Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = date palm seeds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 10249 KiB  
Review
Utilizing Agro-Waste as Aggregate in Cement Composites: A Comprehensive Review of Properties, Global Trends, and Applications
by Ivanka Netinger Grubeša, Dunja Šamec, Sandra Juradin and Marijana Hadzima-Nyarko
Materials 2025, 18(10), 2195; https://doi.org/10.3390/ma18102195 - 9 May 2025
Viewed by 1397
Abstract
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with [...] Read more.
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with a particular focus on palm kernel shells, coconut shells, hazelnut, peanut and pistachio shells, stone fruit shells and pits, date and grape seeds, rice husks, maize (corn) cobs, and sunflower seed shells. For each type of agro-waste, the paper discusses key physical and mechanical properties, global production volumes, and primary countries of origin. Furthermore, it offers an in-depth analysis of existing research on the incorporation of these materials into cement-based composites, highlighting both the advantages and limitations of their use. Although the integration of agro-waste into construction materials presents certain challenges, the vast quantities of agricultural residues generated globally underscore the urgency and potential of their reuse. In line with circular economy principles, this review advocates for the valorization of agro-waste through innovative and sustainable applications within the construction industry. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

23 pages, 16269 KiB  
Article
Development of Eco-Friendly Date Palm Biomass-Based Hydrogels for Enhanced Water Retention in Soil
by Faisal S. Alsubaie, Mouyed Srdar, Osama Fayraa, Faris M. Alsulami, Feras Omran and Khalid A. Alamry
Gels 2025, 11(5), 349; https://doi.org/10.3390/gels11050349 - 8 May 2025
Viewed by 1031
Abstract
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. [...] Read more.
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. In this study, renewable and cost-effective HGs were prepared from all-lignocellulose fibers of date palm biomass after carboxymethylation followed by citric acid (CA) crosslinking. HGs showed high equilibrium swelling capacity (EWC%), even in salty media, whereas purified HGs showed about 700–400 EWC% in deionized water. Further, HGs’ effect on germination was studied on Chico III tomato, mint, Basilico red, and chia seeds. The results revealed that HGs enhanced the soil properties, with taller and healthier plants observed in HG-amended soil. FTIR, thermal analysis, and microscope imaging were utilized to evaluate HGs’ and raw materials’ characteristics. The findings in this study support the idea that all-lignocellulose could be used for HG production without separation. Full article
Show Figures

Graphical abstract

16 pages, 2868 KiB  
Article
Superior Adsorption of Chlorinated VOC by Date Palm Seed Biochar: Two-Way ANOVA Comparative Analysis with Activated Carbon
by Rania Remmani, Marco Petrangeli Papini, Neda Amanat and Antonio Ruiz Canales
Environments 2024, 11(12), 288; https://doi.org/10.3390/environments11120288 - 14 Dec 2024
Viewed by 1377
Abstract
This study explores biochar (BC) derived from date palm seeds as a high-performance adsorbent for the removal of trichloroethylene (TCE) and tetrachloroethylene (PCE) from aqueous solutions, with comparative analysis against commercial activated carbon (AC). The optimized BC, characterized by a high BET surface [...] Read more.
This study explores biochar (BC) derived from date palm seeds as a high-performance adsorbent for the removal of trichloroethylene (TCE) and tetrachloroethylene (PCE) from aqueous solutions, with comparative analysis against commercial activated carbon (AC). The optimized BC, characterized by a high BET surface area of 654.79 m2/g and unique nanotube morphology, demonstrated superior adsorption capacities of 86.68 mg/g for TCE and 85.97 mg/g for PCE, significantly surpassing the AC under identical conditions. Kinetic studies identified the pseudo-second-order model as the best fit, indicating chemisorption as the dominant mechanism. Isotherm modeling revealed a combination of multilayer and monolayer adsorption processes, underscoring the complexity of the BC’s adsorption behavior. Statistical analysis via two-way ANOVA further validated the BC’s significant superiority over the AC (p < 0.0001) for both contaminants. These results highlight the potential of date-palm-seed-derived biochar as a sustainable and cost-effective adsorbent for eco-friendly water treatment, emphasizing its role in reducing environmental impact and operational costs in real-world applications. Full article
Show Figures

