Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = daily differential activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2394 KB  
Article
Lychee Seed Extract Targets Proliferation, Differentiation, and Cell Cycle Proteins to Suppress Human Colorectal Tumor Growth in Xenograft Models
by Szu-Nian Yang, Yi-Ping Chang, Oscar C. Y. Yang, Chi-Sheng Wu, Chiu-Chen Huang, Jia-Feng Chang, Chia-Ming Liang, Shun-Tai Dai, Lung Chen and Chih-Ping Hsu
Int. J. Mol. Sci. 2025, 26(19), 9786; https://doi.org/10.3390/ijms26199786 - 8 Oct 2025
Viewed by 226
Abstract
Colorectal cancer (CRC) remains a leading global health challenge, and natural products are increasingly explored for their multi-targeted therapeutic potential. Litchi chinensis seed extract (LCSE) has shown promising anti-cancer activity in vitro, though its in vivo effects remain underexplored. LCSE was analyzed by [...] Read more.
Colorectal cancer (CRC) remains a leading global health challenge, and natural products are increasingly explored for their multi-targeted therapeutic potential. Litchi chinensis seed extract (LCSE) has shown promising anti-cancer activity in vitro, though its in vivo effects remain underexplored. LCSE was analyzed by colorimetric assays and HPLC to quantify the phytochemical composition. Nude mice bearing HT-29 or SW480 xenografts were orally administered LCSE (0.1 or 0.6 g/kg) daily for 14 days. Tumor volume was measured, and immunohistochemistry was used to assess EGFR, p21, p53, Ki-67, CEA, CK20, CDX2, and Bax expression. Phytochemical profiling demonstrated LCSE contains abundant phenolics and flavonoids, with gallic acid as a predominant constituent, underscoring the potential bioactive properties. LCSE significantly inhibited tumor growth in HT-29 xenografts and dose-dependently reduced EGFR, p21, p53, cell cycle proteins and proliferation/differentiation markers. In SW480 tumors, inhibitory effects were evident primarily at the higher dose, with limited reduction in p53 expression. Bax levels remained unchanged in both models, indicating a non-apoptotic mechanism. No systemic toxicity was observed in treated mice. LCSE exhibits dose-dependent anti-tumor activity in CRC xenografts, likely mediated through suppression of proliferation and modulation of key regulatory proteins rather than apoptosis. These findings support LCSE as a safe, multi-target botanical candidate for CRC intervention and justify further mechanistic and translational studies. Full article
Show Figures

Figure 1

25 pages, 2714 KB  
Article
Evaluating Municipal Solid Waste Incineration Through Determining Flame Combustion to Improve Combustion Processes for Environmental Sanitation
by Jian Tang, Xiaoxian Yang, Wei Wang and Jian Rong
Sustainability 2025, 17(19), 8872; https://doi.org/10.3390/su17198872 - 4 Oct 2025
Viewed by 218
Abstract
Municipal solid waste (MSW) refers to solid and semi-solid waste generated during human production and daily activities. The process of incinerating such waste, known as municipal solid waste incineration (MSWI), serves as a critical method for reducing waste volume and recovering resources. Automatic [...] Read more.
Municipal solid waste (MSW) refers to solid and semi-solid waste generated during human production and daily activities. The process of incinerating such waste, known as municipal solid waste incineration (MSWI), serves as a critical method for reducing waste volume and recovering resources. Automatic online recognition of flame combustion status during MSWI is a key technical approach to ensuring system stability, addressing issues such as high pollution emissions, severe equipment wear, and low operational efficiency. However, when manually selecting optimized features and hyperparameters based on empirical experience, the MSWI flame combustion state recognition model suffers from high time consumption, strong dependency on expertise, and difficulty in adaptively obtaining optimal solutions. To address these challenges, this article proposes a method for constructing a flame combustion state recognition model optimized based on reinforcement learning (RL), long short-term memory (LSTM), and parallel differential evolution (PDE) algorithms, achieving collaborative optimization of deep features and model hyperparameters. First, the feature selection and hyperparameter optimization problem of the ViT-IDFC combustion state recognition model is transformed into an encoding design and optimization problem for the PDE algorithm. Then, the mutation and selection factors of the PDE algorithm are used as modeling inputs for LSTM, which predicts the optimal hyperparameters based on PDE outputs. Next, during the PDE-based optimization of the ViT-IDFC model, a policy gradient reinforcement learning method is applied to determine the parameters of the LSTM model. Finally, the optimized combustion state recognition model is obtained by identifying the feature selection parameters and hyperparameters of the ViT-IDFC model. Test results based on an industrial image dataset demonstrate that the proposed optimization algorithm improves the recognition performance of both left and right grate recognition models, with the left grate achieving a 0.51% increase in recognition accuracy and the right grate a 0.74% increase. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

