Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = d-mannitol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1779 KiB  
Article
Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau
by Xianzhi Wang, Bingxue Zhou and Qian Yang
Agronomy 2025, 15(7), 1602; https://doi.org/10.3390/agronomy15071602 - 30 Jun 2025
Viewed by 377
Abstract
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of [...] Read more.
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of rhizosphere soil microorganisms in alfalfa (Medicago sativa L.) of different ages and their relationships with soil physicochemical properties. This study used Biolog EcoPlates to evaluate the carbon metabolism activity, functional diversity, and carbon-source utilization preferences of rhizosphere soil microbial communities in 5-, 7-, and 9-year-old alfalfa grasslands on the semi-arid Loess Plateau of western China. We analyzed the relationships between soil physicochemical properties and microbial carbon metabolism characteristics, considering their potential covariation. The results showed that, with the extension of alfalfa planting years, the rhizosphere soil water content decreased significantly, pH decreased slightly, but soil organic carbon, total nitrogen, and total phosphorus contents increased significantly. The rhizosphere soil microbial community of 9-year-old alfalfa exhibited the highest carbon metabolism activity, Shannon diversity index, and carbon-source utilization. Rhizosphere soil microorganisms from different-aged alfalfa showed significantly different preferences for carbon-source utilization, with microorganisms from 9-year-old alfalfa preferentially utilizing carbon sources such as N-acetyl-D-glucosamine, D-mannitol, and D-cellobiose. Redundancy analysis revealed that soil water content was among the most important factors influencing the carbon metabolism activity of rhizosphere soil microbial communities while acknowledging that the relative contributions of soil water content, organic carbon, and nitrogen require careful interpretation, owing to their potential collinearity. This study demonstrates that, under rain-fed conditions in the semi-arid Loess Plateau, the continuous cultivation of alfalfa for nine years led to a significant decrease in soil water content but enhanced the rhizosphere soil nutrient status and microbial carbon metabolism activity, with no apparent signs of microbial functional degradation, although soil water depletion was observed. These findings highlight the complex interactions among multiple soil factors in influencing microbial carbon metabolism, providing valuable microbiological insights for understanding the sustainability of alfalfa grasslands and a theoretical basis for the scientific management of alfalfa grasslands in the semi-arid Loess Plateau region. Future research should consider longer planting periods to determine the critical age of alfalfa grassland degradation under semi-arid conditions and its associated microbial mechanisms. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

18 pages, 2260 KiB  
Article
Optimization of Establishment, Protoplast Separation, and Fusion via Embryonic Suspension System in Chestnut (Castanea mollissima Bl.)
by Shiying Zhang, Sujuan Guo and Ruijie Zheng
Agronomy 2025, 15(7), 1595; https://doi.org/10.3390/agronomy15071595 - 30 Jun 2025
Viewed by 422
Abstract
Castanea mollissima Bl. is rich in nutrition and strong in stress resistance, and has nutritional, economic, and ecological values. A protoplast is impactful in somatic fusion and germplasm creation. Here, we propose an effective scheme for the construction of an embryonic suspension cell, [...] Read more.
Castanea mollissima Bl. is rich in nutrition and strong in stress resistance, and has nutritional, economic, and ecological values. A protoplast is impactful in somatic fusion and germplasm creation. Here, we propose an effective scheme for the construction of an embryonic suspension cell, protoplast isolation, and fusion. Studies have shown that when 1.0 g yellow loose embryonic callus was inoculated into MS + 1.5 mg∙L−1 6-BA + 0.2 mg∙L−1 NAA + 0.5 mg∙L−1 2, 4-D liquid medium, a stable suspension cell line can be obtained. After further culturing for 2–4 days, protoplast isolation was performed. First, single-factor screening was conducted on the four enzymes, and then a two-factor random block was further set up to screen the enzyme combinations based on the results. We found that 1.0%cellulase R-10 + 0.5%pectolase Y-23 led to the highest protoplast yield (9.27 × 106/g FW) and the highest activity (92.49%). Furthermore, the protoplast yield could be increased to 9.47 × 106/g FW by adding 0.4 M mannitol and shaking for 8 h. The protoplasts were purified by centrifuging at 40× g for 4 min and then mixed with 30% PEG 6000 at a volume ratio of 1.5:1 for 25 min. The fusion rate could reach 70.00%. This study laid a foundation for the creation of new germplasm by Castanea mollissima Bl. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