Figure 1

15 pages, 27156 KiB  
Communication
A Comparative Genetic Analysis of Phoenix atlantica in Cape Verde
by Sonia Sarmiento Cabello, Priscila Rodríguez-Rodríguez, Guacimara Arbelo Ramírez, Agustín Naranjo-Cigala, Leticia Curbelo, Maria de Monte da Graca Gomes, Juliana Brito, Frédérique Aberlenc, Salwa Zehdi-Azouzi and Pedro A. Sosa
Plants 2024, 13(16), 2209; https://doi.org/10.3390/plants13162209 - 9 Aug 2024
Cited by 2 | Viewed by 1594
Abstract
The Cape Verde palm tree, Phoenix atlantica, holds significant ecological and cultural importance within the Cape Verde archipelago. However, its genetic distinctiveness has been questioned due to its close relationship and morphological similarity to the date palm (Phoenix dactylifera). In [...] Read more.
The Cape Verde palm tree, Phoenix atlantica, holds significant ecological and cultural importance within the Cape Verde archipelago. However, its genetic distinctiveness has been questioned due to its close relationship and morphological similarity to the date palm (Phoenix dactylifera). In this study, we used an expanded sample set, 18 simple sequence repeat (SSR) markers, and a plastid minisatellite to characterize P. atlantica in Cape Verde and investigate its relationship with other Phoenix species. Our findings identify genetic markers that differentiate the P. atlantica genetic pool, including a unique fixed allele. We also provide evidence of the recent divergence of P. atlantica from Northern African date palm populations, suggesting a relatively recent colonization of Cape Verde by palm trees. Additionally, we characterized the genetic composition of palm tree populations across three Cape Verde islands, concluding that wild samples from certain populations in Boavista and Sal are best suited for establishing a seed and/or germplasm bank for replantation efforts, representing a crucial step for the conservation of Cape Verde’s natural heritage. Overall, our results enhance the understanding of the historical trajectories and genetic characterization of palm trees in Africa, offering valuable insights for conservation strategies. Full article
(This article belongs to the Special Issue Advance in Taxonomy and Plant Conservation)
Show Figures

Figure 1

21 pages, 2815 KiB  
Article
Nanoemulsions of Phoenix dactylifera L. (Decaffeinated) and Coffea arabica L. Extracts as a Novel Approach for the Treatment of Carbon Tetrachloride-Mediated Liver Fibrosis
by Eman S. Alamri, Hala M. Bayomy, Mohamed A. Mohamady Hussein, Nawal A. Ozaybi, Seham E. Almasoudi, Nahla S. Zidan, Renad A. Albalwi, Hebatallah H. Atteia and Fayza M. EL-Ezaly
Antioxidants 2024, 13(3), 355; https://doi.org/10.3390/antiox13030355 - 16 Mar 2024
Cited by 3 | Viewed by 2796
Abstract
Liver fibrosis is a condition characterized by the excessive buildup of scar tissue in the liver. This scarring occurs as a result of chronic liver damage, often caused by conditions such as hepatitis, alcohol abuse, certain metabolic disorders, genetic abnormalities, autoimmunity, and noninfectious [...] Read more.
Liver fibrosis is a condition characterized by the excessive buildup of scar tissue in the liver. This scarring occurs as a result of chronic liver damage, often caused by conditions such as hepatitis, alcohol abuse, certain metabolic disorders, genetic abnormalities, autoimmunity, and noninfectious diseases such as fatty liver which leads to liver fibrosis. Nanoparticles have gained attention in recent years as potential therapeutic agents for liver fibrosis. They offer unique advantages due to their small size, large surface area, and ability to carry drugs or target specific cells or tissues. Studies have suggested that nanoemulsions may enhance drug delivery systems, enabling targeted drug delivery to specific sites in the liver and improving therapeutic outcomes. In this study, we explore the protective and therapeutic values with phytochemical profiling of the used agro-wastes decaffeinated palm date seeds (Phoenix dactylifera L., PSC) coffee and caffeinated Arabic coffee seeds (Coffea arabica L.; ACS). Both ACS and PSC extracts were converted into nanoemulsion (NE) forms using the oleic acid/Tween 80 system, which was recruited for the purpose of treating a rat model with liver fibrosis. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to record the sizes, morphologies, hydrodynamic diameters, and ζ-potentials of the prepared NE-ACSE and NE-PSCE. Accordingly, the NE-ACSE and NE-PSCE imaged via TEM and their ζ-potentials were recorded at 20.7, 23.3 nm and −41.4, −28.0 mV, respectively. The antioxidant properties were determined with a DPPH scavenging assay. The synthesized NE-PSCE and NE-ACSE were employed to treat a rat model with CCl4-induced liver fibrosis, to estimate the role of each emulsion-based extract in the treatment of liver fibrosis through recording inflammatory parameters, liver functions, antioxidant enzymes, and histopathological analysis results. The nanoemulsion forms of both ACSE and PSCE provided significant increases in antioxidant enzymes, reducing inflammatory parameters, compared to other groups, where liver functions were decreased with values close to those of the control group. In conclusion, both nanoemulsions, ACSE and PSCE, provided a new avenue as therapeutic approaches for liver diseases, and further studies are encouraged to obtain maximum efficiency of treatment via the combination of both extracts. Full article
Show Figures

