Artificial Pollination Technologies: A Review
Abstract
:1. Introduction
2. Pollen Collection
3. Pollen Application
- The additional liquid mass increases momentum for targeted delivery, reducing the risk the pollen is dispersed by wind.
3.1. Hand-Pollination
3.2. Handheld Devices
3.3. Vehicle-Mounted Devices
Mode | General Type | Examples | References |
---|---|---|---|
Vibration | Fan | Ventola, Italy | [23,41] |
Dry | Pollen blowers | QuadDuster, KiwiPollen, New Zealand AirShear, KiwiPollen, New Zealand PollenSmart, PollenSmart, New Zealand ATV Applicator, PollenPro, USA Scumby, Firman Pollen, USA [112] Palm Tree Pollination Machine, AgroPalms Machinery, Spain | [107] [41] [113] [112] [28,114,115] |
Electrostatic pollen blowers | Home-made devices Edete | [116] [95] | |
Wet | High-pressure sprayers | Palm Tree Pollination Machine, Agrom Agro Machinery, IL | [28] |
Fogger/fine mist sprayers | Kiwi Pollen Boom Sprayer, KiwiPollen, New Zealand Spruzz@Polline TR, Gerbaudo, Cuneo, Italy XAG R150, China | [38] [23,93] | |
Electrostatic sprayers | Electrostatic Spraying Systems, Inc., USA OnTarget, On Target Spray Systems, USA Fruit Tower, LectroBlast, USA | [111] [117] [116] [93] |
3.4. Unmanned Aerial Vehicles (UAVs)
3.5. Robotics and Autonomous Pollination
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 2008, 18, 1572–1575. [Google Scholar] [CrossRef] [PubMed]
- Aizen, M.A.; Aguiar, S.; Biesmeijer, J.C.; Garibaldi, L.A.; Inouye, D.W.; Jung, C.; Martins, D.J.; Medel, R.; Morales, C.L.; Ngo, H.; et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Chang. Biol. 2019, 25, 3516–3527. [Google Scholar] [CrossRef] [PubMed]
- Mashilingi, S.K.; Zhang, H.; Garibaldi, L.A.; An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agric. Ecosyst. Environ. 2022, 335, 108003. [Google Scholar] [CrossRef]
- Reilly, J.R.; Artz, D.R.; Biddinger, D.; Bobiwash, K.; Boyle, N.K.; Brittain, C.; Brokaw, J.; Campbell, J.W.; Daniels, J.; Elle, E. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 2020, 287, 20200922. [Google Scholar] [CrossRef]
- Chaffer, L. Pollinators, bees and food. Geogr. Bull. 2020, 52, 68–69. [Google Scholar]
- Bixby, M.; Hoover, S.E.; McCallum, R.; Ibrahim, A.; Ovinge, L.; Olmstead, S.; Pernal, S.F.; Zayed, A.; Foster, L.J.; Guarna, M.M. Honey bee queen production: Canadian costing case study and profitability analysis. J. Econ. Entomol. 2020, 113, 1618–1627. [Google Scholar] [CrossRef]
- Attia, Y.A.; Giorgio, G.M.; Addeo, N.F.; Asiry, K.A.; Piccolo, G.; Nizza, A.; Di Meo, C.; Alanazi, N.A.; Al-Qurashi, A.D.; El-Hack, M.E.A. COVID-19 pandemic: Impacts on bees, beekeeping, and potential role of bee products as antiviral agents and immune enhancers. Environ. Sci. Pollut. Res. 2022, 29, 9592–9605. [Google Scholar] [CrossRef]
- Tosi, S.; Sfeir, C.; Carnesecchi, E.; Chauzat, M.-P. Lethal, sublethal, and combined effects of pesticides on bees: A meta-analysis and new risk assessment tools. Sci. Total Environ. 2022, 844, 156857. [Google Scholar] [CrossRef]
- Rucker, R.R.; Thurman, W.N.; Burgett, M. Honey bee pollination markets and the internalization of reciprocal benefits. Am. J. Agric. Econ. 2012, 94, 956–977. [Google Scholar] [CrossRef]
- Pruessner, A.H. Date culture in ancient Babylonia. Am. J. Semit. Lang. Lit. 1920, 36, 213–232. [Google Scholar]
- Wurz, A.; Grass, I.; Tscharntke, T. Hand pollination of global crops—A systematic review. Basic Appl. Ecol. 2021, 56, 299–321. [Google Scholar] [CrossRef]
- Partap, U.; Ya, T. The Human Pollinators of Fruit Crops in Maoxian County, Sichuan, China: A Case Study of the Failure of Pollination Services and Farmers’ Adaptation Strategies. Mt. Res. Dev. 2012, 32, 176–186. [Google Scholar] [CrossRef]
- Hopping, M.E.; Jerram, E.M. Pollination of kiwifruit (Actinidia chinensis Planch.): Stigma-style structure and pollen tube growth. N. Z. J. Bot. 1979, 17, 233–240. [Google Scholar]
- Hopping, M.E.; Jerram, E.M. Supplementary pollination of tree fruits: II. Field trials on kiwifruit and Japanese plums. N. Z. J. Agric. Res. 1980, 23, 517–521. [Google Scholar] [CrossRef]
- Hopping, M.E. Floral biology, pollination and fruit set. In Kiwifruit Science and Management; Massey University: Palmerston North, New Zealand, 1990; pp. 71–96. [Google Scholar]
- Testolin, R.; Ferguson, A.R. Kiwifruit (Actinidia spp.) production and marketing in Italy. N. Z. J. Crop Hortic. Sci. 2009, 37, 1–32. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, Z.; Mao, J.; Hu, H.; Jiang, A.; Jin, Y.; Zhu, R.; Zhou, L.; Guo, R.; Zhu, F.; et al. 猕猴桃蜜蜂授粉技术研究初报 Preliminary report on bee pollination technology research in kiwifruit. 中国南方果树 South China Fruits 2003, 32, 45–46+60. [Google Scholar]
- Huang, H. Cultivation and Management. In The genus Actinidia; Science Press Beijing: Beijing, China, 2016; pp. 265–295. [Google Scholar]
- Lee, K.Y.; Cho, H.; Yoon, H.J.; Lee, S.; Ko, H. Comparison of the foraging activity and pollination effects of honeybees (Apis mellifera L.) and bumblebees (Bombus Terr. L.) Gold Kiwi (Actinidia Chinensis P. ‘Haegeum’). J. Apic. 2019, 34, 295–304. [Google Scholar]
- KiwiPollen. Products. Available online: https://kiwipollen.com/products/ (accessed on 19 January 2023).