20 pages, 5045 KiB  
Article
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum
by Ilona Jonuškienė, Erika Davicijonaitė, Monika Vaškevičiūtė, Ihsan Kala, Rima Stankevičienė, Kristina Kantminienė and Ingrida Tumosienė
Molecules 2025, 30(13), 2734; https://doi.org/10.3390/molecules30132734 - 25 Jun 2025
Viewed by 482
Abstract
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, [...] Read more.
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, stabilizing, and emulsifying agent. It has unique properties for use in many industries (food, biotechnology, petrochemicals, agricultural, cosmetics, wastewater treatment) and medical applications. It is tasteless, environmentally safe, non-toxic, and biodegradable. The biotechnological production of xanthan gum depends on several factors: bacterial strain development, culture medium preparation, carbon sources, fermentation parameters and modes, pH, temperature, recovery, purification, and quality control regulations. Bio-innovative strategies have been developed to optimize the production of xanthan gum. A variety of carbon and nitrogen sources, as well as alternative renewable sources, have been used in the production of xanthan gum. The aim of the present study was to optimize the xanthan gum yield using Xanthomonas campestris bacteria and different carbon (D-glucose, D-sorbitol, lactose, sucrose, D-mannitol, D-fructose, erythritol, coconut palm sugar, L-arabinose, unrefined cane sugar), various nitrogen (bacterial peptone, casein peptone, L-glutamic acid, L-arginine, L-methionine, L-tryptophan, malt extract, meat extract, L-phenylalanine, soy peptone) and alternative carbon (orange peels, tangerine peels, lemon peels, avocado peels, melon peels, apple peels, cellulose, xylose, xylitol) sources. The xanthan gum samples were analyzed using antioxidant methods. Our study showed that using L-glutamic acid as the carbon source for 72 h of bacterial fermentation of Xanthomonas campestris resulted in the highest xanthan gum yield: 32.34 g/L. However, using renewable resources, we achieved a very high concentration of xanthan gum in just 24 h of fermentation. According to the reducing power and DPPH methods, the highest antioxidant activities were measured for xanthan gum whose biosynthesis was based on renewable resources. Xanthan gum structures have been verified by FT-IR and 1H NMR analysis. The sustainable biotechnology study has the advantage of increasing the sustainable production of xanthan gum by using renewable alternative resources compared to other production processes. Xanthan gum continues to be a valuable biopolymer with a wide range of industrial applications while promoting environmentally friendly production practices. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

15 pages, 6426 KiB  
Article
Design of Ready-to-Use “Ball-in-Ball” Staphylococcus aureus Microsphere Based on Novel Cryoprotectant and Drop Freeze-Drying Technology: Effective Preservation and Application
by Zile Wang, Dongdong Chen, Xiaomei Zheng, Yuqing Li, Shaoqian Jiang, Yanfei Chen, Jingjian Jia, Libo Yu and Tao Peng
Foods 2025, 14(12), 2142; https://doi.org/10.3390/foods14122142 - 19 Jun 2025
Viewed by 475
Abstract
Staphylococcus aureus (S. aureus) poses a significant threat to public health and safety, and enhancing the monitoring of S. aureus in food is essential to curb and prevent foodborne transmission. In order to obtain strains for more convenient and rapid use [...] Read more.
Staphylococcus aureus (S. aureus) poses a significant threat to public health and safety, and enhancing the monitoring of S. aureus in food is essential to curb and prevent foodborne transmission. In order to obtain strains for more convenient and rapid use in quality control or quantitative analysis, this study designed a ready-to-use “ball-in-ball” microsphere based on a novel cryoprotectant combined with drop freeze-drying technology. When using a cryoprotectant that contains 1.5% bovine serum albumin, 4.5% trehalose, 8.2% polyethylene glycol 8000, and 4.1% D-mannitol, the survival rate of S. aureus can reach 98.2 ± 2.6%. This cryoprotectant effectively prevents S. aureus from shrinking, deforming, and damaging cell walls. Additionally, it shows desirable protective efficiency for other Gram-positive bacteria. The molding of microspheres is efficient and cost-effective, demonstrating good uniformity and stability without the need for pre-freezing. The moisture content and the count of S. aureus showed no significant changes over 90 days at −20 °C. In the simulated contaminated sample, the recovery rate of S. aureus in milk and green tea was 83.1–93.7%. This study could provide a practical approach to improve the monitoring efficiency of S. aureus and shows potential as a generalized strategy for preparing ready-to-use strains related to food safety. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