Figure 1

11 pages, 8323 KiB  
Article
The Promising Potential of Triploidy in Date Palm (Phoenix dactylifera L.) Breeding
by Ahmed Othmani, Hammadi Hamza, Karim Kadri, Amel Sellemi, Leen Leus and Stefaan P. O. Werbrouck
Plants 2024, 13(6), 815; https://doi.org/10.3390/plants13060815 - 12 Mar 2024
Cited by 3 | Viewed by 2234
Abstract
Date palms are a vital part of oasis ecosystems and are an important source of income in arid and semi-arid areas. Crossbreeding is limited due to the long juvenile stage of date palms and their dioecious nature. The aim of this study was [...] Read more.
Date palms are a vital part of oasis ecosystems and are an important source of income in arid and semi-arid areas. Crossbreeding is limited due to the long juvenile stage of date palms and their dioecious nature. The aim of this study was to create triploid date palms to obtain larger and seedless fruits and to increase resilience to abiotic stresses. A tetraploid date palm mutant was crossed with a diploid male palm, yielding hundreds of seeds suspected of containing triploid embryos. Six years after planting, four palms with confirmed triploidy reached maturity. They are phenotypically distinct from diploids, with a thicker rachis, thinner spines, wider and longer midleaf spines, and a longer apical spine. They were classified as sterile bisexual, sterile male and fertile female. One of the latter produced very tasty dates with a very small seed, which is promising for the marketability and profitability of date palm fruits. This first report on triploid date palms provides a way in which to make a significant leap forward in date palm breeding. Given the vigor and fruit quality of female triploid date palms, compared to their diploid counterparts, they will be the target of breeding programs and may spearhead new oases. Full article
(This article belongs to the Special Issue Advancements in Plant Polyploidy: From Methods to Mechanisms)
Show Figures

Figure 1

19 pages, 3551 KiB  
Article
Enhanced Adsorption of Methylene Blue Using Phosphoric Acid-Activated Hydrothermal Carbon Microspheres Synthesized from a Variety of Palm-Based Biowastes
by Saeed Alhawtali, Mohanad El-Harbawi, Abdulrhman S. Al-Awadi, Lahssen El Blidi, Maher M. Alrashed and Chun-Yang Yin
Coatings 2023, 13(7), 1287; https://doi.org/10.3390/coatings13071287 - 22 Jul 2023
Cited by 11 | Viewed by 3155
Abstract
In the present study, the ability for novel carbon microspheres (CMs) derived from date palm (Phoenix dactylifera) biomass using a hydrothermal carbonization (HTC) process and activated using phosphoric acid to remove methylene blue dye was investigated. Three types of palm-based wastes [...] Read more.
In the present study, the ability for novel carbon microspheres (CMs) derived from date palm (Phoenix dactylifera) biomass using a hydrothermal carbonization (HTC) process and activated using phosphoric acid to remove methylene blue dye was investigated. Three types of palm-based wastes (seeds, leaflet, and inedible crystallized date palm molasses) were used and converted to CMs via the HTC process. The prepared samples were then activated using phosphoric acid via the incipient wetness impregnation method. The CMs samples before and after activation were analyzed using scanning electron microscopy (SEM), elemental analysis and scanning (CHNS), and the Fourier transform infrared (FTIR) and Brunauer–Emmet–Teller (BET) methods. The samples exhibited high BET surface areas after activation (1584 m2/g). The methylene blue adsorption results showed good fitting to the Langmuir, Fruendlich, and Temkin isotherm models for all activated samples. The maximum adsorption capacity achieved was 409.84 mg/g for activated CM obtained from the palm date molasses, indicating its high potential for application as a dye-based adsorption material. Full article
Show Figures

