper understanding of the governing heat transport processes in various systems, such as polydisperse colloidal crystals, is required. This study shows how strongly the particle size polydispersity of [...] Read more.
Control of thermal transport in colloidal crystals plays an important role in modern technologies. A deeper understanding of the governing heat transport processes in various systems, such as polydisperse colloidal crystals, is required. This study shows how strongly the particle size polydispersity of a model colloidal crystal influences the thermal conductivity. The thermal conductivity of model colloidal crystals has been calculated using molecular dynamics simulations. The model crystals created by particles interacting through Yukawa (screened-Coulomb) interaction are assumed to have a face-centered cubic structure. The influence of the Debye screening length, contact potential, and particle size polydispersity on the thermal conductivity of Yukawa crystals was investigated. It was found that an increase in particle size polydispersity causes a strong—almost fivefold—decrease in the thermal conductivity of Yukawa crystals. In addition, the obtained results showed that the effect of the particle size polydispersity on reducing the thermal conductivity of Yukawa crystals is stronger than changes in values of the Debye screening length or the contact potential. Full article
(This article belongs to the Special Issue Liquid Crystals and Other Partially Disordered Molecular Systems)
Show Figures

Figure 1

45 pages, 12125 KB  
Article
Self-Coagulation Theory and Related Comet- and Semi-Circle-Shaped Structures in Electronegative and Gaseous Discharging Plasmas in the Laboratory
by Yu Tian and Shuxia Zhao
Appl. Sci. 2024, 14(17), 8041; https://doi.org/10.3390/app14178041 - 8 Sep 2024
Viewed by 1577
Abstract
In this work, the two-dimensional fluid models for two types of inductively coupled plasma, Ar/O2 and Ar/SF6, are numerically solved by the finite element method. Four interesting phenomena revealed by the simulations are reported: (1) comet-shaped and semi-circle-shaped structures in [...] Read more.
In this work, the two-dimensional fluid models for two types of inductively coupled plasma, Ar/O2 and Ar/SF6, are numerically solved by the finite element method. Four interesting phenomena revealed by the simulations are reported: (1) comet-shaped and semi-circle-shaped structures in Ar/O2 and Ar/SF6 plasmas, respectively; (2) blue sheaths that surround the two structures; (3) the collapse and dispersion of semi-circle-shaped structures of certain Ar/SF6 plasma cations and anions when they are observed separately; and (4) the rebuilding of coagulated structures by minor cations in the Ar/SF6 plasma at the discharge center. From the simulation detail, it was found that the cooperation of free diffusion and negative chemical sources creates the coagulated structure of anions, and the self-coagulation theory is therefore built. The advective and ambipolar types of self-coagulation are put forth to explain the co-existence of blue sheath and internal neutral plasma, among which the advective type of self-coagulation extends the Bohm’s sheath theory of cations to anions, and the ambipolar type of self-coagulation originates from the idea of the ambipolar diffusion process, and it updates the recognition of people about the plasma collective interaction. During the ambipolar self-coagulation, each type of Ar/SF6 plasma cations and anions is self-coagulated, and the coagulated plasma species are then modeled as mass-point type (or point-charge type, more precisely). When the charge amounts of two point-charge models of plasma species with the same charge type are equal, the expelling effect caused by the Coulomb’s force of them leads to the collapse or dispersal of heavily coagulated species. The simulation shows that the lighter the species is, the easier it self-coagulates and the more difficult its coagulation is broken, which implies the inertia effect of density quantity. Moreover, the collapse of cation coagulation creates the spatially dispersed charge cloud that is not shielded into the Debye’s length, which indicates the anti-collective behavior of electronegative plasmas when they are self-coagulated. The rebuilt coagulated structure of minor Ar/SF6 plasma species at the discharge center and the weak coagulation of electrons in the periphery of the main coagulated structure that is under the coil are caused by the monopolar and spontaneous (non-advective) type of self-coagulation. The analysis predicts an intensity order of physically driven coagulation force, chemical self-coagulation force, and ambipolar self-coagulation force. The popular coagulated structure of the electronegative ICP sources is urgently needed to validate the experiment. Full article
(This article belongs to the Special Issue Plasma Physics: Theory, Methods and Applications)
Show Figures

Figure 1

11 pages, 2792 KB  
Article
Molecular Dynamics Simulations of the miR-155 Duplex: Impact of Ionic Strength on Structure and Na+ and Cl Ion Distribution
by Anna Rita Bizzarri
Molecules 2024, 29(17), 4246; https://doi.org/10.3390/molecules29174246 - 7 Sep 2024
Cited by 1 | Viewed by 1427
Abstract
MiR-155 is a multifunctional microRNA involved in many biological processes. Since miR-155 is overexpressed in several pathologies, its detection deserves high interest in clinical diagnostics. Biosensing approaches often exploit the hybridization of miR-155 with its complementary strand. Molecular Dynamics (MD) simulations were applied [...] Read more.
MiR-155 is a multifunctional microRNA involved in many biological processes. Since miR-155 is overexpressed in several pathologies, its detection deserves high interest in clinical diagnostics. Biosensing approaches often exploit the hybridization of miR-155 with its complementary strand. Molecular Dynamics (MD) simulations were applied to investigate the complex formed by miR-155 and its complementary strand in aqueous solution with Na+ and Cl ions at ionic strengths in the 100–400 mM range, conditions commonly used in biosensing experiments. We found that the main structural properties of the duplex are preserved at all the investigated ionic strengths. The radial distribution functions of both Na+ and Cl ions around the duplex show deviation from those of bulk with peaks whose relative intensity depends on the ionic strength. The number of ions monitored as a function of the distance from the duplex reveals a behavior reminiscent of the counterion condensation near the duplex surface. The occurrence of such a phenomenon could affect the Debye length with possible effects on the sensitivity in biosensing experiments. Full article
Show Figures

Figure 1

Back to TopTop