17 pages, 8547 KiB  
Article
Identification of the CBF Gene Family in Wheat and TaCBF14B Could Enhance the Drought Tolerance of Arabidopsis thaliana
by Zubaidai Abudukerimu, Yitu Xu, Shengjing Chen, Yuliu Tan, Caihong Li, Nan Niu, Yuxin Xie, Zihan He, Xiangyu Liu, Junwei Xin, Jiafei Yu, Junrong Li, Ximei Li, Huifang Wang, Ming Wang, Nataliia Golub, Yumei Zhang and Weiwei Guo
Agronomy 2025, 15(6), 1265; https://doi.org/10.3390/agronomy15061265 - 22 May 2025
Viewed by 503
Abstract
Drought stress is a devastating natural stress that threatens crop productivity and quality. Mitigating the adverse effects of drought stress on wheat is a key object in agriculture. C-repeat binding transcription factor/DROUGHT RESPONSE ELEMENT BINDING FACTOR 1 (CBF/DREB1) transcription factors are well known [...] Read more.
Drought stress is a devastating natural stress that threatens crop productivity and quality. Mitigating the adverse effects of drought stress on wheat is a key object in agriculture. C-repeat binding transcription factor/DROUGHT RESPONSE ELEMENT BINDING FACTOR 1 (CBF/DREB1) transcription factors are well known for their role in cold acclimation. However, the involvement of CBF genes in drought stress and the mechanisms underlying their function remain poorly understood. In this study, 81 CBFs were identified in wheat, which were further clustered into four distinct lineages based on phylogenetic analysis. Chromosomal localization indicated that most CBF genes were dispersed across chromosome 5. We identified three homoeologous genes (TaCBF14A, TaCBF14B, and TaCBF14D) that were simultaneously upregulated under drought stress based on RNA-seq analysis. According to the high expression after drought stress, TaCBF14B was selected for further functional analysis. Subcellular localization and transcriptional activation activity analysis indicated that TaCBF14B likely functions as a transcription factor involved in drought stress tolerance. Overexpression of TaCBF14B in Arabidopsis enhanced the primary root growth by 13.49% (OE1), 12.56% (OE2), and 19.53% (OE3) under 200 mM mannitol treatment, and 21.65% (OE1), 16.63% (OE2), and 28.13% (OE3) under 250 mM mannitol treatment compared to WT. Meanwhile, the water loss rate of transgenic lines was 56% in WT leaves, but only 44%, 50%, and 40% in OE1, OE2, and OE3 lines, respectively. Compared to the wild type, POD activities of OE1, OE2, and OE3 were significantly increased by 42.94%, 29.41%, and 62.52%, respectively. And the Pro activities in OE1, OE2, and OE3 were significantly increased by 16.33%, 5.18%, and 29.09%, respectively, compared to the wild type. Additionally, the MDA content in OE1, OE2, and OE3 was significantly reduced by 40.53%, 15.81%, and 54.36%, respectively. Further analysis showed that the transgenic lines were hypersensitive to abscisic acid (ABA), and exhibited increased expression of AtABI3. We speculate that TaCBF14B plays an important role in enhancing drought tolerance. In summary, our findings provide new insights into the functional roles of CBF genes in drought stress tolerance. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