Figure 1

18 pages, 3100 KiB  
Article
Preparation, Characterization, and Chemically Modified Date Palm Fiber Waste Biomass for Enhanced Phenol Removal from an Aqueous Environment
by Nadavala Siva Kumar, Mohammad Asif, Anesh Manjaly Poulose, Ebrahim H. Al-Ghurabi, Shaddad S. Alhamedi and Janardhan Reddy Koduru
Materials 2023, 16(11), 4057; https://doi.org/10.3390/ma16114057 - 30 May 2023
Cited by 12 | Viewed by 2242
Abstract
The date palm tree is extensively cultivated in Middle Eastern countries such as Saudi Arabia, generating a large amount of waste in the form of leaves, seeds, and fibrous materials. This study examined the feasibility of using raw date palm fiber (RDPF) and [...] Read more.
The date palm tree is extensively cultivated in Middle Eastern countries such as Saudi Arabia, generating a large amount of waste in the form of leaves, seeds, and fibrous materials. This study examined the feasibility of using raw date palm fiber (RDPF) and NaOH chemically modified date palm fiber (NaOH–CMDPF) obtained from discarded agricultural waste for the removal of phenol in an aqueous environment. The adsorbent characterization was performed by using different techniques, i.e., particle size analysis; elemental analyzer (CHN); and BET, FTIR, and FESEM-EDX analysis. The FTIR analysis revealed the presence of various functional groups on the surface of the RDPF and NaOH–CMDPF. The results showed that chemical modification by NaOH increased the phenol adsorption capacity that was well-fitted by the Langmuir isotherm. Higher removal was obtained with NaOH–CMDPF (86%) than with the RDPF (81%). The RDPF and NaOH–CMDPF sorbents’ maximum (Qm) adsorption capacities were more than 45.62 mg/g and 89.67 mg/g and were comparable to the sorption capacities of various other types of agricultural waste biomass reported in the literature. The kinetic studies confirmed that the adsorption of phenol followed the pseudo-second-order kinetic process. The present study concluded that the RDPF and NaOH–CMDPF were eco-friendly and cost-effective in promoting sustainable management and the reuse of the Kingdom’s lignocellulosic fiber waste material. Full article
(This article belongs to the Special Issue Sustainable Nanocomposites and Technologies for Water Treatment)
Show Figures

