Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = d10 cyanide systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4671 KiB  
Article
Microfabrication Process Development for a Polymer-Based Lab-on-Chip Concept Applied in Attenuated Total Reflection Fourier Transform Infrared Spectroelectrochemistry
by Noah Atkinson, Tyler A. Morhart, Garth Wells, Grace T. Flaman, Eric Petro, Stuart Read, Scott M. Rosendahl, Ian J. Burgess and Sven Achenbach
Sensors 2023, 23(14), 6251; https://doi.org/10.3390/s23146251 - 8 Jul 2023
Cited by 7 | Viewed by 3485
Abstract
Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical [...] Read more.
Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical transparency. Often, additional materials, such as metals, ceramics, or silicon, are needed for functional or auxiliary purposes, e.g., as electrodes. Hybrid patterning and integration of material composites require an increasing range of fabrication approaches, which must often be newly developed or at least adapted and optimized. Here, a microfabrication process concept is developed that allows one to implement attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electrochemistry on an LoC device. It is designed to spatially resolve chemical sensitivity and selectivity, which are instrumental for the detection of chemical distributions, e.g., during on-flow chemical and biological reaction chemistry. The processing sequence involves (i) direct-write and soft-contact UV lithography in SUEX dry resist and replication in polydimethylsiloxane (PDMS) elastomers as the fluidic structure; (ii) surface functionalization of PDMS with oxygen plasma, 3-aminopropyl-triethoxysilane (APTES), and a UV-curable glue (NOA 73) for bonding the fluidic structure to the substrate; (iii) double-sided patterning of silicon nitride-coated silicon wafers serving as the ATR-FTIR-active internal reflection element (IRE) on one side and the electrode-covered substrate for microfluidics on the back side with lift-off and sputter-based patterning of gold electrodes; and (iv) a custom-designed active vacuum positioning and alignment setup. Fluidic channels of 100 μm height and 600 μm width in 5 mm thick PDMS were fabricated on 2” and 4” demonstrators. Electrochemistry on-chip functionality was demonstrated by cyclic voltammetry (CV) of redox reactions involving iron cyanides in different oxidation states. Further, ATR-FTIR measurements of laminar co-flows of H2O and D2O demonstrated the chemical mapping capabilities of the modular fabrication concept of the LoC devices. Full article
(This article belongs to the Special Issue Process Technologies for Polymer-Based Sensor Systems)
Show Figures

Figure 1

4 pages, 370 KiB  
Short Note
Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-carbonitrile
by Timofey N. Chmovzh, Timofey A. Kudryashev, Karim S. Gaisin and Oleg A. Rakitin
Molbank 2023, 2023(3), M1683; https://doi.org/10.3390/M1683 - 3 Jul 2023
Viewed by 1662
Abstract
Electron-withdrawing heterocyclic units are found in most organic optoelectronic materials. Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) is an interesting new heterocyclic system, the chemical properties of which are much less studied than other fused thiadiazoles. Cyano derivatives of electron-accepting heterocycles are known as potential [...] Read more.
Electron-withdrawing heterocyclic units are found in most organic optoelectronic materials. Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) is an interesting new heterocyclic system, the chemical properties of which are much less studied than other fused thiadiazoles. Cyano derivatives of electron-accepting heterocycles are known as potential components of photoluminescent materials. In this communication, benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-carbonitrile was successfully obtained via the cyanation of 4-bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) with copper(I) cyanide in DMF. The structure of the newly synthesized compound was established by means of elemental analysis, high-resolution mass spectrometry, 1H and 13C NMR, and IR spectroscopy. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Scheme 1

11 pages, 1110 KiB  
Article
Leptin in the Commissural Nucleus of the Tractus Solitarius (cNTS) and Anoxic Stimulus in the Carotid Body Chemoreceptors Increases cNTS Leptin Signaling Receptor and Brain Glucose Retention in Rats
by Mónica Lemus, Cynthia Mojarro, Sergio Montero, Mario Ramírez-Flores, José Torres-Magallanes, Adrián Maturano-Melgoza and Elena Roces de Álvarez-Buylla
Medicina 2022, 58(4), 550; https://doi.org/10.3390/medicina58040550 - 16 Apr 2022
Cited by 1 | Viewed by 2753
Abstract
Background and Objectives: The commissural nucleus of the tractus solitarius (cNTS) not only responds to glucose levels directly, but also receives afferent signals from the liver, and from the carotid chemoreceptors (CChR). In addition, leptin, through its receptors in the cNTS, regulates [...] Read more.
Background and Objectives: The commissural nucleus of the tractus solitarius (cNTS) not only responds to glucose levels directly, but also receives afferent signals from the liver, and from the carotid chemoreceptors (CChR). In addition, leptin, through its receptors in the cNTS, regulates food intake, body weight, blood glucose levels, and brain glucose retention (BGR). These leptin effects on cNTS are thought to be mediated through the sympathetic–adrenal system. How these different sources of information converging in the NTS regulate blood glucose levels and brain glucose retention remains largely unknown. The goal of the present study was to determine whether the local administration of leptin in cNTS alone, or after local anoxic stimulation using sodium cyanide (NaCN) in the carotid sinus, modifies the expression of leptin Ob-Rb and of c-Fos mRNA. We also investigated how leptin, alone, or in combination with carotid sinus stimulation, affected brain glucose retention. Materials and Methods: The experiments were carried out in anesthetized male Wistar rats artificially ventilated to maintain homeostatic values for pO2, pCO2, and pH. We had four groups: (a) experimental 1, leptin infusion in cNTS and NaCN in the isolated carotid sinus (ICS; n = 10); (b) experimental 2, leptin infusion in cNTS and saline in the ICS (n = 10); (c) control 1, artificial cerebrospinal fluid (aCSF) in cNTS and NaCN in the ICS (n = 10); (d) control 2, aCSF in cNTS and saline in the ICS (n = 10). Results: Leptin in cNTS, preceded by NaCN in the ICS increased BGR and leptin Ob-Rb mRNA receptor expression, with no significant increases in c-Fos mRNA in the NTSc. Conclusions: Leptin in the cNTS enhances brain glucose retention induced by an anoxic stimulus in the carotid chemoreceptors, through an increase in Ob-Rb receptors, without persistent changes in neuronal activation. Full article
Show Figures

Figure 1

13 pages, 1600 KiB  
Article
Fast Sensing of Hydrogen Cyanide (HCN) Vapors Using a Hand-Held Ion Mobility Spectrometer with Nonradioactive Ionization Source
by Victor Bocos-Bintintan and Ileana Andreea Ratiu
Sensors 2021, 21(15), 5045; https://doi.org/10.3390/s21155045 - 26 Jul 2021
Cited by 12 | Viewed by 4492
Abstract
Sensitive real-time detection of vapors produced by toxic industrial chemicals (TICs) always represents a stringent priority. Hydrogen cyanide (HCN) is definitely a TIC, being widely used in various industries and as an insecticide; it is a reactive, very flammable, and highly toxic compound [...] Read more.
Sensitive real-time detection of vapors produced by toxic industrial chemicals (TICs) always represents a stringent priority. Hydrogen cyanide (HCN) is definitely a TIC, being widely used in various industries and as an insecticide; it is a reactive, very flammable, and highly toxic compound that affects the central nervous system, cardiovascular system, eyes, nose, throat, and also has systemic effects. Moreover, HCN is considered a blood chemical warfare agent. This study was focused toward quick detection and quantification of HCN in air using time-of-flight ion mobility spectrometry (ToF IMS). Results obtained clearly indicate that IMS can rapidly detect HCN at sub-ppmv levels in air. Ion mobility spectrometric response was obtained in the negative ion mode and presented one single distinct product ion, at reduced ion mobility K0 of 2.38 cm2 V−1 s−1. Our study demonstrated that by using a miniaturized commercial IMS system with nonradioactive ionization source model LCD-3.2E (Smiths Detection Ltd., London, UK), one can easily measure HCN at concentrations of 0.1 ppmv (0.11 mg m−3) in negative ion mode, which is far below the OSHA PEL-TWA value of 10 ppmv. Measurement range was from 0.1 to 10 ppmv and the estimated limit of detection LoD was ca. 20 ppbv (0.02 mg m−3). Full article
(This article belongs to the Special Issue Chemical Gas Sensors for Environment Monitoring)
Show Figures

Figure 1

15 pages, 4759 KiB  
Article
Recovery of Gold from Ore with Potassium Ferrocyanide Solution under UV Light
by Ziyuan Liu, Jue Kou, Yi Xing and Chunbao Sun
Minerals 2021, 11(4), 387; https://doi.org/10.3390/min11040387 - 5 Apr 2021
Cited by 6 | Viewed by 4880
Abstract
In this study, potassium ferrocyanide, a nontoxic cyanide precursor in dark and diffuse reflection environment, was applied as reagent for the leaching of gold. The free cyanide ions could gradually release from potassium ferrocyanide solution under the ultraviolet light. Orthogonal leaching experiments were [...] Read more.
In this study, potassium ferrocyanide, a nontoxic cyanide precursor in dark and diffuse reflection environment, was applied as reagent for the leaching of gold. The free cyanide ions could gradually release from potassium ferrocyanide solution under the ultraviolet light. Orthogonal leaching experiments were performed in gold ore to analyze the effect of solution pH, potassium ferrocyanide dosage, and temperature in a potassium ferrocyanide solution system under UV light. Response surface methodology (RSM) was applied to explore the role of potassium ferrocyanide in gold leaching; optimized results showed that the gold recovery reached 67.74% in a high-alkaline environment at a 12.6 pH, 3.8 kg/t potassium ferrocyanide dosage, 62 °C, and irradiance of 10 mW·cm−2. The gold leaching kinetics were monitored by quartz crystal microbalance with dissipation (QCM-D) of potassium ferrocyanide solution. The results indicate that the gold extraction process could be divided into two stages: adsorption and leaching, and a rigid adsorption layer formed on the reaction surface. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis of the gold sensor surface after leaching reaction showed that –C≡N appears on the gold sensor surface, and the gold is oxidized to form AuCN complexes. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 3829 KiB  
Article
Cyanide Hydratase Modification Using Computational Design and Docking Analysis for Improved Binding Affinity in Cyanide Detoxification
by Narges Malmir, Najaf Allahyari Fard, Yamkela Mgwatyu and Lukhanyo Mekuto
Molecules 2021, 26(6), 1799; https://doi.org/10.3390/molecules26061799 - 23 Mar 2021
Cited by 6 | Viewed by 2895
Abstract
Cyanide is a hazardous and detrimental chemical that causes the inactivation of the respiration system through the inactivation of cytochrome c oxidase. Because of the limitation in the number of cyanide-degrading enzymes, there is a great demand to design and introduce new enzymes [...] Read more.
Cyanide is a hazardous and detrimental chemical that causes the inactivation of the respiration system through the inactivation of cytochrome c oxidase. Because of the limitation in the number of cyanide-degrading enzymes, there is a great demand to design and introduce new enzymes with better functionality. This study developed an integrated method of protein-homology-modelling and ligand-docking protein-design approaches that reconstructs a better active site from cyanide hydratase (CHT) structure. Designing a mutant CHT (mCHT) can improve the CHT performance. A computational design procedure that focuses on mutation for constructing a new model of cyanide hydratase with better activity was used. In fact, this study predicted the three-dimensional (3D) structure of CHT for subsequent analysis. Inducing mutation on CHT of Trichoderma harzianum was performed and molecular docking was used to compare protein interaction with cyanide as a ligand in both CHT and mCHT. By combining multiple designed mutations, a significant improvement in docking for CHT was obtained. The results demonstrate computational capabilities for enhancing and accelerating enzyme activity. The result of sequence alignment and homology modeling show that catalytic triad (Cys-Glu-Lys) was conserved in CHT of Trichoderma harzianum. By inducing mutation in CHT structure, MolDock score enhanced from −18.1752 to −23.8575, thus the nucleophilic attack can occur rapidly by adding Cys in the catalytic cavity and the total charge of protein in pH 6.5 is increased from −6.0004 to −5.0004. Also, molecular dynamic simulation shows a stable protein-ligand complex model. These changes would help in the cyanide degradation process by mCHT. Full article
(This article belongs to the Special Issue Cyanide Chemistry)
Show Figures

Figure 1

11 pages, 3130 KiB  
Article
Metal(II) Coordination Polymers from Tetracarboxylate Linkers: Synthesis, Structures, and Catalytic Cyanosilylation of Benzaldehydes
by Yu Li, Chumin Liang, Xunzhong Zou, Jinzhong Gu, Marina V. Kirillova and Alexander M. Kirillov
Catalysts 2021, 11(2), 204; https://doi.org/10.3390/catal11020204 - 3 Feb 2021
Cited by 8 | Viewed by 2582
Abstract
Three 2D coordination polymers, [Cu24-dpa)(bipy)2(H2O)]n∙6nH2O (1), [Mn2(µ6-dpa)(bipy)2]n (2), and [Zn24-dpa)(bipy)2(H2O)2] [...] Read more.
Three 2D coordination polymers, [Cu24-dpa)(bipy)2(H2O)]n∙6nH2O (1), [Mn2(µ6-dpa)(bipy)2]n (2), and [Zn24-dpa)(bipy)2(H2O)2]n·2nH2O (3), were prepared by a hydrothermal method using metal(II) chloride salts, 3-(2′,4′-dicarboxylphenoxy)phthalic acid (H4dpa) as a linker, as well as 2,2′-bipyridine (bipy) as a crystallization mediator. Compounds 13 were obtained as crystalline solids and fully characterized. The structures of 13 were established by single-crystal X-ray diffraction, revealing 2D metal-organic networks of sql, 3,6L66, and hcb topological types. Thermal stability and catalytic behavior of 13 were also studied. In particular, zinc(II) coordination polymer 3 functions as a highly active and recoverable heterogeneous catalyst in the mild cyanosilylation of benzaldehydes with trimethylsilyl cyanide to give cyanohydrin derivatives. The influence of various parameters was investigated, including a time of reaction, a loading of catalyst and its recycling, an effect of solvent type, and a substrate scope. As a result, up to 93% product yields were attained in a catalyst recoverable and reusable system when exploring 4-nitrobenzaldehyde as a model substrate. This study contributes to widening the types of multifunctional polycarboxylic acid linkers for the design of novel coordination polymers with notable applications in heterogeneous catalysis. Full article
(This article belongs to the Special Issue MOFs for Advanced Applications)
Show Figures

Graphical abstract

17 pages, 551 KiB  
Article
Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia)
by Alison Martín, Juliana Arias, Jennifer López, Lorena Santos, Camilo Venegas, Marcela Duarte, Andrés Ortíz-Ardila, Nubia de Parra, Claudia Campos and Crispín Celis Zambrano
Water 2020, 12(9), 2523; https://doi.org/10.3390/w12092523 - 10 Sep 2020
Cited by 17 | Viewed by 7363
Abstract
Gold mining uses chemicals that are discharged into rivers without any control when there are no good mining practices, generating environmental and public health problems, especially for downstream inhabitants who use the water for consumption, as is the case in Monterrey township, where [...] Read more.
Gold mining uses chemicals that are discharged into rivers without any control when there are no good mining practices, generating environmental and public health problems, especially for downstream inhabitants who use the water for consumption, as is the case in Monterrey township, where the Boque River water is consumed. In this study, we evaluate Boque River water quality analyzing some physicochemical parameters such as pH, heavy metals, Hg, and cyanide; bioassays (Lactuca sativa, Hydra attenuata, and Daphnia magna), mutagenicity (Ames test), and microbiological assays. The results show that some physicochemical parameters exceed permitted concentrations (Hg, Cd, and cyanide). D. magna showed sensitivity and L. sativa showed inhibition and excessive growth in the analyzed water. Mutagenic values were obtained for all of the sample stations. The presence of bacteria and somatic coliphages in the water show a health risk to inhabitants. In conclusion, the presence of Cd, Hg, and cyanide in the waters for domestic consumption was evidenced in concentrations that can affect the environment and the health of the Monterrey inhabitants. The mutagenic index indicates the possibility of mutations in the population that consumes this type of water. Bioassays stand out as an alert system when concentrations of chemical contaminants cannot be analytically detected. Full article
Show Figures

Figure 1

17 pages, 1026 KiB  
Review
Sustainable Approach to Eradicate the Inhibitory Effect of Free-Cyanide on Simultaneous Nitrification and Aerobic Denitrification during Wastewater Treatment
by Ncumisa Mpongwana, Seteno K. O. Ntwampe, Elizabeth I. Omodanisi, Boredi S. Chidi and Lovasoa C. Razanamahandry
Sustainability 2019, 11(21), 6180; https://doi.org/10.3390/su11216180 - 5 Nov 2019
Cited by 14 | Viewed by 7306
Abstract
Simultaneous nitrification and aerobic denitrification (SNaD) is a preferred method for single stage total nitrogen (TN) removal, which was recently proposed to improve wastewater treatment plant design. However, SNaD processes are prone to inhibition by toxicant loading with free cyanide (FCN) possessing the [...] Read more.
Simultaneous nitrification and aerobic denitrification (SNaD) is a preferred method for single stage total nitrogen (TN) removal, which was recently proposed to improve wastewater treatment plant design. However, SNaD processes are prone to inhibition by toxicant loading with free cyanide (FCN) possessing the highest inhibitory effect on such processes, rendering these processes ineffective. Despite the best efforts of regulators to limit toxicant disposal into municipal wastewater sewage systems (MWSSs), FCN still enters MWSSs through various pathways; hence, it has been suggested that FCN resistant or tolerant microorganisms be utilized for processes such as SNaD. To mitigate toxicant loading, organisms in SNaD have been observed to adopt a diauxic growth strategy to sequentially degrade FCN during primary growth and subsequently degrade TN during the secondary growth phase. However, FCN degrading microorganisms are not widely used for SNaD in MWSSs due to inadequate application of suitable microorganisms (Chromobacterium violaceum, Pseudomonas aeruginosa, Thiobacillus denitrificans, Rhodospirillum palustris, Klebsiella pneumoniae, and Alcaligenes faecalis) commonly used in single-stage SNaD. This review expatiates the biological remedial strategy to limit the inhibition of SNaD by FCN through the use of FCN degrading or resistant microorganisms. The use of FCN degrading or resistant microorganisms for SNaD is a cost-effective method compared to the use of other methods of FCN removal prior to TN removal, as they involve multi-stage systems (as currently observed in MWSSs). The use of FCN degrading microorganisms, particularly when used as a consortium, presents a promising and sustainable resolution to mitigate inhibitory effects of FCN in SNaD. Full article
Show Figures

Figure 1

15 pages, 3691 KiB  
Article
Various Structural Types of Cyanide-Bridged FeIII–MnIII Bimetallic Coordination Polymers (CPs) and Polynuclear Clusters Based-on A New mer-Tricyanoiron(III)Building Block: Synthesis, Crystal Structures, and Magnetic Properties
by Wenlong Lan, Xiaoyun Hao, Yong Dou, Zhen Zhou, Lu Yang, Hui Liu, Dacheng Li, Yunhui Dong, Lingqian Kong and Daopeng Zhang
Polymers 2019, 11(10), 1585; https://doi.org/10.3390/polym11101585 - 27 Sep 2019
Cited by 8 | Viewed by 2957
Abstract
Four cyanide-bridged FeIII–MnIII complexes {[Fe(qxcq)(CN)3][Mn(L1)(H2O)]}[Mn(L1)(H2O)(CH3OH)](ClO4)·1.5MeOH·0.5H2O (L1 = N,N′-bis(3-methoxy-5-bromosalicylideneiminate) (2), {[Fe(qxcq)(CN)3][Mn(L2)]}2·0.5H2O (L2 = N,N′ [...] Read more.
Four cyanide-bridged FeIII–MnIII complexes {[Fe(qxcq)(CN)3][Mn(L1)(H2O)]}[Mn(L1)(H2O)(CH3OH)](ClO4)·1.5MeOH·0.5H2O (L1 = N,N′-bis(3-methoxy-5-bromosalicylideneiminate) (2), {[Fe(qxcq)(CN)3][Mn(L2)]}2·0.5H2O (L2 = N,N′-ethylene-bis(3-ethoxysalicylideneiminate)) (3), [Fe(qxcq)(CN)3][Mn(L3)] (L3 = bis(acetylacetonato)ethylenediimine) (4), [Fe(qxcq)(CN)3][Mn(L4)]·1.5MeOH·0.5CH3CN·0.25H2O (L4 = N,N′-(1,1,2,2-tetramethylethylene)bis(salicylideneiminate)) (5), were prepared by assembling a new structurally characterized mer-tricyanoiron(III) molecular precursor (Ph4P)[Fe(qxcq)(CN)3]·0.5H2O (qxcq = 8-(2-quinoxaline-2-carboxamido)quinoline anion) (1) and the corresponding manganese(III) Schiff base compound. Complexes 2and 3containa cyanide-bridged heterobimetallic dinuclear entity, which can be further dimerized by self-complementary H-bond interactions through the coordinated water molecule from one complex and the free O4unit from the adjacent complex. Complexes 4 and 5 area one-dimensional coordination polymer (CP) comprised of the repeated [Mn(Schiffbase)-Fe(qxcq)(CN)3] units. Complex 4 shows a linear-chain conformation with two trans-located cyano groups bridgingthe neighboring Mn units, while complex 5 is a zigzag-like 1D CP, where the two cyano groups in cis configurationfunction as bridges. In bothcomplexes 4 and 5, the inter-chain π–πstack interactions within the aromaticrings of cyanide precursor extend the 1D chain into the supermolecular 2D networks. The magnetic property has been experimentally studied and theoretically fitted over the four Fe(III)-Mn(III) complexes, revealing the antiferromagnetic interaction in complexes 2 and 4 and the unusual ferromagnetic coupling in complexes 3 and 5 between the Fe(III) ion and the Mn(III) ion bridged by the cyano group. Furthermore, the different magnetic coupling nature has been analyzed on the basis of the magneto-structure correlation of the mer-tricyanometallate-based Fe(III)-Mn(III) magnetic system. Full article
Show Figures

Graphical abstract

21 pages, 5103 KiB  
Article
Trichormus variabilis (Cyanobacteria) Biomass: From the Nutraceutical Products to Novel EPS-Cell/Protein Carrier Systems
by Erika Bellini, Matteo Ciocci, Saverio Savio, Simonetta Antonaroli, Dror Seliktar, Sonia Melino and Roberta Congestri
Mar. Drugs 2018, 16(9), 298; https://doi.org/10.3390/md16090298 - 27 Aug 2018
Cited by 13 | Viewed by 6022
Abstract
A native strain of the heterocytous cyanobacterium Trichormus variabilis VRUC 168 was mass cultivated in a low-cost photobioreactor for a combined production of Polyunsaturated Fatty Acids (PUFA) and Exopolymeric Substances (EPS) from the same cyanobacterial biomass. A sequential extraction protocol was optimized leading [...] Read more.
A native strain of the heterocytous cyanobacterium Trichormus variabilis VRUC 168 was mass cultivated in a low-cost photobioreactor for a combined production of Polyunsaturated Fatty Acids (PUFA) and Exopolymeric Substances (EPS) from the same cyanobacterial biomass. A sequential extraction protocol was optimized leading to high yields of Released EPS (REPS) and PUFA, useful for nutraceutical products and biomaterials. REPS were extracted and characterized by chemical staining, Reversed Phase-High-Performance Liquid Chromatography (RP-HPLC), Fourier Transform Infrared Spectroscopy (FT-IR) and other spectroscopic techniques. Due to their gelation property, REPS were used to produce a photo-polymerizable hybrid hydrogel (REPS-Hy) with addition of polyethylene glycol diacrylated (PEGDa). REPS-Hy was stable over time and resistant to dehydration and spontaneous hydrolysis. The rheological and functional properties of REPS-Hy were studied. The enzyme carrier ability of REPS-Hy was assessed using the detoxification enzyme thiosulfate:cyanide sulfur transferase (TST), suggesting the possibility to use REPS-Hy as an enzymatic hydrogel system. Finally, REPS-Hy was used as a scaffold for culturing human mesenchymal stem cells (hMSCs). The cell seeding onto the REPS-Hy and the cell embedding into 3D-REPS-Hy demonstrated a scaffolding property of REPS-Hy with non-cytotoxic effect, suggesting potential applications of cyanobacteria REPS for producing enzyme- and cell-carrier systems. Full article
(This article belongs to the Special Issue Marine-Derived Products for Biomedicine)
Show Figures

Graphical abstract

11 pages, 3268 KiB  
Article
3D Printing of Thermoresponsive Polyisocyanide (PIC) Hydrogels as Bioink and Fugitive Material for Tissue Engineering
by Nehar Celikkin, Joan Simó Padial, Marco Costantini, Hans Hendrikse, Rebecca Cohn, Christopher J. Wilson, Alan Edward Rowan and Wojciech Święszkowski
Polymers 2018, 10(5), 555; https://doi.org/10.3390/polym10050555 - 21 May 2018
Cited by 43 | Viewed by 8469
Abstract
Despite the rapid and great developments in the field of 3D hydrogel printing, a major ongoing challenge is represented by the development of new processable materials that can be effectively used for bioink formulation. In this work, we present an approach to 3D [...] Read more.
Despite the rapid and great developments in the field of 3D hydrogel printing, a major ongoing challenge is represented by the development of new processable materials that can be effectively used for bioink formulation. In this work, we present an approach to 3D deposit, a new class of fully-synthetic, biocompatible PolyIsoCyanide (PIC) hydrogels that exhibit a reverse gelation temperature close to physiological conditions (37 °C). Being fully-synthetic, PIC hydrogels are particularly attractive for tissue engineering, as their properties—such as hydrogel stiffness, polymer solubility, and gelation kinetics—can be precisely tailored according to process requirements. Here, for the first time, we demonstrate the feasibility of both 3D printing PIC hydrogels and of creating dual PIC-Gelatin MethAcrylate (GelMA) hydrogel systems. Furthermore, we propose the use of PIC as fugitive hydrogel to template structures within GelMA hydrogels. The presented approach represents a robust and valid alternative to other commercial thermosensitive systems—such as those based on Pluronic F127—for the fabrication of 3D hydrogels through additive manufacturing technologies to be used as advanced platforms in tissue engineering. Full article
(This article belongs to the Special Issue Microgels and Hydrogels at Interfaces)
Show Figures

Figure 1

10 pages, 1369 KiB  
Article
Multiple Magnetization Reversal Channels Observed in a 3d-4f Single Molecule Magnet
by Asma Amjad, Albert Figuerola, Andrea Caneschi and Lorenzo Sorace
Magnetochemistry 2016, 2(2), 27; https://doi.org/10.3390/magnetochemistry2020027 - 14 Jun 2016
Cited by 14 | Viewed by 5278
Abstract
The present study discusses the magnetic dynamics of a previously reported cyanide bridged 3d-4f dinuclear DyIIICoIII complex. Following the axial anisotropy suggested by previous Electron Paramagnetic Resonance spectroscopy (EPR) analysis, the complex turned out to show slow relaxation of the [...] Read more.
The present study discusses the magnetic dynamics of a previously reported cyanide bridged 3d-4f dinuclear DyIIICoIII complex. Following the axial anisotropy suggested by previous Electron Paramagnetic Resonance spectroscopy (EPR) analysis, the complex turned out to show slow relaxation of the magnetization at cryogenic temperature, and this was studied in different temperature and field regimes. The existence of multichannel relaxation pathways that reverse the magnetization was clearly disclosed: a tentative analysis suggested that these channels can be triggered and controlled as a function of applied static magnetic field and temperature. Persistent evidence of a temperature independent process even at higher fields, attributable to quantum tunneling, is discussed, while the temperature dependent dynamics is apparently governed by an Orbach process. The broad distribution of relaxation rates evidenced by the ac susceptibility measurements suggest a relevant role of the intermolecular interactions in this system. Full article
(This article belongs to the Special Issue Magnetic Anisotropy)
Show Figures

Graphical abstract

30 pages, 12853 KiB  
Article
The Eh-pH Diagram and Its Advances
by Hsin-Hsiung Huang
Metals 2016, 6(1), 23; https://doi.org/10.3390/met6010023 - 14 Jan 2016
Cited by 99 | Viewed by 59873
Abstract
Since Pourbaix presented Eh versus pH diagrams in his “Atlas of Electrochemical Equilibria in Aqueous Solution”, diagrams have become extremely popular and are now used in almost every scientific area related to aqueous chemistry. Due to advances in personal computers, such diagrams can [...] Read more.
Since Pourbaix presented Eh versus pH diagrams in his “Atlas of Electrochemical Equilibria in Aqueous Solution”, diagrams have become extremely popular and are now used in almost every scientific area related to aqueous chemistry. Due to advances in personal computers, such diagrams can now show effects not only of Eh and pH, but also of variables, including ligand(s), temperature and pressure. Examples from various fields are illustrated in this paper. Examples include geochemical formation, corrosion and passivation, precipitation and adsorption for water treatment and leaching and metal recovery for hydrometallurgy. Two basic methods were developed to construct an Eh-pH diagram concerning the ligand component(s). The first method calculates and draws a line between two adjacent species based on their given activities. The second method performs equilibrium calculations over an array of points (500 × 800 or higher are preferred), each representing one Eh and one pH value for the whole system, then combines areas of each dominant species for the diagram. These two methods may produce different diagrams. The fundamental theories, illustrated results, comparison and required conditions behind these two methods are presented and discussed in this paper. The Gibbs phase rule equation for an Eh-pH diagram was derived and verified from actual plots. Besides indicating the stability area of water, an Eh-pH diagram normally shows only half of an overall reaction. However, merging two or more related diagrams together reveals more clearly the possibility of the reactions involved. For instance, leaching of Au with cyanide followed by cementing Au with Zn (Merrill-Crowe process) can be illustrated by combining Au-CN and Zn-CN diagrams together. A second example of the galvanic conversion of chalcopyrite can be explained by merging S, Fe–S and Cu–Fe–S diagrams. The calculation of an Eh-pH diagram can be extended easily into another dimension, such as the concentration of a given ligand, temperature or showing the solubility of stable solids. A personal computer is capable of drawing the diagram by utilizing a 3D program, such as ParaView, or VisIt, or MATLAB. Two 3D wireframe volume plots of a Uranium-carbonate system from Garrels and Christ were used to verify the Eh-pH calculation and the presentation from ParaView. Although a two-dimensional drawing is still much clearer to read, a 3D graph can allow one to visualize an entire system by executing rotation, clipping, slicing and making a movie. Full article
(This article belongs to the Special Issue Hydrometallurgy)
Show Figures

Figure 1

17 pages, 918 KiB  
Review
A Review of Luminescent Anionic Nano System: d10 Metallocyanide Excimers and Exciplexes in Alkali Halide Hosts
by Xiaobo Li and Howard H. Patterson
Materials 2013, 6(7), 2595-2611; https://doi.org/10.3390/ma6072595 - 25 Jun 2013
Cited by 22 | Viewed by 6756
Abstract
Dicyanoaurate, dicyanoargentate, and dicyanocuprate ions in solution and doped in different alkali halide hosts exhibit interesting photophysical and photochemical behavior, such as multiple emission bands, exciplex tuning, optical memory, and thermochromism. This is attributed to the formation of different sizes of nanoclusters in [...] Read more.
Dicyanoaurate, dicyanoargentate, and dicyanocuprate ions in solution and doped in different alkali halide hosts exhibit interesting photophysical and photochemical behavior, such as multiple emission bands, exciplex tuning, optical memory, and thermochromism. This is attributed to the formation of different sizes of nanoclusters in solution and in doped hosts. A series of spectroscopic methods (luminescence, UV-reflectance, IR, and Raman) as well as theoretical calculations have confirmed the existence of excimers and exciplexes. This leads to the tunability of these nano systems over a wide wavelength interval. The population of these nanoclusters varies with temperature and external laser irradiation, which explains the thermochromism and optical memory. DFT calculations indicate an MLCT transition for each nanocluster and the emission energy decreases with increasing cluster size. This is in agreement with the relatively long life-time for the emission peaks and the multiple emission peaks dependence upon cluster concentration. Full article
(This article belongs to the Special Issue Luminescent Materials 2013)
Show Figures

Figure 1

Back to TopTop