24 pages, 3673 KiB  
Article
Multistrain Probiotics Plus Vitamin D Improve Gut Barrier Function and Gut Microbiota Composition in Irritable Bowel Syndrome Without Constipation: Results from a Double-Blind, Randomized, Placebo-Controlled Trial
by Lucrezia Laterza, Cesare Cremon, Gaetano Coppola, Carlo Romano Settanni, Rossella Maresca, Martina Strazzeri, Eleonora Durini, Valentina Petito, Franco Scaldaferri, Giorgio Gargari, Diego Mora, Elnaz Vojoudi Yazdi, Chiara Marangelo, Gianluca Ianiro, Lorenza Putignani, Maria Raffaella Barbaro, Giovanni Marasco, Giovanni Barbara and Antonio Gasbarrini
Nutrients 2025, 17(10), 1708; https://doi.org/10.3390/nu17101708 - 18 May 2025
Viewed by 1665
Abstract
Background: The disruption of the intestinal barrier and the imbalance of the gut microbiota (GM) seem to play a major role in the complex pathogenesis of irritable bowel syndrome (IBS). Specific microbial strains could improve the gut microenvironment, promoting anti-inflammatory pathways; similarly, vitamin [...] Read more.
Background: The disruption of the intestinal barrier and the imbalance of the gut microbiota (GM) seem to play a major role in the complex pathogenesis of irritable bowel syndrome (IBS). Specific microbial strains could improve the gut microenvironment, promoting anti-inflammatory pathways; similarly, vitamin D supplementation could play a role in enhancing the barrier integrity and modulating the immune response in the gut. This study aims to evaluate the efficacy of a new multistrain probiotic, combined with vitamin D, in improving gut barrier function in IBS without constipation. Methods: In this phase IIb double-blind randomized placebo-controlled, parallel-group, multicenter, clinical trial, 35 patients were treated for 12 weeks with OttaBac®, a high concentration multistrain probiotic plus cholecalciferol, or placebo and were followed up until week 16. Symptoms, quality of life, intestinal permeability, fecal biomarkers, and microbiota composition were evaluated at 0, 12, and 16 weeks. Results: Mean zonulin values showed a significant progressive reduction in the active group (−10.2 ng/mL at week 12, p = 0.0375; −19.5 ng/mL at week 16, p = 0.0002), with a significant difference between groups at week 16 in the per-protocol population (−19.01, p = 0.0053). The active group showed a more stable trend toward improvement in stool frequency and consistency at both week 12 and 16, with a significant improvement compared to the baseline and to the placebo group (−23.2, p = 0.0265, and 5.57 vs. −23.2, p = 0.0492, respectively). No differences were found in regards to the lactulose/mannitol ratio, Irritable Bowel Syndrome Severity Scoring System (IBS-SSS) and Short Form Health Survey (SF-36) total scores, plasmalemmal vesicle associated protein-1 (PV-1), and citrulline levels. In the active group, Bifidobacterium animalis subsp. lactis and Streptococcus thermophilus levels were increased (p < 0.05), while those for Lachnospira were decreased (p < 0.05), and significant changes in Actinobacteria and Proteobacteria were observed (p < 0.05). Lactate (p < 0.01) and acetate (p < 0.05) levels increased post-treatment. Correlation analysis pointed out a significant association between the microbial biomarkers and the symptoms (p < 0.05). Conclusions: Probiotic plus vitamin D could improve IBS-associated symptoms through gut microbiota modulation and gut barrier enhancement, with persistent benefits after treatment discontinuation. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Graphical abstract

11 pages, 3006 KiB  
Article
A Pilot Study in Humans on the Urinary Tract Excretion of the FimH Inhibitor 1-Deoxymannose
by Hiromi Hayashi, Naoto Miyazaki, Takuya Kawakami, Shusaku Izumi and Kazuhiro Yoshinaga
Antibiotics 2025, 14(5), 498; https://doi.org/10.3390/antibiotics14050498 - 13 May 2025
Viewed by 487
Abstract
Background: FimH inhibitors are anticipated to serve as preventive therapeutics against urinary tract infections. Consequently, multiple inhibitors—predominantly D-mannose derivatives—have been synthesized, and their binding affinities (determined by dissociation coefficient; KD) to FimH have been examined in vitro. Nevertheless, the amounts [...] Read more.
Background: FimH inhibitors are anticipated to serve as preventive therapeutics against urinary tract infections. Consequently, multiple inhibitors—predominantly D-mannose derivatives—have been synthesized, and their binding affinities (determined by dissociation coefficient; KD) to FimH have been examined in vitro. Nevertheless, the amounts of most of these synthetic compounds that reach the urinary tract after oral administration in humans have not been investigated. D-mannose (Man) and its analog, 1-Deoxymannose (DM), have already been reported to show KD values against FimH. Therefore, this study aimed to estimate the post-oral ingestion of FimH inhibitory potentials of DM and Man in the urinary tract. Methods: Six participants were given single 1 g doses of DM and Man in a crossover test. The sample concentrations in urine were measured 8 h after ingestion. Results: DM levels increased rapidly after oral intake; contrarily, Man was detected in the urine before administration, with no notable increase post-ingestion. The peak concentration ranges of Man and DM in urine were 2.15–22.9 μg/mL and 665–57,804 μg/mL, respectively, which are 66.3–707 and 3600–31,200 times that of KD, respectively. Conclusions: These results indicate that DM as a supplement is an orally active FimH inhibitor in the human urinary tract. Conversely, d-mannose is expected to exert comparatively milder inhibition. Full article
Show Figures