Figure 1

20 pages, 3233 KiB  
Article
Exploitation of Sugarcane Bagasse and Environmentally Sustainable Production, Purification, Characterization, and Application of Lovastatin by Aspergillus terreus AUMC 15760 under Solid-State Conditions
by Ahmed M. A. A. Ramadan, Reda M. Shehata, Hussein H. EL-Sheikh, Fuad Ameen, Steven L. Stephenson, Sabry A. H. Zidan and Osama A. M. Al-Bedak
Molecules 2023, 28(10), 4048; https://doi.org/10.3390/molecules28104048 - 12 May 2023
Cited by 9 | Viewed by 4454
Abstract
Using the internal transcribed spacer (ITS) region for identification, three strains of Aspergillus terreus were identified and designated AUMC 15760, AUMC 15762, and AUMC 15763 for the Assiut University Mycological Centre culture collection. The ability of the three strains to manufacture lovastatin in [...] Read more.
Using the internal transcribed spacer (ITS) region for identification, three strains of Aspergillus terreus were identified and designated AUMC 15760, AUMC 15762, and AUMC 15763 for the Assiut University Mycological Centre culture collection. The ability of the three strains to manufacture lovastatin in solid-state fermentation (SSF) using wheat bran was assessed using gas chromatography-mass spectroscopy (GC-MS). The most potent strain was strain AUMC 15760, which was chosen to ferment nine types of lignocellulosic waste (barley bran, bean hay, date palm leaves, flax seeds, orange peels, rice straw, soy bean, sugarcane bagasse, and wheat bran), with sugarcane bagasse turning out to be the best substrate. After 10 days at pH 6.0 at 25 °C using sodium nitrate as the nitrogen source and a moisture content of 70%, the lovastatin output reached its maximum quantity (18.2 mg/g substrate). The medication was produced in lactone form as a white powder in its purest form using column chromatography. In-depth spectroscopy examination, including 1H, 13C-NMR, HR-ESI-MS, optical density, and LC-MS/MS analysis, as well as a comparison of the physical and spectroscopic data with published data, were used to identify the medication. At an IC50 of 69.536 ± 5.73 µM, the purified lovastatin displayed DPPH activity. Staphylococcus aureus and Staphylococcus epidermidis had MICs of 1.25 mg/mL, whereas Candida albicans and Candida glabrata had MICs of 2.5 mg/mL and 5.0 mg/mL, respectively, against pure lovastatin. As a component of sustainable development, this study offers a green (environmentally friendly) method for using sugarcane bagasse waste to produce valuable chemicals and value-added commodities. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products, 4th Edition)
Show Figures

Figure 1

19 pages, 2128 KiB  
Review
Artificial Pollination Technologies: A Review
by Melissa A Broussard, Michael Coates and Paul Martinsen
Agronomy 2023, 13(5), 1351; https://doi.org/10.3390/agronomy13051351 - 11 May 2023
Cited by 49 | Viewed by 21550
Abstract
Pollination is critical for the production of many crops, and both insect- and wind-based pollination systems are increasingly disrupted by bloom asynchrony, weather events, and high demand for available insect pollinators. Artificial pollination systems can provide a security of yield even in poor [...] Read more.
Pollination is critical for the production of many crops, and both insect- and wind-based pollination systems are increasingly disrupted by bloom asynchrony, weather events, and high demand for available insect pollinators. Artificial pollination systems can provide a security of yield even in poor pollination scenarios, and have been attracting increasing attention over the past decade. Here, we review pollen collection and pollen application technologies that have been employed to date. Major categories of mechanical pollination technology include: hand-pollination, handheld and backpack devices, vehicle-mounted devices, unmanned aerial vehicles (UAVs), and robotic and autonomous pollinators. The majority of the artificial pollination systems above are used to supplement natural pollination, but for some crops, these systems were found to perform adequately by themselves, including kiwifruit, olive, date palm, walnut, tomato, and hybrid maize seed. These systems often treat pollen as a system input, creating a chicken-and-egg problem in which the system is not economical without pollen and the pollen is not economical to collect without wide uptake of the system. To combat this, there has been success in developing mechanical harvesters for some crop plants (particularly almond and maize), but future work is needed for artificial pollination to be a commercial reality for the increasing number of cropping systems that are experiencing pollination deficits. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

16 pages, 4452 KiB  
Article
TPD1-like Gene as a Suitable Marker for Early Sex Determination in Date Palm (Phoenix dactylifera L.)
by Plosha Khanum, Asif Ali Khan, Iqrar Ahmad Khan, Abdul Ghaffar and Zulqurnain Khan
Genes 2023, 14(4), 907; https://doi.org/10.3390/genes14040907 - 13 Apr 2023
Cited by 3 | Viewed by 4699
Abstract
Date palm (Phoenix dactylifera L.) is a considerably beneficial and economically profitable fruit crop. Female date palm plants produce fruit that is rich in fiber and sugar. Date palm is propagated by two means: suckers and seed. The propagation of date palm [...] Read more.
Date palm (Phoenix dactylifera L.) is a considerably beneficial and economically profitable fruit crop. Female date palm plants produce fruit that is rich in fiber and sugar. Date palm is propagated by two means: suckers and seed. The propagation of date palm through seeds is very necessary for germplasm conservation and breeding. The late reproductive age (4–5 years) and dioecious nature of date palm make genetic improvement and breeding difficult. Early sex determination is the only way to improve breeding by selecting experimental male and female plants at the seedling stage. The primers for Tapetum Determinant 1 (TPD1-like) were designed using Amplify software. The DNA amplification of selected date palm suckers of three genotypes (Ajwa, Amber, and Medjool) was observed through PCR. Expression profiling of selected genotypes was carried out through semi-q PCR and RT-PCR by using the cDNA of suckers and unknown seedlings. Different in silico analyses were performed for the gene and protein characterization and identification of cis-acting elements in the promoter region. The promoter was identified along with the protein’s properties and functionality. The expression of TPD1-like gene was found in the leaves of three selected genotypes of male sucker and in some plants of selected unknown seedlings that are considered male plants, and no expression was observed in female suckers and unknown seedlings that are considered female plants. The findings suggested that the TPD1-like gene has the potential for sex differentiation at the seedling stage, as the TPD1-like gene is essential to the specialization of tapetal cells and plays a critical role in plant reproduction. Full article
Show Figures