- PollenPlus. Solutions. Available online: http://www.pollenplus.co.nz/solutions (accessed on 19 January 2023).
- AgroPalms. Male Flower Pollen Extraction Machine. Available online: https://www.agropalmsmachinery.com/male-flower-pollen-extraction-machi (accessed on 3 May 2022).
- Gianni, T.; Vania, M. Artificial Pollination in Kiwifruit and Olive Trees; IntechOpen Limited London: London, UK, 2018. [Google Scholar]
- Ascari, L.; Guastella, D.; Sigwebela, M.; Engelbrecht, G.; Stubbs, O.; Hills, D.; De Gregorio, T.; Siniscalco, C. Artificial pollination on hazelnut in South Africa: Preliminary data and perspectives. In Proceedings of the IX International Congress on Hazelnut, Samsun, Turkey, 15–18 August 2017; Volume 1226, pp. 141–148. [Google Scholar]
- Eyles, A.; Close, D.C.; Quarrell, S.R.; Allen, G.R.; Spurr, C.J.; Barry, K.M.; Whiting, M.D.; Gracie, A.J. Feasibility of mechanical pollination in tree fruit and nut crops: A review. Agronomy 2022, 12, 1113. [Google Scholar] [CrossRef]
- Bullock, R.M.; Overley, F.L. Handling and application of pollen to fruit trees. Proc. Am. Soc. Hortic. Sci. 1949, 54, 125–132. [Google Scholar]
- Williams, R.; Legge, A. Pollen application by mechanical dusting in English apple orchards. J. Hortic. Sci. 1979, 54, 67–74. [Google Scholar] [CrossRef]
- Salomón-Torres, R.; Krueger, R.; García-Vázquez, J.P.; Villa-Angulo, R.; Villa-Angulo, C.; Ortiz-Uribe, N.; Sol-Uribe, J.A.; Samaniego-Sandoval, L. Date palm pollen: Features, production, extraction and pollination methods. Agronomy 2021, 11, 504. [Google Scholar] [CrossRef]
- Vaknin, Y.; Gan-Mor, S.; Bechar, A.; Ronen, B.; Eisikowitch, D. Effects of desiccation and dilution on germinability of almond pollen. J. Hortic. Sci. Biotechnol. 1999, 74, 321–327. [Google Scholar] [CrossRef]
- Pinillos, V.; Cuevas, J. Artificial pollination in tree crop production. Hortic. Rev. 2008, 34, 239–276. [Google Scholar]
- Colas, F.; Perron, M.; Tousignant, D.; Parent, C.; Pelletier, M.; Lemay, P. A novel approach for the operational production of hybrid larch seeds under northern climatic conditions. For. Chron. 2008, 84, 95–104. [Google Scholar] [CrossRef]
- Zeraatkar, H.; Karimi, H.R.; Shamshiri, M.H.; Tajabadipur, A. Preliminary evaluation of artificial pollination in pistachio using pollen suspension spray. Plant Knowl. J. 2013, 2, 94–98. [Google Scholar]
- Koşar, D.A.; Sönmeza, E.; Argaç, A.; Ertürk, Ü. A unmanned aerial vehicle (UAV) based artificial pollination in frost-affected walnut (J. regia) orchard. Soc. Sci. Res. Netw. 2022, 4139033. [Google Scholar]
- Ellena, M.; Sandoval, P.; Gonzalez, A.; Galdames, R.; Jequier, J.; Contreras, M.; Azocar, G. Preliminary results of supplementary pollination on hazelnut in south Chile. In Proceedings of the VIII International Congress on Hazelnut, Temuco City, Chile, 19–22 March 2012; Volume 1052, pp. 121–127. [Google Scholar]
- Schilling, M. Bayer licenses PowerPollen corn seed pollination technology: Pollination-on-demand technology allows farmers to select optimal time to pollinate. Successful Farming. 28 July 2021. Available online: https://www.agriculture.com/technology/bayer-licenses-powerpollen-corn-seed-pollination-technology (accessed on 1 June 2022).