Figure 1

18 pages, 2566 KiB  
Article
Selective Influence of Hemp Fiber Ingestion on Post-Exercise Gut Permeability: A Metabolomics-Based Analysis
by David C. Nieman, Camila A. Sakaguchi, James C. Williams, Wimal Pathmasiri, Blake R. Rushing, Susan McRitchie and Susan J. Sumner
Nutrients 2025, 17(8), 1384; https://doi.org/10.3390/nu17081384 - 19 Apr 2025
Viewed by 924
Abstract
Objectives: This study investigated the effects of 2-week ingestion of hemp fiber (high and low doses) versus placebo bars on gut permeability and plasma metabolite shifts during recovery from 2.25 h intensive cycling. Hemp hull powder is a rich source of two bioactive [...] Read more.
Objectives: This study investigated the effects of 2-week ingestion of hemp fiber (high and low doses) versus placebo bars on gut permeability and plasma metabolite shifts during recovery from 2.25 h intensive cycling. Hemp hull powder is a rich source of two bioactive compounds, N-trans-caffeoyl tyramine (NCT) and N-trans-feruloyl tyramine (NFT), with potential gut health benefits. Methods: The study participants included 23 male and female cyclists. A three-arm randomized, placebo-controlled, double-blind, crossover design was used with two 2-week supplementation periods and 2-week washout periods. Supplement bars provided 20, 5, or 0 g/d of hemp hull powder. Participants engaged in an intensive 2.25 h cycling bout at the end of each of the three supplementation periods. Five blood samples were collected before and after supplementation (overnight fasted state), and at 0 h-, 1.5 h-, and 3 h-post-exercise. Five-hour urine samples were collected pre-supplementation and post-2.25 h cycling after ingesting a sugar solution containing 5 g of lactulose, 100 mg of 13C mannitol, and 1.9 g of mannitol in 450 mL of water. An increase in the post-exercise lactulose/13C mannitol ratio (L:13CM) was used as the primary indicator of altered gut permeability. Other outcome measures included muscle damage biomarkers (serum creatine kinase, myoglobin), serum cortisol, complete blood cell counts, and shifts in plasma metabolites using untargeted metabolomics. Results: No trial differences were found for L:13CM, cortisol, blood cell counts, and muscle damage biomarkers. Orthogonal partial least-squares discriminant analysis (OPLSDA) showed distinct trial differences when comparing high- and low-dose hemp fiber compared to placebo supplementation (R2Y = 0.987 and 0.995, respectively). Variable Importance in Projection (VIP) scores identified several relevant metabolites, including 3-hydroxy-4-methoxybenzoic acid (VIP = 1.9), serotonin (VIP = 1.5), 5-hydroxytryptophan (VIP = 1.4), and 4-methoxycinnamic acid (VIP = 1.4). Mummichog analysis showed significant effects of hemp fiber intake on multiple metabolic pathways, including alpha-linolenic acid, porphyrin, sphingolipid, arginine and proline, tryptophan, and primary bile acid metabolism. Conclusions: Hemp fiber intake during a 2-week supplementation period did not have a significant effect on post-exercise gut permeability in cyclists (2.25 h cycling bout) using urine sugar data. On the contrary, untargeted metabolomics showed that the combination of consuming nutrient-rich hemp fiber bars and exercising for 135 min increased levels of beneficial metabolites, including those derived from the gut in healthy cyclists. Full article
(This article belongs to the Special Issue Sports Nutrition: Current and Novel Insights—2nd Edition)
Show Figures

Figure 1

33 pages, 8035 KiB  
Article
Curcumin Microcapsule Formulations for Prolong Persistence in the Photodynamic Inactivation of Aedes aegypti Larvae
by Matheus Garbuio, Larissa Marila de Souza, Lucas Danilo Dias, Jean Carlos Ferreira Machado, Natalia Mayumi Inada, Hernane da Silva Barud, Edgar Aparecido Sanches, Francisco Eduardo Gontijo Guimarães, Ana Paula da Silva, Alessandra Ramos Lima and Vanderlei Salvador Bagnato
Pharmaceutics 2025, 17(4), 496; https://doi.org/10.3390/pharmaceutics17040496 - 9 Apr 2025
Viewed by 822
Abstract
Background: Viral diseases including dengue, zika, chikungunya, and yellow fever remain a significant public health challenge, primarily due to the increasing resistance of these vectors, the Aedes aegypti mosquito, to conventional control methods. Objectives: Herein, a microencapsulated curcumin formulation was developed and characterized [...] Read more.
Background: Viral diseases including dengue, zika, chikungunya, and yellow fever remain a significant public health challenge, primarily due to the increasing resistance of these vectors, the Aedes aegypti mosquito, to conventional control methods. Objectives: Herein, a microencapsulated curcumin formulation was developed and characterized using spray-drying technology, with D-mannitol and starch as encapsulating agents. After microencapsulation, photolarvicidal tablet formulations (Formulated Curcumin Tablets—FCT) were prepared, varying the proportions of starch and pectin: FCT1 (60% starch), FCT2 (35% pectin and 25% starch), and FCT3 (42.5% pectin and 17.5% starch), while maintaining 10% curcumin and 30% D-mannitol in all formulations. The main goal was to enhance the stability and efficacy of curcumin as a photolarvicidal agent. Methods: The formulation was characterized by UV-Vis spectroscopy, confocal microscopy, thermal analysis (TG and DSC), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and photodegradation assays under fluorescent light. Results: The photodynamic inactivation (PDI) of Ae. aegypti larvae was evaluated under white, fluorescent light exposure, and the formulation exhibited a significantly enhanced larvicidal activity compared to free curcumin, with a 57-fold reduction in LC50 (LC50-24h = 0.27 mg/L). Additionally, the most effective formulation, FCT2, maintained its residual activity for 27 days, reinforcing that curcumin microencapsulation, combined with PDI, can extend vector control. Release studies under different pH conditions confirmed a controlled release mechanism, favoring environmental stability. Conclusions: The results indicate that microencapsulated curcumin has great potential as a sustainable photoinsecticidal agent, offering stability, efficacy, and a promising alternative for managing Ae. aegypti larval populations. Full article
Show Figures