Figure 1

19 pages, 503 KiB  
Review
Strategies for the Valorization of Date Fruit and Its Co-Products: A New Ingredient in the Development of Value-Added Foods
by Nuria Muñoz-Tebar, Manuel Viuda-Martos, Jose Manuel Lorenzo, Juana Fernandez-Lopez and Jose Angel Perez-Alvarez
Foods 2023, 12(7), 1456; https://doi.org/10.3390/foods12071456 - 29 Mar 2023
Cited by 32 | Viewed by 8112
Abstract
Date palm trees (Phoenix dactylifera L.) are traditionally cultivated in South-West Asia and North Africa for date fruit consumption, although in recent years, its consumption has increased worldwide, and its cultivation has spread to other areas of America, sub-Saharan Africa, Oceania, and [...] Read more.
Date palm trees (Phoenix dactylifera L.) are traditionally cultivated in South-West Asia and North Africa for date fruit consumption, although in recent years, its consumption has increased worldwide, and its cultivation has spread to other areas of America, sub-Saharan Africa, Oceania, and Southern Europe. During date fruit processing, several types of by-products are generated, such as low-quality dates or seeds, which along with date fruit, represent an excellent source of dietary fiber and bioactive compounds such as flavonoids, tannins, carotenoids, tocopherols, and tocotrienols. Therefore, this review provides information on the processing of dates fruit and the value-added by-products generated from them as well as their applications in different types of foods for the development of foods with an enhanced nutritional and functional profile. The incorporation of date fruit and their co-products in food formulations will help to cover the current consumer demands for foods made with ingredients of natural origin and with health properties beyond the merely nutritional. Full article
(This article belongs to the Special Issue Valorisation Opportunities for Specialty Crops and Its Co-products)
Show Figures

Graphical abstract

15 pages, 3699 KiB  
Article
Biochar Derived from Palm Waste Supported Greenly Synthesized MnO2 Nanoparticles as a Novel Adsorbent for Wastewater Treatment
by Amel Taha and Samah Daffalla
Catalysts 2023, 13(2), 451; https://doi.org/10.3390/catal13020451 - 20 Feb 2023
Cited by 13 | Viewed by 3041
Abstract
Water pollution with dye effluents from different industries is a broadly established environmental and health problem that needs serious attention. In this study, making use of Acacia nilotica seed extract, greenly synthesized MnO2 nanoparticles were loaded on the surface of biochar derived [...] Read more.
Water pollution with dye effluents from different industries is a broadly established environmental and health problem that needs serious attention. In this study, making use of Acacia nilotica seed extract, greenly synthesized MnO2 nanoparticles were loaded on the surface of biochar derived from palm waste (MnO2/PF), with specific surface areas of 70.97 m2/g. Batch experiments were adopted, aiming to evaluate the performance of palm fronds, biochar, and the MnO2/PF adsorbents in methyl orange (MO) removal from an aqueous solution. The feedstock and synthesized biochars were comprehensively characterized using XRD, SEM-EDX, FTIR, and BET surface area techniques. Moreover, the influences of the modification of palm fronds, initial dye concentrations, pH, and adsorbent dosage on MO uptake were examined. The results demonstrated that MnO2/PF biochar nanocomposite led to an increase in the removal efficiency by 6 and 1.5 times more than those of palm fronds and biochar, respectively. In addition, it was found that the second-order kinetic model presented the kinetic adsorption very well. This paper demonstrates that the depositing of greenly synthesized MnO2 nanoparticles on the date palm waste biochar forms a novel adsorbent (MnO2/PF) for the removal of MO from aqueous solutions. Furthermore, this adsorbent was easy to synthesize under moderate conditions without the need for chemical capping agents, and would thus be cost-effective and eco-friendly. Full article
(This article belongs to the Special Issue Nanocatalysts for the Degradation of Refractory Pollutants)
Show Figures