- Hopping, M.E.; Jerram, E.M. Supplementary pollination of tree fruits: I. Development of suspension media. N. Z. J. Agric. Res. 1980, 23, 509–515. [Google Scholar] [CrossRef]
- Yao, C.; Long, Z.; Liu, X.; Wang, X. 不同干燥及贮藏方法对猕猴桃花粉活力的影响 [Effects of different drying and storage methods on kiwifruit pollen viability]. 北方园艺2 North. Hortic. 2010, 20, 37–39. [Google Scholar]
- King, M.J.; Ferguson, A.M. Collection and use of dry pollen for pollination of kiwifruit. N. Z. J. Crop Hortic. Sci. 1991, 19, 385–389. [Google Scholar] [CrossRef]
- Holmes, A.; Taylor, R.; Miller, S.; Dean, F.; Fitzgerald, S.; Surrey, M. Isolation and Detection of Pseudomonas syringae pv. actinidiae (Psa-V) in Kiwifruit Green Pollen and an Evaluation of the Ability of Psa-V to Survive Commercial Pollen Milling and Extractions: ZESPRI Innovation Project V11341 Final Report; PlusGroup: Cincinnati, OH, USA, 2013; pp. 1–22. [Google Scholar]
- Edete. Edete Artificial Pollination 2020. Available online: https://www.youtube.com/watch?v=0FNQiYOwVnU (accessed on 25 February 2022).
- Hii, M.J.W. Kiwifruit Flower Pollination: Wind Pollination Efficiencies and Sprayer Jet Applications. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2004. [Google Scholar]
- Firman Pollen. About Firman Pollen. Available online: https://firmanpollen.com/media/ (accessed on 5 August 2022).
- Edete. Planning for the Future. Available online: https://www.edetepta.com/post/planning-for-the-future (accessed on 15 February 2022).
- Firman Pollen. Pollen Prices. Available online: https://firmanpollen.com/wp-content/uploads/FPPricingFlyer.pdf (accessed on 16 May 2022).
- Pyke, N.B.; Alspach, P.A. Variability in the performance of bee collected kiwifruit pollen. Acta Hortic. 1991, 297, 291–297. [Google Scholar] [CrossRef]
- Pyke, N.B.; Alspach, P.A. The collection and quality of bee-collecting pollen for supplimental pollination in kiwifruit. N. Z. Beekeep. 1992, 216, 16–17. [Google Scholar]
- Broussard, M.A.; Felman, C.; McBrydie, H.; van Noort, T.; Nathan, T.; Janke, M.; Bull, L.; Evans, L.J. Supplemental pollination in kiwifruit. N. Z. Kiwifruit J. 2019, 11, 25–26. [Google Scholar]
- Okada, I.; Sakai, T.; Sasaki, M. Washed and pulverized pollen loads of the honeybees, Apis mellifera L., for artificial pollination of fruit trees [peach, pear, apple]. Bull. Fac. Agric. Tamagawa Univ. 1983, 23, 18–35. [Google Scholar]
- Johansen, C. Artificial pollination of apples with bee-collected pollen. J. Econ. Entomol. 1956, 49, 825–828. [Google Scholar] [CrossRef]
- Quinet, M.; Jacquemart, A.-L. Troubles in pear pollination: Effects of collection and storage method on pollen viability and fruit production. Acta Oecol. 2020, 105, 103558. [Google Scholar] [CrossRef]
- XAG. Saving Bees with Drones: How XAG Harnesses “Electronic Bees” to Fight Against Pollination Crisis? Available online: https://www.xagaustralia.com.au/post/savingbeeswithdrones (accessed on 15 May 2022).
- Cunningham, S.A.; Evans, M.J.; Neave, M.; Armstrong, J.; Barton, P.S. Pollination and resource limitation as interacting constraints on almond fruit set. Plant Biol. 2020, 22, 113–119. [Google Scholar] [CrossRef]
- Parker, A.J.; Tran, J.L.; Ison, J.L.; Bai, J.D.K.; Weis, A.E.; Thomson, J.D. Pollen packing affects the function of pollen on corbiculate bees but not non-corbiculate bees. Arthropod-Plant Interact. 2015, 9, 197–203. [Google Scholar] [CrossRef]
- Baldet, P.; Philippe, G. Mechanized pollen harvesting in larch seed orchards. Tree Plant. Notes 1993, 44, 141–145. [Google Scholar]
- Oster, R.; DeBell, J. Development of a backpack-mounted pollen vacuum. Tree Plant 2016, 59, 42–47. [Google Scholar]
- Sáez, A.; Negri, P.; Viel, M.; Aizen, M.A. Pollination efficiency of artificial and bee pollination practices in kiwifruit. Sci. Hortic. 2019, 246, 1017–1021. [Google Scholar] [CrossRef]
- Wizenberg, S.B.; Weis, A.E.; Campbell, L.G. Comparing methods for controlled capture and quantification of pollen in Cannabis sativa. Appl. Plant Sci. 2020, 8, e11389. [Google Scholar] [CrossRef] [PubMed]
- Dinato, N.B.; Santos, I.R.I.; Vigna, B.B.Z.; de Paula, A.F.; Fávero, A.P. Pollen cryopreservation for plant breeding and genetic resources conservation. Embrapa Recur. Genéticos E Biotecnol. Artig. Em Periódico Indexado (ALICE) 2020, 41, 115–127. [Google Scholar]
- Peet, M.; Welles, G. Greenhouse tomato production. In Crop Production Science in Horticulture; CABI: Houston, TX, USA, 2005; Volume 13, pp. 257–304. [Google Scholar]
- Cane, J.H.; Schiffhauer, D. Dose-response relationships between pollination and fruiting refine pollinator comparisons for cranberry (Vaccinium macrocarpon [Ericaceae]). Am. J. Bot. 2003, 90, 1425–1432. [Google Scholar] [CrossRef]
- Broussard, M.A.; Goodwin, R.M.; McBrydie, H.M.; Evans, L.J.; Pattemore, D.E. Pollination requirements of kiwifruit (Actinidia chinensis Planch.) differ between cultivars. N. Z. J. Crop Hortic. Sci. 2021, 49, 30–40. [Google Scholar] [CrossRef]
- Dogterom, M.H.; Winston, M.L.; Mukai, A. Effect of pollen load size and source (self, outcross) on seed and fruit production in highbush blueberry cv. ‘Bluecrop’ (Vaccinium corymbosum; Ericaceae). Am. J. Bot. 2000, 87, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Pattemore, D.; Buxton, M.N.; Cutting, B.T.; McBrydie, H.; Goodwin, M.; Dag, A. Low overnight temperatures associated with a delay in ‘Hass’ avocado (Persea americana) female flower opening, leading to nocturnal flowering. J. Pollinat. Ecol. 2018, 23, 127–135. [Google Scholar] [CrossRef]
- Chang, W.N.; Struckmeyer, B.E. Influence of temperature, time of day, and flower age on pollen germination, stigma receptivity, pollen tuber growth, and fruit set of Allium cepa L. J. Am. Soc. Hortic. Sci. 1976, 101, 81–83. [Google Scholar] [CrossRef]
- González, M.V.; Coque, M.; Herrero, M. Stigmatic receptivity limits the effective pollination period in kiwifruit. J. Am. Soc. Hortic. Sci. 1995, 120, 199–202. [Google Scholar] [CrossRef]
- Moll, R.H. Receptivity of the individual onion flower and some factors affecting its duration. Proc. Am. Soc. Hortic. Sci. 1954, 64, 399–404. [Google Scholar]
- Naik, S. Effect of Pollination Methods on the Fruit Set, Yield and Quality of Kiwifruit (Actinidia deliciosa Liang & Ferguson). Ph.D. Thesis, University of Horticulture and Forestry, Solan, India, 2011. [Google Scholar]
- Rader, R.; Bartomeus, I.; Garibaldi, L.A.; Garratt, M.P.D.; Howlett, B.G.; Winfree, R.; Cunningham, S.A.; Mayfield, M.M.; Arthur, A.D.; Andersson, G.K.S.; et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. USA 2016, 113, 146–151. [Google Scholar] [CrossRef]
- Thomson, J.D.; Eisenhart, K.S. Rescue of stranded pollen grains by secondary transfer. Plant Species Biol. 2003, 18, 67–74. [Google Scholar] [CrossRef]
- Whiting, M. Mechanical Pollination for Yield Security; Washington Tree Fruit Research Commission: Washington, DC, USA, 2015. [Google Scholar]
- Zhang, S.; Wang, X.; Tao, S.; Xi, D.; Cao, D.; Li, M.; Wu, J.; Qi, K. Method for saving cost and improving efficiency for liquid pollination of pear tree. CN200910113611A, 29 December 2009. [Google Scholar]
- Sakamoto, D.; Hayama, H.; Ito, A.; Kashimura, Y.; Moriguchi, T.; Nakamura, Y. Spray pollination as a labor-saving pollination system in Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai). Dev. Suspens. Medium. Sci. Hortic. 2009, 119, 280–285. [Google Scholar] [CrossRef]
- Clarke, D.; Morley, E.; Robert, D. The bee, the flower, and the electric field: Electric ecology and aerial electroreception. J. Comp. Physiol. A 2017, 203, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Bechar, A.; Gan-Mor, S.; Ronen, B. A method for increasing the electrostatic deposition of pollen and powder. J. Electrost. 2008, 66, 375–380. [Google Scholar] [CrossRef]
- Gan-Mor, S.; Ronen, B.; Ohaliav, K. The effect of air velocity and proximity on the charging of sprays from conventional hydraulic nozzles. Biosyst. Eng. 2014, 121, 200–208. [Google Scholar] [CrossRef]
- Law, S.E.; Wetzstein, H.Y.; Banerjee, S.; Eisikowitch, D. Electrostatic application of pollen sprays: Effects of charging field intensity and aerodynamic shear upon deposition and germinability. IEEE Trans. Ind. Appl. 2000, 36, 998–1009. [Google Scholar] [CrossRef]
- Williams, H.; Nejati, M.; Hussein, S.; Penhall, N.; Lim, J.Y.; Jones, M.H.; Bell, J.; Ahn, H.S.; Bradley, S.; Schaare, P. Autonomous pollination of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator. J. Field Robot. 2020, 37, 246–262. [Google Scholar] [CrossRef]
- Costa, G.; Testolin, R.; Vizzotto, G. Kiwifruit pollination: An unbiased estimate of wind and bee contribution. N. Z. J. Crop Hortic. Sci. 1993, 21, 189–195. [Google Scholar] [CrossRef]
- González, M.V.; Coque, M.; Herrero, M. Influence of pollination systems on fruit set and fruit quality in kiwifruit (Actinidia deliciosa). Ann. Appl. Biol. 1998, 132, 349–355. [Google Scholar] [CrossRef]
- Castro, H.; Siopa, C.; Casais, V.; Castro, M.; Loureiro, J.; Gaspar, H.; Dias, M.; Castro, S. Spatiotemporal variation in pollination deficits in an insect-pollinated dioecious crop. Plants 2021, 10, 1273. [Google Scholar] [CrossRef]
- Aermatica3D. Aermatica3D Realises the Drone Solution for Walnut Pollination. Available online: https://www.aermatica.com/en/aermatica3d-realizes-the-drone-solution-for-artificial-pollination/ (accessed on 20 February 2022).
- David, M.A.; Yommi, A.; Sánchez, E.; Martinez, A.; Murillo, N.; Marcellán, O.; Atela, O.; Palacio, M.A. Strategic use of honey bees (Apis mellifera L.) to increase the number and size of fruits in kiwifruit (Actinidia chinensis var. deliciosa). Eur. J. Agron. 2022, 133, 126420. [Google Scholar] [CrossRef]
- Jorquera, A.; Esteban, R. Efecto de La Polinizacion Entomofila y por Aire Forzado en el Peso, Numero de Semillas y Cuaja En Frutos de Kiwi (Actinidia deliciosa (Chev.) Liang et Ferguson). Nogales Quinta Region [Effect of Entomophilic and Forced Air Pollination on Weight, Number of Seeds and Fruit Set in Kiwi (Actinidia deliciosa (Chev.) Liang et Ferguson). Nogales Fifth Region]; Pontificia Universidad Católica de Valparaíso: Valparaíso, Chile, 2004. [Google Scholar]
- Jackson, D. SARE Project FNE00-307: Hardy Kiwi Pollination & Production Final Report; Kiwi Korners: Spring Mills, PA, USA, 2001. [Google Scholar]
- Stasiak, A.; Stefaniak, J.; Łata, B.; Latocha, P. Efficiency of A. Arguta (Siebold Et Zucc.) Planch. Ex. Miq. Pollinat. Using A. Deliciosa Pollen. J. Int. Sci. Publ. Agric. Food 2017, 5, 178–187. [Google Scholar]
- Hii, M.J.W.; Abrahamson, J.; Jordan, P.J. Modelling of air flow and pollen collection by a single kiwifruit flower under wind and an air jet. In Proceedings of the 3rd International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia, 10–12 December 2003. [Google Scholar]
- Massa, G.D.; Santini, J.B.; Mitchell, C.A. Minimizing energy utilization for growing strawberries during long-duration space habitation. Adv. Space Res. 2010, 46, 735–743. [Google Scholar] [CrossRef]
- Giles, F. Protected Ag Proving Its Place In Florida. Available online: https://www.growingproduce.com/vegetables/protected-ag-proving-its-place-in-florida/ (accessed on 31 May 2021).
- Vera-Chang, J.; Cabrera-Verdezoto, R.; Morán-Morán, J.; Neira-Rengifo, K.; Haz-Burgos, R.; Vera-Barahona, J.; Molina-Triviño, H.; Moncayo-Carreño, O.; Díaz-Ocampo, E.; Cabrera-Verdesoto, C. Evaluación de tres métodos de polinización artificial en clones de cacao (Theobroma cacao L.) CCN-51. Idesia (Arica) 2016, 34, 35–40. [Google Scholar] [CrossRef]
- González, M.; Hueso, J.J.; Alonso, F. Assessment of pollination strategies in cherimoya. In VI International Symposium on Banana and other Trop; In Proceedings of the Fruits: XXVIII International Horticultural Congress on Science and Horticulture for People 928, Lisbon, Portugal, 28 February 2012; pp. 105–111.
- Yoo, J.; Kang, I.-K. Effects of Artificial Pollination using Pollen Suspension on Fruit Set and Quality Attributes of ’Fuji’ Apples. Curr. Res. Agric. Life Sci. 2014, 32, 211–214. [Google Scholar] [CrossRef]
- Kuru, C. Artificial pollination of pistachio trees under unsufficient pollination conditions. In Proceedings of the I International Symposium on Pistachio 419, Adana, Turkey, 1 December 1995; pp. 121–124. [Google Scholar]
- Onag, G. Japanese Farm Deployed Robot to Pollinate Apple Orchard. Available online: https://futureiot.tech/japanese-farm-deployed-robot-to-pollinate-apple-orchard/ (accessed on 14 April 2022).
- Gan-Mor, S.; Bechar, A.; Ronen, B.; Eisikowitch, D.; Vaknin, Y. Electrostatic pollen applicator development and tests for almond, kiwi, date, and pistachio–an overview. Appl. Eng. Agric. 2003, 19, 119–124. [Google Scholar]
- Edete. The Case for Artificial Pollination; Edete Precision Technologies for Agriculture: Hefa, Israel, 2022; pp. 1–3. [Google Scholar]
- Augmentus. How Singrow Leverages The Augmentus Platform to Automate Strawberry Pollination and Harvesting. Available online: https://augmentus.tech/how-singrow-leverages-the-augmentus-platform-to-automate-strawberry-pollination-and-harvesting/ (accessed on 8 April 2022).
- Ohi, N.; Lassak, K.; Watson, R.; Strader, J.; Du, Y.; Yang, C.; Hedrick, G.; Nguyen, J.; Harper, S.; Reynolds, D. Design of an autonomous precision pollination robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7711–7718. [Google Scholar]
- Arugga AI Farming. Robots Treating Every Plant. Available online: https://www.arugga.com/ (accessed on 7 April 2022).
- Shimizu, H.; Sato, T. Development of strawberry pollination system using ultrasonic radiation pressure. IFAC-Pap. 2018, 51, 57–60. [Google Scholar] [CrossRef]
- HarvestX. The Future of Farming is Here. Available online: https://harvestx.jp/en/ (accessed on 16 February 2021).
- Goodwin, R.M.; McBrydie, H.M. Use of Pollen Blowers and Pollen Dispensers to Pollinate Kiwifruit Artificially; A report prepared for: PFR, Project No VI1358; Plant & Food Research: Hamilton, New Zealand, 2013. [Google Scholar]
- Yang, X.; Miyako, E. Soap Bubble Pollination. Iscience 2020, 23, 101188. [Google Scholar] [CrossRef]
- Lukose, R.; Dhalin, D.; Khatawkar, D.S.; Subhagan, S.R.; Jayan, P.R.; Shivaji, K.P. Effect of electrostatic force on mechanical pollination in green house crops. Agric. Mech. Asia 2022, 53, 5205–5218. [Google Scholar]
- HortiSpares. Vibri Vario Tomato Pollination Vibrator. Available online: https://www.hortispares.com/machines/vibri-vario/ (accessed on 6 June 2022).
- Wood, T. Farmer Reveals he Tickles his Plants with a Vibrator to Improve His Crop. Available online: https://www.ladbible.com/news/weird-farmer-reveals-he-tickles-his-plants-with-vibrator-to-improve-crop-20200717 (accessed on 31 May 2021).
- Pollen Collection & Sales. Pollens & Pollination. Available online: http://www.pollencollectionandsales.com/our-products-1 (accessed on 15 May 2022).
- KiwiPollen. Dry Application Products. Available online: http://www.kiwipollen.com/KPNZ%20Website%20Blowers.html (accessed on 30 June 2021).
- Gan-Mor, S.; Bechar, A.; Ronen, B.; Eisikowitch, D.; Vaknin, Y. Improving electrostatic pollination inside tree canopy via simulations and field tests. Trans. ASAE 2003, 46, 839. [Google Scholar]
- Law, S.E. Agricultural electrostatic spray application: A review of significant research and development during the 20th century. J. Electrost. 2001, 51, 25–42. [Google Scholar]
- Whiting, M. Advancing Precision Pollination Systems to Improve Yield Security; Washington Tree Fruit Research Commission: Prosser, WA, USA, 2019. [Google Scholar]
- Fichtner, E.J.; Wilson, K. Can mechanically-applied pollen either supplement bees, or ensure an almond crop in the event of bee inefficacy or unavailability? The Almond Doctor, 10 January 2016. Available online: https://thealmonddoctor.com/supplemental_pollen_trials_2015/ (accessed on 11 January 2023).
- Firman Pollen. Scumby Applicator Instructions. Available online: https://firmanpollen.com/wp-content/uploads/ScumbyApplication.pdf (accessed on 11 January 2023).
- PollenSmart. PollenSmart Models. Available online: https://www.pollensmart.co.nz/models (accessed on 22 June 2022).
- AgroPalms. AgroPalms Machinery. Available online: https://www.agropalmsmachinery.com/ (accessed on 25 May 2022).
- PollenPro. ATV Applicator. Available online: http://www.pollenpro.net/atv-applicator (accessed on 25 May 2022).
- Courtney, R. High-Tech Bee Boosters: Cherry Growers Turn to Tech Companies to Supplement Honey Bee Pollination. Available online: https://www.goodfruit.com/high-tech-bee-boosters/ (accessed on 31 May 2021).
- OnTarget. Pollen Application Sprayers. Available online: https://ontargetspray.com/pollen/ (accessed on 16 February 2023).
- Wikifactory. A virtual round table on how UAVs and robotics can be used to make a difference. In Drones for Change; 2020. Available online: https://wikifactory.com/@niko11/stories/drones-for-change-a-round-table-on-how-uavs-and-robotics-can-be-used-to-make-a-difference (accessed on 25 May 2022).
- Alkhamis, W. Emirati Brothers Develop Drone That Can Pollinate a Date Palm Tree in Less Than a Minute. Available online: https://www.thenationalnews.com/uae/2021/11/14/emirati-brothers-develop-drone-that-can-pollinate-a-date-palm-tree-in-less-than-a-minute-2/ (accessed on 25 May 2022).
- Wakan Tech. Date Palm Pollination. Available online: https://wakantech.om/ (accessed on 25 May 2022).
- Sur, A. Telangana Explores Use of Drones for Hybrid Rice Breeding. Available online: https://www.newindianexpress.com/states/telangana/2021/jan/20/telanganaexplores-use-of-drones-for-hybrid-rice-breeding-2252520.html (accessed on 25 May 2021).
- Anonymous. The Buzz Behind the Artificial Pollinators of Tomorrow. Available online: https://www.dbs.com/portraits-of-purpose/article-detail.html?post=the-buzz-behind-the-artificial-pollinators-of-tomorrow (accessed on 25 May 2022).
- Chechetka, S.A.; Yu, Y.; Tange, M.; Miyako, E. Materially engineered artificial pollinators. Chem 2017, 2, 224–239. [Google Scholar] [CrossRef]
- Gleadow, R.; Hanan, J.; Dorin, A. Averting robo-bees: Why free-flying robotic bees are a bad idea. Emerg. Top. Life Sci. 2019, 3, 723–729. [Google Scholar] [PubMed]
- Potts, S.G.; Neumann, P.; Vaissière, B.; Vereecken, N.J. Robotic bees for crop pollination: Why drones cannot replace biodiversity. Sci. Total Environ. 2018, 642, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Gadiel, A. Successful Date Pollination Test Using Drones 2019–2020. Available online: https://www.suasnews.com/2020/12/successful-date-pollination-test-using-drones-2019-2020/ (accessed on 8 July 2022).
- Silver, D. Blue White Robotics Aims To Become The AWS Of Autonomy. Available online: https://www.forbes.com/sites/davidsilver/2021/01/06/blue-white-robotics-aims-to-become-the-aws-of-autonomy/?sh=3d00f4f96faa (accessed on 25 May 2022).
- Al Jazeera. By Drone: Tunisian Engineer Invents New Way to Fertilize Palms. Available online: https://www.tellerreport.com/news/2021-03-24-%0A---drones-fertilizing-palm-trees-----a-pioneering-project-by-a-tunisian-engineer-that-challenges-the-customs-of-date-farmers-in-tunisia%0A--.SyMMndhdVu.html (accessed on 25 May 2022).
- Galeano, E.; Bousquet, J.; Thomas, B.R. SNP-based analysis reveals unexpected features of genetic diversity, parental contributions and pollen contamination in a white spruce breeding program. Sci. Rep. 2021, 11, 4990. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.M. YOLOMuskmelon: Quest for fruit detection speed and accuracy using deep learning. IEEE Access 2021, 9, 15221–15227. [Google Scholar] [CrossRef]
- Lim, J.; Ahn, H.S.; Nejati, M.; Bell, J.; Williams, H.; MacDonald, B.A. Deep Neural Network Based Real-time Kiwi Fruit Flower Detection in an Orchard Environment. arXiv 2020, arXiv:2006.04343. [Google Scholar]
- Abbas, Q.; Ibrahim, M.E.; Jaffar, M.A. A comprehensive review of recent advances on deep vision systems. Artif. Intell. Rev. 2019, 52, 39–76. [Google Scholar] [CrossRef]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep neural networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, S.; Sheng, X.; Wang, D.; Gong, Y.; Li, W. An autonomous pollination robot for hormone treatment of tomato flower in greenhouse. In Proceedings of the 2016 3rd International Conference on Systems and Informatics (ICSAI), Shanghai, China, 19–21 November 2016; pp. 108–113. [Google Scholar]
- Kootstra, G.; Wang, X.; Blok, P.M.; Hemming, J.; Van Henten, E. Selective harvesting robotics: Current research, trends, and future directions. Curr. Robot. Rep. 2021, 2, 95–104. [Google Scholar] [CrossRef]
- Bac, C.W.; van Henten, E.J.; Hemming, J.; Edan, Y. Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. J. Field Robot. 2014, 31, 888–911. [Google Scholar] [CrossRef]
- Arugga AI Farming. Arugga AI Farming—Autonomous Pollination Robots. Available online: https://www.youtube.com/watch?v=kFZPzB-u_s8 (accessed on 8 July 2022).
- HortDaily. Researchers Developnew Robot Pollinator to Assist in Greenhouse. Available online: https://www.hortidaily.com/article/9368317/researchers-develop-new-robot-pollinator-to-assist-in-greenhouse/ (accessed on 25 May 2022).
- Li, K.; Zhai, L.; Pan, H.; Shi, Y.; Ding, X.; Cui, Y. Identification of the operating position and orientation of a robotic kiwifruit pollinator. Biosyst. Eng. 2022, 222, 29–44. [Google Scholar] [CrossRef]
Pollination Method | Example Technologies | Applicability | Crop Types (Commercial/ Prototype) | References |
---|---|---|---|---|
hand-pollination | paintbrush, feather, velvet, tuning fork, stick, brushing flowers together | most plant species | cacao, cherimoya, date palm, dragon fruit, vanilla, indoor tomato (regions without bumble bees) | [11,28] |
handheld devices | vibrating rods, electric toothbrush, leafblowers | self-compatible plants | cacao, indoor tomato, capsicum, eggplant | [59,88,89] |
puffers, pneumatic applicators, sprayers | open-flowered plants where pollen is available | kiwifruit, cherimoya, stonefruit, pipfruit, pistachio, date palm, larch (timber breeding) | [23,28,31,41,72,90,91,92] | |
vehicle-mounted devices | mobile fans | self-compatible plants | kiwifruit, olive | [23] |
mobile pollen sprayers and blowers | open-flowered plants where pollen is available | kiwifruit, pipfruit, stonefruit, date palm | [23,27,28,93] | |
vehicle-mounted devices with electrostatic charge | mobile electrostatic pollen sprayers and blowers | open-flowered plants where pollen is available | kiwifruit, almond, pistachio, pipfruit, stonefruit, larch (timber breeding) | [54,94,95] |
unmanned aerial vehicles (UAVs) | drones | wind-pollinated | almond, pipfruit, stonefruit, date palm, walnut | [33,51,81] |
robotics | autonomous vehicles, mobile robotic arms | to date, each technology has focused on a single crop | hybrid maize, kiwifruit, caneberries, strawberry, indoor tomato | [35,77,96,97,98,99,100] |
Mode | General Type | Description | Examples | References |
---|---|---|---|---|
Vibration | Vibrating wands | battery-powered vibrating devices to pollinate self-compatible solanaceous crops | electric toothbrush | |
Vibri-Vario, Royal Brinkman, ‘s-Gravenzande, The Netherlands | [104] | |||
off-label use of vibrators and sex toys | [105] | |||
Blowers | often an unmodified leaf blower; used to vibrate plants or move airborne pollen | leaf blowers, handheld dusters | [88,89] | |
Dry | Puffers | rubber diaphragm, receptacle and tube | “Columbus” (コロンブス), Japan | [90,91] |
Pollination guns | handheld battery powered device with a pollen receptacle/vortex chamber for applying targeted dry pollen | handheld pollen duster, USA | [28,86,106] | |
Pneumatic dusters | pole tipped with feather brush or fan with pneumatic pollen supply; designed to reach into orchard canopy | “Love Touch” (ラブタチ), Japan | [28,91] | |
Handheld blower device with pollen reservoir | motorised devices with a pollen reservoir to disperse dry pollen over a large area; often a modified leafblower | KiwiPollen Duster, KiwiPollen, New Zealand PollenPlus Pollen Blower, PollenPlus, New Zealand Soffi@PollineZ, Biotac, Verona, Italy “Speedy” Dall’Agata, Forlì, Italy Backpack AirShear, KiwiPollen, New Zealand | [21,23,28,34,41,107] | |
Wet | Handheld wet applicator | handheld bottles or pressurised backpack sprayers | Cambrium, KiwiPollen, New Zealand ElettroEASY, Volpi, Mantova, Italy | [23,24,28,41,52,92] |
Mode | Technology | Country 1 | Description | Crop | Development 2 | Pollen 3 | Efficacy 4 | Reference |
---|---|---|---|---|---|---|---|---|
Vibration | Polybee | SG | A multipurpose fee-for-service microdrone, pollinating self-compatible plants by air currents; indoor only | indoor strawberry, tomato, peppers, eggplant | commercial trials | - | n.d. | [122] |
Dry | Dropcopter | US | A fee-for-service drone pollinator | almond, pistachio, pipfruit, stonefruit, date palm | commercial | + | =/+ | [116] [126] |
Blue White Robotics | IL | A multipurpose agricultural drone originating from military drone designs | date palm | commercial | + | + | [127] | |
Dro Bee | TN | A drone with machine vision capability to distinguish between receptive and unreceptive date palm panicles | date palm | prototype | + | = | [128] | |
CODE Three Fourteen | AE | A fee-for-service drone pollinator; field-capable, 25–100× faster than human pollination | date palm | commercial trials | + | n.d. | [119] | |
Aermatica 3D-Bly-A | IT/TR | A multipurpose agricultural drone capable of dispensing dry powder | walnut | commercial | + | + | [33,81] | |
Dry or wet | Wakan Tech | OM | Fee-for-service drone pollinator, 20–30× faster than human pollination | date palm | commercial | + | = | [120] |
Wet | XAG “Electronic Bees” | CN | A multipurpose agricultural drone capable of dispensing atomised droplets | almond, pears | commercial | + | n.d. | [51] |
Mode | Technology | Country 1 | Description | Crop | Development 2 | Pollen 3 | Efficacy 4 | Reference |
---|---|---|---|---|---|---|---|---|
Air jets | Arugga AI | IL | multipurpose autonomous platform with multiple targeted air jets | high-wire tomato | commercial trials | - | n.d. | WO2020095290A1 [98] |
Ultrasonic strawberry pollinator | JP | stationary platform using bursts of ultrasonic vibration to pollinate strawberry | strawberry | prototype | - | + | [99] | |
Jiangsu University strawberry pollinator | CN | autonomous platform using targeted blowers to deliver heated air to strawberries | strawberry | prototype | - | n.d. | CN109588305B | |
Contact | BrambleBee | US | autonomous platform with single arm; did not pollinate real flowers | cane-berries | Early prototype | - | n.d. | [97] |
Stickbug | US | next iteration of BrambleBee; autonomous platform with six arms | cane-berries | Early prototype | - | n.d. | [138] | |
Singrow strawberry pollinator | SG | UR3 robotic arm using an Augmentus platform developed for indoor strawberry pollination | strawberry | prototype | - | n.d. | [96] | |
HarvestX | JP | autonomous platform with robotic arm tipped with a pom-pom for pollinating individual flowers | strawberry | commercial trials | - | n.d. | JP2019177764 [100] | |
Iseki pollination robot | JP | autonomous platform with a robotic arm for vibrating tomato flowers | tomato | patented | - | n.d. | JP2011200196A | |
Dry | PowerPollen | US | tractor-drawn autonomous spray system capable of targeting individual maize silks; uses electrostatic charge; field-capable | maize | commercial trials | + | + | US10905060B2 [35] |
Pioneer Hi-Bred maize pollinator | US | tractor-drawn autonomous spray system capable of targeting individual maize silks; uses electrostatic charge; field-capable | maize | patented | + | n.d. | US9433161B2 | |
Monsanto maize pollinator | US | tractor-drawn autonomous spray system capable of targeting individual maize silks; uses electrostatic charge; field-capable | maize | patented | + | n.d. | WO2022046811A1 | |
Wet | Autonomous kiwifruit pollinator | NZ | autonomous platform with nozzles capable of individual targeting; field-capable | kiwifruit | prototype | + | =/- | [77] |
Autonomous kiwifruit pollinator | CN | autonomous platform fitted with a robotic arm and nozzle, capable of individual targeting; field-capable | kiwifruit | prototype | + | =/- | [139] | |
Autonomous tomato pollinator | CN | autonomous platform with nozzles capable of individual targeting | high-wire tomato | prototype | - | - | [134] | |
Verdant Robotics | US | multipurpose autonomous platform capable of targeting apple flowers for pollination and thinning; field-capable | apple | patented | + | n.d. | US11308323B2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broussard, M.A.; Coates, M.; Martinsen, P. Artificial Pollination Technologies: A Review. Agronomy 2023, 13, 1351. https://doi.org/10.3390/agronomy13051351
Broussard MA, Coates M, Martinsen P. Artificial Pollination Technologies: A Review. Agronomy. 2023; 13(5):1351. https://doi.org/10.3390/agronomy13051351
Chicago/Turabian StyleBroussard, Melissa A, Michael Coates, and Paul Martinsen. 2023. "Artificial Pollination Technologies: A Review" Agronomy 13, no. 5: 1351. https://doi.org/10.3390/agronomy13051351
APA StyleBroussard, M. A., Coates, M., & Martinsen, P. (2023). Artificial Pollination Technologies: A Review. Agronomy, 13(5), 1351. https://doi.org/10.3390/agronomy13051351