Graphical abstract

18 pages, 4804 KiB  
Article
Nanoparticle-Based Dry Powder Inhaler Containing Ciprofloxacin for Enhanced Targeted Antibacterial Therapy
by Petra Party, Márk László Klement, Bianca Maria Gaudio, Milena Sorrenti and Rita Ambrus
Pharmaceutics 2025, 17(4), 486; https://doi.org/10.3390/pharmaceutics17040486 - 7 Apr 2025
Viewed by 915
Abstract
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral [...] Read more.
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral administration. Moreover, the application of nanoparticles potentially enhances the effectiveness of the treatments while lowering the possible side effects. Therefore, we aimed to develop a “nano-in-micro” structured dry powder inhaler formulation containing CIP. Methods: A two-step preparation method was used. Firstly, a nanosuspension was first prepared using a high-performance planetary mill by wet milling. After the addition of different additives (leucine and mannitol), the solid formulations were created by spray drying. The prepared DPI samples were analyzed by using laser diffraction, nanoparticle tracking analysis, scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. The solubility and in vitro dissolution tests in artificial lung fluid and in vitro aerodynamic investigations (Spraytec® device, Andersen Cascade Impactor) were carried out. Results: The nanosuspension (D50: 140.0 ± 12.8 nm) was successfully prepared by the particle size reduction method. The DPIs were suitable for inhalation based on the particle diameter and their spherical shape. Improved surface area and amorphization after the preparation processes led to faster drug release. The excipient-containing systems were characterized by large lung deposition (fine particle fraction around 40%) and suitable aerodynamic diameter (between 3 and 4 µm). Conclusions: We have successfully formulated a nanosized antibiotic-containing formulation for pulmonary delivery, which could provide a potential treatment for patients with different respiratory infections. Full article
Show Figures

Figure 1

29 pages, 4106 KiB  
Article
Antimicrobial, Quorum Sensing Inhibition, and Anti-Cancer Activities of Silver Nanoparticles Synthesized from Kenyan Bacterial Endophytes of Teclea nobilis
by Farzana Mohamed and Hafizah Yousuf Chenia
Int. J. Mol. Sci. 2025, 26(7), 3306; https://doi.org/10.3390/ijms26073306 - 2 Apr 2025
Viewed by 906
Abstract
Untapped bioactive compounds from microbial endophytes offer a promising solution to counter antimicrobial and chemotherapeutic drug resistance when complexed as silver nanoparticles (AgNPs). AgNPs were biosynthesized using cell-free supernatants from endophytic Streptomyces sp. KE4D and Bacillus safensis KE4K isolated from the Kenyan medicinal [...] Read more.
Untapped bioactive compounds from microbial endophytes offer a promising solution to counter antimicrobial and chemotherapeutic drug resistance when complexed as silver nanoparticles (AgNPs). AgNPs were biosynthesized using cell-free supernatants from endophytic Streptomyces sp. KE4D and Bacillus safensis KE4K isolated from the Kenyan medicinal plant Teclea nobilis, following fermentation in three different media. Bacterial extracts were analyzed using gas chromatography–mass spectrometry. AgNPs were characterized using Fourier-transform infrared spectroscopy and high-resolution transmission electron microscopy. Antimicrobial activity was assessed using agar well diffusion assays, and quorum sensing inhibition (QSI) was investigated using Chromobacterium violaceum. Anti-cancer potential was evaluated against breast (MCF-7) and prostate cancer (DU-145) cell lines using MTT assays. AgNPs were 5–55 nm in size, with KE4D AgNPs being spherical and KE4K AgNPs exhibiting various shapes. Cyclopropane acetic acids and fatty acids were identified as possible capping agents. Medium-dependent antimicrobial activity was observed, with medium Mannitol and medium 5294 AgNPs displaying stronger activity, particularly against Gram-negative indicators. KE4D medium 5294 AgNPs demonstrated 85.12% violacein inhibition at 140 µg/mL and better QSI activity, whilst KE4K AgNPs were better antimicrobials. The AgNPs IC50 values were <3.5 µg/mL for MCF-7 and <2.5 µg/mL for DU-145 cells. The bioactivity of biosynthesized AgNPs is influenced by the bacterial isolate and fermentation medium, suggesting that AgNP synthesis can be tailored for specific bioactivity. Full article
Show Figures