Figure 1

59 pages, 15912 KiB  
Review
Açaí (Euterpe oleracea Mart.) in Health and Disease: A Critical Review
by Lucas Fornari Laurindo, Sandra Maria Barbalho, Adriano Cressoni Araújo, Elen Landgraf Guiguer, Arijit Mondal, Gabrielle Bachtel and Anupam Bishayee
Nutrients 2023, 15(4), 989; https://doi.org/10.3390/nu15040989 - 16 Feb 2023
Cited by 67 | Viewed by 14931
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing [...] Read more.
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries. Full article
(This article belongs to the Special Issue Natural Products and Health)
Show Figures

Figure 1

15 pages, 2966 KiB  
Article
Genetic Variations among Fleabane (Conyza bonariensis (L.) Cronquist) Populations in Jordan and Their Susceptibility Levels to Contact Herbicides
by Jamal Ragheb Qasem, Ayoob Obaid Alfalahi, Moodi Saham Alsubeie, Ali Fadaam Almehemdi and Agnieszka Synowiec
Agriculture 2023, 13(2), 435; https://doi.org/10.3390/agriculture13020435 - 13 Feb 2023
Cited by 5 | Viewed by 2931
Abstract
A field demonstration and pot experiments were implemented to assess the effect of paraquat, oxadiazon, and oxyfluorfen herbicides in controlling selected populations of fleabane Conyza bonariensis (L.), grown in the central valley of Jordan. Conyza mature seeds were collected from six investigated sites [...] Read more.
A field demonstration and pot experiments were implemented to assess the effect of paraquat, oxadiazon, and oxyfluorfen herbicides in controlling selected populations of fleabane Conyza bonariensis (L.), grown in the central valley of Jordan. Conyza mature seeds were collected from six investigated sites (five from Jordan valley named P1, P2, P3, P4, P5, and one from the University of Jordan Campus named P6). Only populations proved to be C. bonariensis via ITS assessment were involved in the glasshouse experiments at the University of Jordan in 2017 and 2019. Results showed that recommended or two-fold higher rates (2.5 and 5 kg ha−1) of paraquat failed to affect weed plants in a date palm orchard located at Tal-al-Ramel in the Central Jordan Valley. Paraquat, oxyfluorfen, and oxadiazon (2.5, 3.3, and 5 kg ha−1, respectively), failed to control plants of the same weed population grown in pot experiments. Treated plants at Tal-al-Ramel grew similarly to untreated control, mostly due to different genetic backgrounds. The other C. bonariensis populations (University Research Station, al-Twal, and University Campus) were effectively controlled with all herbicides. The application of recommended or 10-fold higher rates of herbicides failed to control or slightly injured the resistant population. Seed DNA analysis of the ITS region showed genetic differences among the investigated populations. It indicated that four populations are C. bonariensis (P1, P3, P4, and P6). At the same time, two are C. canadensis (a closely related species) collected from the University Research Station (P2) and al-Twal sites (P5), and also that the population of C. bonariensis in the date palm orchard was genetically distinct from the other C. bonariensis populations. It is concluded that C. bonariensis population in the Tal-al-Ramel site developed resistance to paraquat, oxadiazon, and oxyfluorfen herbicides. Thus, novel alternative practices in controlling the resistant weed population are necessary to prevent its possible spread to other regions in the country and obstruct the development of new herbicide-resistance weed populations. Full article
(This article belongs to the Special Issue Management of Weeds and Herbicide Resistance)
Show Figures

Figure 1

Back to TopTop