16 pages, 1288 KB  
Article
Urban Geometry and Social Topology: A Computational Simulation of Urban Network Formation
by Daniel Lenz Costa Lima, Daniel Ribeiro Cardoso and Andrés M. Passaro
Buildings 2025, 15(19), 3555; https://doi.org/10.3390/buildings15193555 - 2 Oct 2025
Viewed by 297
Abstract
When a city decides to undertake a certain urban project, is it modifying just the physical environment or the social fabric that dwells within? This work investigates the relationship between the geometric configuration of urban space (geometry–city) and the topology of the networks [...] Read more.
When a city decides to undertake a certain urban project, is it modifying just the physical environment or the social fabric that dwells within? This work investigates the relationship between the geometric configuration of urban space (geometry–city) and the topology of the networks of encounters of its inhabitants (network–city) that form through daily interactions. The research departs from the hypothesis that changes in geometry–city would not significantly alter the topology of the network–city, testing this proposition conceptually through abstract computational simulations developed specifically for this study. In this simulator, abstract maps with buildings distributed over different primary geometries are generated and have activities (use: home or work) and a population assigned. Encounters of the “inhabitants” are registered while daily commute routines, enough to achieve differentiation and stability, are run. The initial results revealed that the geometry description was not enough, and definitions regarding activity attribution were also necessary. Thus, we could not confirm nor reject the original hypothesis exactly, but it had to be complemented, including the idea of an activity–city dimension. We found that despite the geometry–city per se not determining the structure of the network–city, the spatial (geometric) distribution of activities directly impacts the resulting topology. Urban geometry influences networks–city only insofar as it conforms to activity–city, defining areas for activities or restricting routing between them. But it is the geometry of localization of the activities that has a direct impact on the topology of the network–city. This conceptual discovery can have significant implications for urban planning if corroborated in real-world situations. It could suggest that land use policies may be more effective for intervening in network-based characteristics, like social cohesion and resilience, than purely morphological interventions. Full article
(This article belongs to the Special Issue Emerging Trends in Architecture, Urbanization, and Design)
Show Figures

Figure 1

26 pages, 3848 KB  
Article
Methamphetamine Induces Metallothionein 1 Expression and an Inflammatory Phenotype in Primary Human HIV-Infected Macrophages
by Jessica Weiselberg, Meng Niu, Cristian A. Hernandez, Howard S. Fox, Tina M. Calderon and Joan W. Berman
Int. J. Mol. Sci. 2025, 26(18), 8875; https://doi.org/10.3390/ijms26188875 - 12 Sep 2025
Viewed by 458
Abstract
HIV-associated neurocognitive impairment (HIV-NCI), a comorbidity of human immunodeficiency virus (HIV) infection, affects up to 50% of people with HIV (PWH). HIV-infected monocytes that transmigrate across the blood–brain barrier and mature into macrophages establish a central nervous system (CNS) viral reservoir that activates [...] Read more.
HIV-associated neurocognitive impairment (HIV-NCI), a comorbidity of human immunodeficiency virus (HIV) infection, affects up to 50% of people with HIV (PWH). HIV-infected monocytes that transmigrate across the blood–brain barrier and mature into macrophages establish a central nervous system (CNS) viral reservoir that activates and infects parenchymal cells, contributing to neuronal damage that characterizes HIV-NCI. Methamphetamine (meth) use is prevalent in PWH and further impairs cognitive functioning. To examine whether meth-mediated dysregulation of macrophage functions may contribute to increased HIV-NCI, we characterized differential gene expression in primary human HIV-infected macrophages treated daily with meth for five days by RNA-sequencing. We identified increases in multiple gene isoforms of metallothionein 1 (MT1), a heavy metal binding protein involved in protective mechanisms against metal toxicity and oxidative stress. Nuclear localization of MT1 protein was previously shown to either positively or negatively affect nuclear factor κB (NF-κB) activity in a cell type specific manner, with nuclear MT1 contributing to LPS-induced TNF-α and IL-6 in macrophages. We found that daily meth treatment for one to five days increased nuclear localization of MT1 in macrophages acutely infected with HIV which was associated with increased LPS-induced CXCL8 and CCL8, and a trend towards increased basal and/or LPS-induced expression of other cytokines/chemokines, including TNF-α and IL-6, that was donor specific. Reactive oxygen species (ROS) levels were not changed with meth treatment although there was a donor specific trend towards increased ROS with multiple days of meth treatment. These data indicate that repeated exposure of macrophages to meth in the context of HIV increases nuclear MT1 localization, which is associated with increased inflammatory mediator production, and therefore may be a mechanism that contributes to meth-mediated exacerbation of HIV-NCI. Full article
Show Figures

Figure 1

14 pages, 656 KB  
Article
Dimensions of Meaning in Physical Education—Voices from Experienced Teachers
by Carla Girona-Durá, Iván López-Bautista, Olalla García-Taibo and Salvador Baena-Morales
Educ. Sci. 2025, 15(9), 1166; https://doi.org/10.3390/educsci15091166 - 6 Sep 2025
Viewed by 538
Abstract
Meaningful Physical Education (MPE) emphasizes six pedagogical dimensions, social interaction, enjoyment, fair challenge, motor competence, personally relevant learning, and enduring satisfaction, that contribute to students’ motor and emotional development. This study explores how experienced in-service Physical Education (PE) teachers perceive their capacity to [...] Read more.
Meaningful Physical Education (MPE) emphasizes six pedagogical dimensions, social interaction, enjoyment, fair challenge, motor competence, personally relevant learning, and enduring satisfaction, that contribute to students’ motor and emotional development. This study explores how experienced in-service Physical Education (PE) teachers perceive their capacity to foster these dimensions in their daily teaching practice. A qualitative, interpretative study was conducted through semi-structured interviews with 14 PE teachers (≥10 years of experience) from primary and secondary schools in Spain. A validated interview protocol, structured around the six MPE dimensions, guided data collection. Transcriptions were thematically analyzed using an inductive–deductive coding approach. Teachers described strategies to promote social cohesion, engagement through playful experiences, and differentiation to achieve fair challenges. They emphasized the importance of visible motor progress and emotional safety, and highlighted that when students perceive lessons as relevant, their motivation and long-term adherence to physical activity increases. Although teachers recognized challenges in implementing all dimensions simultaneously, they valued MPE as a guiding framework. The findings support MPE as a feasible and pedagogically rich model in real school contexts. Promoting these dimensions appears to be critical in fostering students’ sustained participation in physical activity and supporting their holistic motor development. Full article
Show Figures

Figure 1

22 pages, 2629 KB  
Article
Intermittent Cold Exposure Induces Distinct Proteomic Signatures in White Adipose Tissue of Mice
by Elena Elsukova, Tatiana Zamay, Anna Kichkailo, Andrey Yakunenkov, Dmitry V. Veprintsev, Zoran Minic, Maxim V. Berezovski and Yury Glazyrin
Int. J. Mol. Sci. 2025, 26(16), 7898; https://doi.org/10.3390/ijms26167898 - 15 Aug 2025
Viewed by 746
Abstract
Adipose tissue exhibits dynamic metabolic and structural changes in response to environmental stimuli, including temperature fluctuations. While continuous cold exposure has been extensively studied, the molecular effects of prolonged intermittent cold exposure (ICE) remain poorly characterized. Here, we present a proteomic analysis of [...] Read more.
Adipose tissue exhibits dynamic metabolic and structural changes in response to environmental stimuli, including temperature fluctuations. While continuous cold exposure has been extensively studied, the molecular effects of prolonged intermittent cold exposure (ICE) remain poorly characterized. Here, we present a proteomic analysis of inguinal white adipose tissue (IWAT) from mice subjected to a 16-week regimen of short-term daily ICE (6 °C for 6 h, 5 days per week) without compensatory caloric intake. Mass spectrometry identified 1108 proteins, with 140 differentially expressed between experimental and control groups. ICE significantly upregulated mitochondrial proteins associated with lipid and carbohydrate catabolism, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and lipogenesis, including LETM1, AIFM1, PHB, PHB2, ACOT2, NDUA9, and ATP5J. These changes reflect enhanced metabolic activity and mitochondrial remodeling. In contrast, proteins linked to oxidative stress, insulin resistance, inflammation, and extracellular matrix remodeling were downregulated, such as HMGB1, FETUA, SERPH1, RPN1, and AOC3. Notably, gamma-synuclein (SYUG), which inhibits lipolysis, was undetectable in ICE-treated samples. Our findings support the hypothesis that ICE promotes thermogenic reprogramming and metabolic rejuvenation in subcutaneous fat through activation of futile cycles and mitochondrial restructuring. This study offers molecular insights into adaptive thermogenesis and presents intermittent cold exposure as a potential strategy to mitigate adipose tissue aging. Full article
(This article belongs to the Special Issue Molecular Associations Between Adipose Tissue and Diseases)
Show Figures

Graphical abstract

47 pages, 10040 KB  
Article
Analysis of Urban-Level Greenhouse Gas and Aerosol Variability at a Southern Italian WMO/GAW Observation Site: New Insights from Air Mass Aging Indicators Applied to Nine Years of Continuous Measurements
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 275; https://doi.org/10.3390/environments12080275 - 10 Aug 2025
Cited by 1 | Viewed by 779
Abstract
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NO [...] Read more.
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NOx (ozone to nitrogen oxides) ratio has been used at the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) regional station in Italy to determine the variability of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), SO2 (sulfur dioxide), and eBC (equivalent black carbon), thus allowing the differentiation between local and remote sources of emission. Prior to this work, all O3/NOx ratios lower than 10 were grouped under the LOC (local) proximity category, thus including very low ratios (≤1), which are generally attributed by the literature to “urban” air masses, particularly enriched in anthropogenic emissions. This study, aimed at nine continuous years of measurements (2015–2023), introduces the URB category in the assessment of CO, CO2, CH4, SO2, and eBC variability at the LMT site, highlighting patterns and peaks in concentrations that were previously neglected. The daily cycle, which is locally influenced by wind circulation and Planetary Boundary Layer (PBL) dynamics, is particularly susceptible to urban-scale emissions and its analysis has allowed the highlighting of notable peaks in concentrations that were previously neglected. Correlations with wind corridors and speeds indicate that most evaluated parameters are linked to northeastern winds at LMT and wind speeds under 5.5 m/s. Weekly cycle analyses, i.e., differences between weekdays (MON-FRI) and weekends (SAT-SUN), have also highlighted tendencies driven by seasonality and wind corridors. The results highlight the potential of the URB category as a tool necessary to access a given area’s anthropogenic output and its impact on air quality and the environment. Full article
Show Figures

Figure 1

15 pages, 3048 KB  
Article
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation
by Pengfei Zhang, Jingyu Yang, Zhuoda Lu, Qianxi Liang, Xing Yang, Junchao Wang, Jinbiao Guo and Yunxiang Zhao
Biology 2025, 14(8), 997; https://doi.org/10.3390/biology14080997 - 5 Aug 2025
Viewed by 610
Abstract
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the [...] Read more.
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the effects of HRW on weaned piglets, specifically investigating its impact on growth performance, diarrhea incidence, antioxidant function, intestinal morphology, gut microbiota, and hepatic metabolites. The results demonstrate that HRW significantly increased the average daily feed intake and significantly reduced the diarrhea rate in weaned piglets. Analysis of serum oxidative stress indicators revealed that HRW significantly elevated the activities of total antioxidant capacity and total superoxide dismutase while significantly decreasing malondialdehyde concentration. Assessment of intestinal morphology showed that HRW significantly increased the villus height to crypt depth ratio in the duodenum, jejunum, and ileum. Microbial analysis indicated that HRW significantly increased the abundance of Prevotella in the colon. Furthermore, HRW increased the abundance of beneficial bacteria, such as Akkermansia, in the jejunum and cecum, while concurrently reducing the abundance of harmful bacteria like Escherichia. Hepatic metabolite profiling revealed that HRW significantly altered the metabolite composition in the liver of weaned piglets. Differentially abundant metabolites were enriched in oxidative stress-related KEGG pathways, including ABC transporters; pyruvate metabolism; autophagy; FoxO signaling pathway; glutathione metabolism; ferroptosis; and AMPK signaling pathways. In conclusion, HRW alleviates diarrhea and promotes growth in weaned piglets by enhancing antioxidant capacity. These findings provide a scientific foundation for the application of HRW in swine production and serve as a reference for further exploration into the mechanisms underlying HRW’s effects on animal health and productivity. Full article
Show Figures

Figure 1

20 pages, 6694 KB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 - 31 Jul 2025
Viewed by 680
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

16 pages, 1501 KB  
Article
Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle
by Jiajie Wang, Hanfang Zeng, Hantong Weng, Haomiao Chang, Yunfei Zhai, Zhihui Huang, Chenchen Chu, Haihui Wang and Zhaoyu Han
Animals 2025, 15(15), 2167; https://doi.org/10.3390/ani15152167 - 23 Jul 2025
Viewed by 505
Abstract
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to [...] Read more.
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to 9 months old) and body weight (370 ± 10 kg) were randomly divided into two groups, each containing 15 animals. A control group was fed the basal diet, and a treatment group was fed the same basal diet with the addition of 4 g/kg of thermally modified attapulgite. After 75 days of formal experiment, the calves in the two groups were weighed, and blood samples were collected by tail vein blood sampling for determinations of the serum biochemical indices and serum metabolites using liquid chromatography–mass spectrometry (LC-MS) analysis. The results indicated that the addition of thermally modified attapulgite to the diet had no significant effects on the daily weight gain of fattening beef cattle. After feeding with modified attapulgite, the glutathione peroxidase and superoxide dismutase activities in the serum of the experimental group were 55.02% (257.26 U·mL−1 to 165.95 U·mL−1, p < 0.05) and 13.11% (18.98 U·mL−1 to 16.78 U·mL−1, p < 0.05) higher than that in the control group. Compared with the control group, the tumor necrosis factor-alpha content was reduced by 14.50% (31.27 pg·mL−1 to 36.57 pg·mL−1, p < 0.01), and the concentration of interleukin-6 and lipopolysaccharide decreased by 17.00% (34.33 pg·mL−1 to 41.36 pg·mL−1, p < 0.001) and 23.05% (51.34 EU·L−1 to 66.72 EU·L−1, p < 0.001) in the serum of the experimental group. Contrastingly, the thermally modified attapulgite had no significant effects on the levels of serum total protein, albumin, or globulin in Simmental fattening cattle (p > 0.05). Furthermore, the results of serum metabolomic analyses revealed that there were a total of 98 differential metabolites, which were mainly enriched with respect to glycerophospholipid metabolism, Th1 and Th2 cell differentiation, autophagy-other, retrograde endogenous cannabinoid signaling, and the NF-κB signaling pathway. Overall, thermally modified attapulgite was found to effectively increase the activity of antioxidant enzymes, reduce serum inflammatory mediators, may suppress oxidative damage, enhance immunity, and have a positive influence on the health of Simmental fattening beef calves. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

21 pages, 12628 KB  
Article
Convection Parameters from Remote Sensing Observations over the Southern Great Plains
by Kylie Hoffman and Belay Demoz
Sensors 2025, 25(13), 4163; https://doi.org/10.3390/s25134163 - 4 Jul 2025
Cited by 1 | Viewed by 563
Abstract
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE [...] Read more.
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE and CIN are typically derived from radiosonde thermodynamic profiles, launched only twice daily, and supplemented by model-simulated equivalent values. This study uses remote sensing observations to derive CAPE and CIN from continuous data, expanding upon previous research by evaluating the performance of both passive and active profiling systems’ CAPE/CIN against in situ radiosonde CAPE/CIN. CAPE and CIN values are calculated from Atmospheric Emitted Radiance Interferometer (AERI), Microwave Radiometer (MWR), Raman LiDAR, and Differential Absorption LiDAR (DIAL) systems. Among passive sensors, results show significantly greater accuracy in CAPE and CIN from AERI than MWR. Incorporating water vapor profiles from active LiDAR systems further improves CAPE values when compared to radiosonde data, although the impact on CIN is less significant. Beyond the direct capability of calculating CAPE, this approach enables evaluation of the various relationships between the water vapor mixing ratio, CAPE, cloud development, and moisture transport. Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

14 pages, 1884 KB  
Article
Study of Radon Radiation in the Area of the Akchatau Polymetallic Mine, Republic of Kazakhstan
by Yuriy Pak, Dmitriy Pak, Vladimir Matonin, Diana Ibragimova, Pavel Timoshenko, Yuriy Barkov, Anar Tebayeva and Pavel Medvedev
Atmosphere 2025, 16(7), 769; https://doi.org/10.3390/atmos16070769 - 23 Jun 2025
Viewed by 580
Abstract
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential [...] Read more.
The data on the volumetric radon activity of the Akchatau territory were systematized in the context of radioecological safety. Radon (Rn222 and Rn220) and indoor radon (isotopes Po, Pb, and Bi) make a significant contribution to radon radiation in residential and industrial premises. Increased radon concentration in a number of areas is associated with the Akchatau tungsten–molybdenum mine. The source of radon in geological terms is acid leucocratic granites in the northwestern and southeastern parts of the studied territory. Seasonal assessment of radon radiation was carried out using modern devices “Alfarad Plus” and “Ramon-Radon”. Frequency analysis of the average annual equivalent equilibrium concentration (EEC) in 181 premises showed that only in 47.5% of the premises does the volumetric radon activity not exceed the current standards (200 Bq/m3). Differentiated values of radon concentration were obtained in cases where daily and seasonal observations were carried out. In 43.1% of premises, the effective dose varies from 6.6 mSv/year to 33 mSv/year, and for 9.4% of premises, from 33 mSv/year to 680 mSv/year. The increased radon concentration is caused by high exhalation from the soil surface, the radioactivity of building materials, and low air exchange in the surveyed premises. In the northwestern part of Akchatau, anomalous zones were found where the exposure dose rate of gamma radiation exceeds 0.6 mkSv/hour. An objective assessment of radon largely depends on a number of factors that take into account the geological, technical, atmospheric, and climatic conditions of the region. Therefore, when planning an optimal radon rehabilitation strategy, it is necessary to take the following factors into account: the design features of residential premises and socio-economic conditions. Practical recommendations are given for radiation-ecological and hygienic monitoring of radon safety levels in the environment to reduce effective doses on the population. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

22 pages, 1050 KB  
Article
Relationships Between Muscle Activation and Thoraco-Lumbar Kinematics in Direction-Specific Low Back Pain Subgroups During Everyday Tasks
by Rebecca Hemming, Alister du Rose, Liba Sheeran and Valerie Sparkes
Biomechanics 2025, 5(2), 42; https://doi.org/10.3390/biomechanics5020042 - 19 Jun 2025
Viewed by 965
Abstract
Background/Objectives: The assessment of relationships between trunk muscle activity and thoraco-lumbar movements during sagittal bending has demonstrated that low back pain (LBP) subgroups (flexion pattern and active extension pattern motor control impairment) reveal distinct relationships that differentiate these subgroups from control groups. The [...] Read more.
Background/Objectives: The assessment of relationships between trunk muscle activity and thoraco-lumbar movements during sagittal bending has demonstrated that low back pain (LBP) subgroups (flexion pattern and active extension pattern motor control impairment) reveal distinct relationships that differentiate these subgroups from control groups. The study objective was to establish whether such relationships exist during various daily activities. Methods: Fifty participants with non-specific chronic low back pain (NSCLBP) (27 flexion pattern (FP), 23 active extension pattern (AEP)) and 28 healthy controls were recruited. Spinal kinematics were analysed using 3D motion analysis (Vicon™, Oxford, UK) and the muscle activity recorded via surface electromyography during a range of activities (box lift, box replace, reach up, step up, step down, stand-to-sit, and sit-to-stand). The mean sagittal angles for upper and lower thoracic and lumbar regions were correlated with normalised mean amplitude electromyography of bilateral transversus abdominis/internal oblique (IO), external oblique (EO), superficial lumbar multifidus (LM), and erector spinae (ES). Relationships were assessed via Pearson correlations (significance p < 0.01). Results: In the AEP group, increased spinal extension was associated with altered LM activity during box-replace, reach-up, step-up, and step-down tasks. In the FP group, increased lower lumbar spinal flexion was associated with reduced muscle activation, while increased lower thoracic flexion was associated with increased muscle activation. The control group elicited no significant associations. Correlations ranged between −0.812 and 0.754. Conclusions: Differential relationships between muscle activity and spinal kinematics exist in AEP, FP, and pain-free control groups, reinforcing previous observations that flexion or extension-related LBP involves distinct motor control strategies during different activities. These insights could inform targeted intervention approaches, such as movement-based interventions and wearable technologies, for these groups. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

19 pages, 2788 KB  
Article
Impact of Climate Change on the Tourism Potential of Northeastern Brazil: Trend Analysis and Future Perspectives
by Ayobami Badiru, Lívia Humaire, Lucas Suassuna de Albuquerque Wanderley and Andreas Matzarakis
Sustainability 2025, 17(12), 5290; https://doi.org/10.3390/su17125290 - 7 Jun 2025
Viewed by 1508
Abstract
This study aims to assess the impacts of climate change on the tourism potential of Northeastern Brazil by analyzing historical trends and future climate projections, identifying climate risks, and proposing spatially targeted adaptation strategies. Historical daily climate data from the BR-DWGD and future [...] Read more.
This study aims to assess the impacts of climate change on the tourism potential of Northeastern Brazil by analyzing historical trends and future climate projections, identifying climate risks, and proposing spatially targeted adaptation strategies. Historical daily climate data from the BR-DWGD and future projections from the MPI-ESM1-2-LR model under the SSP2 4.5 scenario were used to evaluate extremes in temperature and precipitation. Principal component analysis and spatial cluster analysis were applied to identify five climatically homogeneous zones across the region. Results indicate generalized warming trends and intensifying rainfall extremes, particularly in coastal clusters where tourism infrastructure is concentrated. Inland zones, especially those with semi-arid climates, exhibit rising temperatures, prolonged droughts, and increasing water scarcity. These differentiated climatic patterns pose risks to infrastructure, ecosystem services, and the overall sustainability of tourism. In response, the study proposes adaptation measures tailored to each zone, including improved drainage systems, sustainable cooling technologies, rainwater harvesting, and diversification of tourism activities. Emphasis is placed on community-based governance to enhance social equity and resilience. The findings highlight the relevance of spatialized climate analysis for guiding adaptation planning and supporting a more inclusive and climate-resilient tourism sector in the region. Full article
(This article belongs to the Special Issue Resident Well-Being and Sustainable Tourism Development)
Show Figures

Figure 1

19 pages, 8196 KB  
Article
Dual Modulation of Adipogenesis and Apoptosis by PPARG Agonist Rosiglitazone and Antagonist Betulinic Acid in 3T3-L1 Cells
by Patsawee Sriboonaied, Pornwipa Phuangbubpha, Puretat Saetan, Purin Charoensuksai and Adisri Charoenpanich
Biomedicines 2025, 13(6), 1340; https://doi.org/10.3390/biomedicines13061340 - 30 May 2025
Viewed by 1514
Abstract
Background/Objectives: Disruptions in adipose tissue dynamics contribute to obesity-related metabolic disorders, emphasizing the need for targeted therapies focusing on adipose tissue cells, including progenitor cells and adipocytes. Peroxisome proliferator-activated receptor gamma (PPARG) ligands are potent insulin sensitizers used in type 2 diabetes treatment. [...] Read more.
Background/Objectives: Disruptions in adipose tissue dynamics contribute to obesity-related metabolic disorders, emphasizing the need for targeted therapies focusing on adipose tissue cells, including progenitor cells and adipocytes. Peroxisome proliferator-activated receptor gamma (PPARG) ligands are potent insulin sensitizers used in type 2 diabetes treatment. This study investigated the effects of rosiglitazone, a PPARG agonist, and betulinic acid, a PPARG antagonist, on adipogenesis and apoptosis in 3T3-L1 pre-adipocytes. Method: 3T3-L1 pre-adipocytes were treated with rosiglitazone or betulinic acid during adipogenic differentiation. Lipid droplet formation was used to evaluate adipogenesis. Cell growth and cell death were assessed using the resazurin-based cell viability assay, trypan blue exclusion assay, LDH assay, and Annexin V/PI staining. Quantitative PCR was conducted to examine the expression of genes associated with adipogenesis and apoptosis. Results: Betulinic acid reduced adipogenesis only when administered daily for eight days. Rosiglitazone did not alter the overall lipid quantity; however, it promoted a shift toward fewer but larger lipid droplets. Both compounds increased Adipoq and Cfd expression, and betulinic acid also elevated Fabp4. Rosiglitazone induced stronger cell aggregation. Despite increased cell death, overall viability was maintained. Apoptotic cell death was enhanced by both compounds and confirmed via Annexin V/PI staining and flow cytometry, accompanied by downregulation of Ccnd1 and Bcl2. Additionally, rosiglitazone markedly increased the expression of Cebpa, a key regulator that can modulate lipid droplet formation and the balance between cell growth and death. Conclusions: Rosiglitazone and betulinic acid differentially modulate adipogenesis and apoptosis in 3T3-L1 cells, revealing a complex interplay between lipid accumulation and programmed cell death. Together, the findings underscore the potential of dual PPARG-targeting approaches for metabolic disease interventions. Full article
(This article belongs to the Special Issue PPARs in Health and Disease, 2nd Edition)
Show Figures

Figure 1

Back to TopTop