Figure 1

25 pages, 6552 KiB  
Article
Comprehensive Aerodynamic and Physicochemical Stability Evaluations of Nanocrystal-Based Dry Powder Inhalers: The Role of Mannitol and Leucine in Enhancing Performance
by Heba Banat, Attila Nagy, Árpád Farkas, Rita Ambrus and Ildikó Csóka
Pharmaceutics 2025, 17(4), 436; https://doi.org/10.3390/pharmaceutics17040436 - 28 Mar 2025
Cited by 2 | Viewed by 868
Abstract
Background: Nanocrystals, a carrier-free nanotechnology, offer significant advantages for pulmonary drug delivery by enhancing the dissolution and solubility of poorly soluble drugs while maintaining favorable biological properties and low toxicity. This study aims to investigate the aerodynamic performance and stability of nanocrystal-based [...] Read more.
Background: Nanocrystals, a carrier-free nanotechnology, offer significant advantages for pulmonary drug delivery by enhancing the dissolution and solubility of poorly soluble drugs while maintaining favorable biological properties and low toxicity. This study aims to investigate the aerodynamic performance and stability of nanocrystal-based dry powders (NC-DPs). Methods: Nanocrystalline suspensions were produced via wet media milling and subjected to stability studies before undergoing nano spray drying. A factorial design was employed to optimize the process parameters. The influence of mannitol and leucine, individually and in combination, was evaluated in terms of aerodynamic properties (Aerodynamic Particle Sizer (APS), in silico modeling) and the physicochemical stability at room temperature (in a desiccator) and accelerated conditions (40 ± 2 °C, 75 ± 5% relative humidity). Results: APS analysis revealed that leucine-containing powders (K-NC-Ls) exhibited the smallest median (1.357 µm) and geometric mean (1.335 µm) particle sizes, enhancing dispersibility. However, in silico results indicated the highest exhaled fraction for K-NC-L, highlighting the need for optimized excipient selection. Although mannitol showed the lowest exhaled fraction, it was mainly deposited in the extra-thoracic region in silico. The mannitol/leucine combination (K-NC-ML) revealed a low exhaled fraction and high lung deposition in silico. Also, K-NC-ML demonstrated superior stability, with a 6% reduction in D[0.5] and a 5% decrease in span overtime. Furthermore, no significant changes in crystallinity, thermal behavior, drug release, or mass median aerodynamic diameter were observed under stress conditions. Conclusions: These findings confirm that combined incorporation of mannitol and leucine in NC-DP formulations enhances stability and aerodynamic performance, making it a promising approach for pulmonary drug delivery. Full article
Show Figures

Graphical abstract

15 pages, 4153 KiB  
Article
Highly Branched Poly(Adipic Anhydride-Co-Mannitol Adipate): Synthesis, Characterization, and Thermal Properties
by Mahir A. Jalal, Einas A. Abood, Zainab J. Sweah, Hadi S. Al-Lami, Alyaa Abdulhasan Abdulkarem and Haider Abdulelah
Polymers 2025, 17(5), 684; https://doi.org/10.3390/polym17050684 - 4 Mar 2025
Viewed by 895
Abstract
In this study, modification of poly(adipic anhydride) through branching its chains was carried out via melt condensation polymerization with D-mannitol. The percentage of mannitol was varied (3, 4, 5, 10, 15, and 20 Wt.%) and the resulting copolymers were purified and characterized by [...] Read more.
In this study, modification of poly(adipic anhydride) through branching its chains was carried out via melt condensation polymerization with D-mannitol. The percentage of mannitol was varied (3, 4, 5, 10, 15, and 20 Wt.%) and the resulting copolymers were purified and characterized by FT-IR and 13C-NMR. These analyses indicated that linear chains of poly(adipic anhydride) can react with strong nucleophiles and dissociate to produce highly branched poly(adipic anhydride-co-mannitol adipate) which confirms the validity of the proposed mechanism. The copolymer’s molecular weight characteristics have been also examined using GPC analysis. Thermal properties of copolymers were also investigated using TGA, DTG, and DCS analyses. TGA/DTG revealed that the thermal degradation of copolymers proceeds in multi-stage decomposition, whereas the shift and pattern change of the melting point peak of DSC curves can identify the weight percentage of mannitol for homogenous copolymers. Two non-isothermal models, the Flynn–Wall–Ozawa and Kissinger methods, have been also employed to analyze thermogravimetric data collected from the thermal decomposition of the copolymers and found that Flynn–Wall–Ozawa method provides better results with R2 correlation up to 99.3%. The activation energy in the region of Tmax was determined and found that an increase in mannitol contents in copolymer has a positive impact on its thermal stability. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

15 pages, 3682 KiB  
Article
Paracoccus broussonetiae subsp. drimophilus subsp. nov., a Novel Subspecies Salt-Tolerant Endophytic Bacterium from Maize Root in Hunan
by Xue Li, Chi Zhou, Ming Li, Qingzhuang Zhang, Lei Su and Xin Li
Life 2025, 15(3), 354; https://doi.org/10.3390/life15030354 - 24 Feb 2025
Viewed by 740
Abstract
In an investigation exploring endophytic microbiota from agricultural crops, an aerobic, non-motile, Gram-negative, coccobacillus-shaped bacterial isolate, designated as strain NGMCC 1.201697T, was isolated from maize roots in Hunan Province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain [...] Read more.
In an investigation exploring endophytic microbiota from agricultural crops, an aerobic, non-motile, Gram-negative, coccobacillus-shaped bacterial isolate, designated as strain NGMCC 1.201697T, was isolated from maize roots in Hunan Province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NGMCC 1.201697T belonged to the genus Paracoccus, showing the highest sequence similarity to Paracoccus broussonetiae CPCC 101403T (99.86%). The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) were 98.57% and 87.90% between the novel isolate and its closest phylogenetic relative. However, phenotypic characterization further differentiated the isolate from P. broussonetiae CPCC 101403T. The isolate showed enhanced environmental tolerance adaptability (growth in 0–8% NaCl and 4–37 °C), unique enzymatic activities (esterase C4, β-glucosidase, L-proline arylamidase, and β-galactosidase), and expanded metabolic capabilities (D-mannitol, D-cellobiose, saccharose, and so on). The major polar lipids consisted of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), two unidentified glycolipids (GLs) and four unidentified phospholipids (PLs). The predominant respiratory quinone was ubiquinone-10, and the major fatty acid was summed feature 8 (C18:1 ω7c, 69.42%). The DNA G + C content was 64.49 mol%. Based on results of these analyses, strain NGMCC 1.201697T represents a novel subspecies of Paracoccus broussonetiae, for which the name Paracoccus broussonetiae subsp. drimophilus subsp. nov. is proposed. The type-strain is NGMCC 1.201697T (=CGMCC 1.61958T =JCM 37104T). Full article
Show Figures

Figure 1

17 pages, 5094 KiB  
Article
Extrusion-Based 3D Printing of Pharmaceuticals—Evaluating Polymer (Sodium Alginate, HPC, HPMC)-Based Ink’s Suitability by Investigating Rheology
by Farzana Khan Rony, Georgia Kimbell, Toby R. Serrano, Destinee Clay, Shamsuddin Ilias and Mohammad A. Azad
Micromachines 2025, 16(2), 163; https://doi.org/10.3390/mi16020163 - 30 Jan 2025
Cited by 1 | Viewed by 1782
Abstract
Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the [...] Read more.
Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the essential characteristics, impacting their performance. This study evaluates inks based on sodium alginate (SA), hydroxypropyl cellulose (HPC H), and hydroxypropyl methylcellulose (HPMC K100 and K4) for PAM 3D printing by analyzing their rheology. The formulations included the model drug Fenofibrate, functional excipients (e.g., mannitol, polyethylene glycol, etc.), and water or water–ethanol mixtures. Pills and thin films as an oral dosage were printed using a 410 μm nozzle, a 10 mm/s speed, a 50% infill density, and a 60 kPa pressure. Among the various formulated inks, only the ink containing 0.8% SA achieved successful prints with the desired shape fidelity, linked to its rheological properties, which were assessed using flow, amplitude sweep, and thixotropy tests. This study concludes that (i) an ink’s rheological properties—viscosity, shear thinning, viscoelasticity, modulus, flow point, recovery, etc.—have to be considered to determine whether it will print well; (ii) printability is independent of the dosage form; and (iii) the optimal inks are viscoelastic solids with specific rheological traits. This research provides insights for developing polymer-based inks for effective PAM 3D printing in pharmaceuticals. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop