Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = cytolytic T lymphocytes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1061 KiB  
Review
Coley’s Toxin to First Approved Therapeutic Vaccine—A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment
by K. Devaraja, Manisha Singh, Krishna Sharan and Sadhna Aggarwal
Biomedicines 2024, 12(12), 2746; https://doi.org/10.3390/biomedicines12122746 - 30 Nov 2024
Cited by 3 | Viewed by 2271
Abstract
Cancer immunobiology is one of the hot topics of discussion amongst researchers today, and immunotherapeutic modalities are among the selected few emerging approaches to cancer treatment that have exhibited a promising outlook. However, immunotherapy is not a new kid on the block; it [...] Read more.
Cancer immunobiology is one of the hot topics of discussion amongst researchers today, and immunotherapeutic modalities are among the selected few emerging approaches to cancer treatment that have exhibited a promising outlook. However, immunotherapy is not a new kid on the block; it has been around for centuries. The origin of cancer immunotherapy in modern medicine can be traced back to the initial reports of spontaneous regression of malignant tumors in some patients following an acute febrile infection, at the turn of the twentieth century. This review briefly revisits the historical accounts of immunotherapy, highlighting some of the significant developments in the field of cancer immunobiology, that have been instrumental in bringing back the immunotherapeutic approaches to the forefront of cancer research. Some of the topics covered are: Coley’s toxin—the first immunotherapeutic; the genesis of the theory of immune surveillance; the discovery of T lymphocytes and dendritic cells and their roles; the role of tumor antigens; relevance of tumor microenvironment; the anti-tumor (therapeutic) ability of Bacillus Calmette– Guérin; Melacine—the first therapeutic vaccine engineered; theories of immunoediting and immunophenotyping of cancer; and Provenge—the first FDA-approved therapeutic vaccine. In this review, head and neck cancer has been taken as the reference tumor for narrating the progression of cancer immunobiology, particularly for highlighting the advent of immunotherapeutic agents. Full article
Show Figures

Figure 1

15 pages, 4265 KiB  
Article
Cystatin F Depletion in Mycobacterium tuberculosis-Infected Macrophages Improves Cathepsin C/Granzyme B-Driven Cytotoxic Effects on HIV-Infected Cells during Coinfection
by Manoj Mandal, David Pires, Marta Calado, José Miguel Azevedo-Pereira and Elsa Anes
Int. J. Mol. Sci. 2024, 25(15), 8141; https://doi.org/10.3390/ijms25158141 - 26 Jul 2024
Cited by 2 | Viewed by 1637
Abstract
Cystatin F (CstF) is a protease inhibitor of cysteine cathepsins, including those involved in activating the perforin/granzyme cytotoxic pathways. It is targeted at the endolysosomal pathway but can also be secreted to the extracellular milieu or endocytosed by bystander cells. CstF was shown [...] Read more.
Cystatin F (CstF) is a protease inhibitor of cysteine cathepsins, including those involved in activating the perforin/granzyme cytotoxic pathways. It is targeted at the endolysosomal pathway but can also be secreted to the extracellular milieu or endocytosed by bystander cells. CstF was shown to be significantly increased in tuberculous pleurisy, and during HIV coinfection, pleural fluids display high viral loads. In human macrophages, our previous results revealed a strong upregulation of CstF in phagocytes activated by interferon γ or after infection with Mycobacterium tuberculosis (Mtb). CstF manipulation using RNA silencing led to increased proteolytic activity of lysosomal cathepsins, improving Mtb intracellular killing. In the present work, we investigate the impact of CstF depletion in macrophages during the coinfection of Mtb-infected phagocytes with lymphocytes infected with HIV. The results indicate that decreasing the CstF released by phagocytes increases the major pro-granzyme convertase cathepsin C of cytotoxic immune cells from peripheral blood-derived lymphocytes. Consequently, an observed augmentation of the granzyme B cytolytic activity leads to a significant reduction in viral replication in HIV-infected CD4+ T-lymphocytes. Ultimately, this knowledge can be crucial for developing new therapeutic approaches to control both pathogens based on manipulating CstF. Full article
(This article belongs to the Special Issue The Role of Lysosomal Proteases in Cancer and Infectious Diseases)
Show Figures

Figure 1

19 pages, 10549 KiB  
Article
Antibody–Drug Conjugate Made of Zoledronic Acid and the Anti-CD30 Brentuximab–Vedotin Exert Anti-Lymphoma and Immunostimulating Effects
by Feliciana Morelli, Serena Matis, Roberto Benelli, Laura Salvini, Maria Raffaella Zocchi and Alessandro Poggi
Cells 2024, 13(10), 862; https://doi.org/10.3390/cells13100862 - 17 May 2024
Viewed by 1906
Abstract
Relevant advances have been made in the management of relapsed/refractory (r/r) Hodgkin Lymphomas (HL) with the use of the anti-CD30 antibody–drug conjugate (ADC) brentuximab–vedotin (Bre–Ved). Unfortunately, most patients eventually progress despite the excellent response rates and tolerability. In this report, we describe an [...] Read more.
Relevant advances have been made in the management of relapsed/refractory (r/r) Hodgkin Lymphomas (HL) with the use of the anti-CD30 antibody–drug conjugate (ADC) brentuximab–vedotin (Bre–Ved). Unfortunately, most patients eventually progress despite the excellent response rates and tolerability. In this report, we describe an ADC composed of the aminobisphosphonate zoledronic acid (ZA) conjugated to Bre–Ved by binding the free amino groups of this antibody with the phosphoric group of ZA. Liquid chromatography–mass spectrometry, inductively coupled plasma–mass spectrometry, and matrix-assisted laser desorption ionization–mass spectrometry analyses confirmed the covalent linkage between the antibody and ZA. The novel ADC has been tested for its reactivity with the HL/CD30+ lymphoblastoid cell lines (KMH2, L428, L540, HS445, and RPMI6666), showing a better titration than native Bre–Ved. Once the HL-cells are entered, the ADC co-localizes with the lysosomal LAMP1 in the intracellular vesicles. Also, this ADC exerted a stronger anti-proliferative and pro-apoptotic (about one log fold) effect on HL-cell proliferation compared to the native antibody Bre–Ved. Eventually, Bre–Ved–ZA ADC, in contrast with the native antibody, can trigger the proliferation and activation of cytolytic activity of effector-memory Vδ2 T-lymphocytes against HL-cell lines. These findings may support the potential use of this ADC in the management of r/r HL. Full article
Show Figures

Figure 1

13 pages, 3006 KiB  
Article
Immunological Response against Breast Lineage Cells Transfected with Human Papillomavirus (HPV)
by Daffany Luana Santos, Bianca de França São Marcos, Georon Ferreira de Sousa, Leonardo Carvalho de Oliveira Cruz, Bárbara Rafaela da Silva Barros, Mariane Cajuba de Britto Lira Nogueira, Talita Helena de Araújo Oliveira, Anna Jessica Duarte Silva, Vanessa Emanuelle Pereira Santos, Cristiane Moutinho Lagos de Melo and Antonio Carlos de Freitas
Viruses 2024, 16(5), 717; https://doi.org/10.3390/v16050717 - 30 Apr 2024
Cited by 3 | Viewed by 2044
Abstract
Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus’s activity against this type of cancer remains controversial. HPV infection [...] Read more.
Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus’s activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host’s immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes. Full article
(This article belongs to the Special Issue Immune Responses to Papillomavirus Infections)
Show Figures

Figure 1

17 pages, 2357 KiB  
Article
Tumor and Peritoneum-Associated Macrophage Gene Signature as a Novel Molecular Biomarker in Gastric Cancer
by Kevin M. Sullivan, Haiqing Li, Annie Yang, Zhifang Zhang, Ruben R. Munoz, Kelly M. Mahuron, Yate-Ching Yuan, Isaac Benjamin Paz, Daniel Von Hoff, Haiyong Han, Yuman Fong and Yanghee Woo
Int. J. Mol. Sci. 2024, 25(7), 4117; https://doi.org/10.3390/ijms25074117 - 8 Apr 2024
Cited by 7 | Viewed by 4529
Abstract
A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived [...] Read more.
A spectrum of immune states resulting from tumor resident macrophages and T-lymphocytes in the solid tumor microenvironment correlates with patient outcomes. We hypothesized that in gastric cancer (GC), macrophages in a polarized immunosuppressive transcriptional state would be prognostic of poor survival. We derived transcriptomic signatures for M2 (M2TS, MRC1; MS4A4A; CD36; CCL13; CCL18; CCL23; SLC38A6; FGL2; FN1; MAF) and M1 (M1TS, CCR7; IL2RA; CXCL11; CCL19; CXCL10; PLA1A; PTX3) macrophages, and cytolytic T-lymphocytes (CTLTS, GZMA; GZMB; GZMH; GZMM; PRF1). Primary GC in a TCGA stomach cancer dataset was evaluated for signature expressions, and a log-rank test determined overall survival (OS) and the disease-free interval (DFI). In 341 TCGA GC entries, high M2TS expression was associated with histological types and later stages. Low M2TS expression was associated with significantly better 5-year OS and DFI. We validated M2TS in prospectively collected peritoneal fluid of a GC patient cohort (n = 28). Single-cell RNA sequencing was used for signature expression in CD68+CD163+ cells and the log-rank test compared OS. GC patients with high M2TS in CD68+CD163+ cells in their peritoneal fluid had significantly worse OS than those with low expression. Multivariate analyses confirmed M2TS was significantly and independently associated with survival. As an independent predictor of poor survival, M2TS may be prognostic in primary tumors and peritoneal fluid of GC patients. Full article
Show Figures

Figure 1

22 pages, 1554 KiB  
Review
The PD-1/PD-L1 Axis in the Biology of MASLD
by Rosaria Maria Pipitone, Giulia Lupo, Rossella Zito, Ayesha Javed, Salvatore Petta, Grazia Pennisi and Stefania Grimaudo
Int. J. Mol. Sci. 2024, 25(7), 3671; https://doi.org/10.3390/ijms25073671 - 25 Mar 2024
Cited by 8 | Viewed by 3286
Abstract
Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the [...] Read more.
Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the progression of MASL to Metabolic Dysfunction-Associated Steatohepatitis and the development of hepatocellular carcinoma. In the liver, several parenchymal, nonparenchymal, and immune cells maintain immunological homeostasis, and different regulatory pathways balance the activation of the innate and adaptative immune system. PD-1/PD-L1 signaling acts, in the maintenance of the balance between the immune responses and the tissue immune homeostasis, promoting self-tolerance through the modulation of activated T cells. Recently, PD-1 has received much attention for its roles in inducing an exhausted T cells phenotype, promoting the tumor escape from immune responses. Indeed, in MASLD, the excessive fat accumulation dysregulates the immune system, increasing cytotoxic lymphocytes and decreasing their cytolytic activity. In this context, T cells exacerbate liver damage and promote tumor progression. The aim of this review is to illustrate the main pathogenetic mechanisms by which the immune system promotes the progression of MASLD and the transition to HCC, as well as to discuss the possible therapeutic applications of PD-1/PD-L1 target therapy to activate T cells and reinvigorate immune surveillance against cancer. Full article
(This article belongs to the Collection Immunopathology and Immunosenescence)
Show Figures

Figure 1

17 pages, 1476 KiB  
Article
Glycoprotein 5-Derived Peptides Induce a Protective T-Cell Response in Swine against the Porcine Reproductive and Respiratory Syndrome Virus
by Fernando Calderon-Rico, Alejandro Bravo-Patiño, Irasema Mendieta, Francisco Perez-Duran, Alicia Gabriela Zamora-Aviles, Luis Enrique Franco-Correa, Roberto Ortega-Flores, Ilane Hernandez-Morales and Rosa Elvira Nuñez-Anita
Viruses 2024, 16(1), 14; https://doi.org/10.3390/v16010014 - 21 Dec 2023
Cited by 1 | Viewed by 2157
Abstract
We analyzed the T-cell responses induced by lineal epitopes of glycoprotein 5 (GP5) from PRRSV to explore the role of this protein in the immunological protection mediated by T-cells. The GP5 peptides were conjugated with a carrier protein for primary immunization and booster [...] Read more.
We analyzed the T-cell responses induced by lineal epitopes of glycoprotein 5 (GP5) from PRRSV to explore the role of this protein in the immunological protection mediated by T-cells. The GP5 peptides were conjugated with a carrier protein for primary immunization and booster doses. Twenty-one-day-old pigs were allocated into four groups (seven pigs per group): control (PBS), vehicle (carrier), PTC1, and PTC2. Cytokine levels were measured at 2 days post-immunization (DPI) from serum samples. Cytotoxic T-lymphocytes (CTLs, CD8+) from peripheral blood were quantified via flow cytometry at 42 DPI. The cytotoxicity was evaluated by co-culturing primed lymphocytes with PRRSV derived from an infectious clone. The PTC2 peptide increased the serum concentrations of pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-8) and cytokines that activate the adaptive cellular immunity associated with T-lymphocytes (i.e., IL-4, IL-6, IL-10, and IL-12). The concentration of CTLs (CD8+) was significantly higher in groups immunized with the peptides, which suggests a proliferative response in this cell population. Primed CTLs from immunized pigs showed cytolytic activity in PRRSV-infected cells in vitro. PTC1 and PTC2 peptides induced a protective T-cell-mediated response in pigs immunized against PRRSV, due to the presence of T epitopes in their sequences. Full article
(This article belongs to the Special Issue Endemic and Emerging Swine Viruses 2023)
Show Figures

Figure 1

12 pages, 2773 KiB  
Article
c-Met+ Cytotoxic T Lymphocytes Exhibit Enhanced Cytotoxicity in Mice and Humans In Vitro Tumor Models
by Mahdia Benkhoucha, Ngoc Lan Tran, Isis Senoner, Gautier Breville, Hajer Fritah, Denis Migliorini, Valérie Dutoit and Patrice H. Lalive
Biomedicines 2023, 11(12), 3123; https://doi.org/10.3390/biomedicines11123123 - 23 Nov 2023
Cited by 1 | Viewed by 1826
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) play a crucial role in anti-tumor immunity. In a previous study, we identified a subset of murine effector CTLs expressing the hepatocyte growth factor (HGF) receptor, c-Met (c-Met+ CTLs), that are endowed with enhanced cytolytic capacity. [...] Read more.
CD8+ cytotoxic T lymphocytes (CTLs) play a crucial role in anti-tumor immunity. In a previous study, we identified a subset of murine effector CTLs expressing the hepatocyte growth factor (HGF) receptor, c-Met (c-Met+ CTLs), that are endowed with enhanced cytolytic capacity. HGF directly inhibited the cytolytic function of c-Met+ CTLs, both in 2D in vitro assays and in vivo, leading to reduced T cell responses against metastatic melanoma. To further investigate the role of c-Met+ CTLs in a three-dimensional (3D) setting, we studied their function within B16 melanoma spheroids and examined the impact of cell–cell contact on the modulation of inhibitory checkpoint molecules’ expression, such as KLRG1, PD-1, and CTLA-4. Additionally, we evaluated the cytolytic capacity of human CTL clones expressing c-Met (c-Met+) and compared it to c-Met CTL clones. Our results indicated that, similar to their murine counterparts, c-Met+ human CTL clones exhibited increased cytolytic activity compared to c-Met CTL clones, and this enhanced function was negatively regulated by the presence of HGF. Taken together, our findings highlight the potential of targeting the HGF/c-Met pathway to modulate CTL-mediated anti-tumor immunity. This research holds promise for developing strategies to enhance the effectiveness of CTL-based immunotherapies against cancer. Full article
Show Figures

Figure 1

15 pages, 2855 KiB  
Article
Cell-Based Models of ‘Cytokine Release Syndrome’ Endorse CD40L and Granulocyte–Macrophage Colony-Stimulating Factor Knockout in Chimeric Antigen Receptor T Cells as Mitigation Strategy
by Ala Dibas, Manuel Rhiel, Vidisha Bhavesh Patel, Geoffroy Andrieux, Melanie Boerries, Tatjana I. Cornu, Jamal Alzubi and Toni Cathomen
Cells 2023, 12(21), 2581; https://doi.org/10.3390/cells12212581 - 6 Nov 2023
Cited by 8 | Viewed by 3618
Abstract
While chimeric antigen receptor (CAR) T cell therapy has shown promising outcomes among patients with hematologic malignancies, it has also been associated with undesirable side-effects such as cytokine release syndrome (CRS). CRS is triggered by CAR T-cell-based activation of monocytes, which are stimulated [...] Read more.
While chimeric antigen receptor (CAR) T cell therapy has shown promising outcomes among patients with hematologic malignancies, it has also been associated with undesirable side-effects such as cytokine release syndrome (CRS). CRS is triggered by CAR T-cell-based activation of monocytes, which are stimulated via the CD40L–CD40R axis or via uptake of GM-CSF to secrete proinflammatory cytokines. Mouse models have been used to model CRS, but working with them is labor-intensive and they are not amenable to screening approaches. To overcome this challenge, we established two simple cell-based CRS in vitro models that entail the co-culturing of leukemic B cells with CD19-targeting CAR T cells and primary monocytes from the same donor. Upon antigen encounter, CAR T cells upregulated CD40L and released GM-CSF which in turn stimulated the monocytes to secrete IL-6. To endorse these models, we demonstrated that neutralizing antibodies or genetic disruption of the CD40L and/or CSF2 loci in CAR T cells using CRISPR-Cas technology significantly reduced IL-6 secretion by bystander monocytes without affecting the cytolytic activity of the engineered lymphocytes in vitro. Overall, our cell-based models were able to recapitulate CRS in vitro, allowing us to validate mitigation strategies based on antibodies or genome editing. Full article
(This article belongs to the Special Issue CRISPR-CAS9 in Cancer Immunotherapy)
Show Figures

Figure 1

13 pages, 302 KiB  
Article
The Relationship between Complement Components C1R and C5 Gene Polymorphism and the Values of Blood Indices in Suckling Piglets
by Hanna Szymańska, Ewa Dzika, Tadeusz Jarosław Zabolewicz and Krystyna Życzko
Genes 2023, 14(11), 2015; https://doi.org/10.3390/genes14112015 - 28 Oct 2023
Viewed by 1274
Abstract
The main mechanism of innate immunity is the complement system. Its components include the protein products of the C1R and C5 genes, which are involved in the classical activation pathway as well as the inflammatory and cytolytic immune responses, respectively. The aim of [...] Read more.
The main mechanism of innate immunity is the complement system. Its components include the protein products of the C1R and C5 genes, which are involved in the classical activation pathway as well as the inflammatory and cytolytic immune responses, respectively. The aim of this study was to determine the relationship between PCR-restriction fragment length polymorphism in C1R (726T > C) and C5 (1044A > C) genes, and the values of hematological and biochemical blood indices in suckling crossbred (Polish Large White × Polish Landrace × Duroc × Pietrain) piglets (n = 473), considering their age (younger, 21 ± 3 days, n = 274; older, 35 ± 3 days, n = 199) and health status. The frequencies of the C5 genotypes deviated from the Hardy–Weinberg expectations. Younger piglets, healthy piglets, piglets that deviated from physiological norms and older piglets with the C1R TT genotype all had lower white and red blood cell indices. In piglets with the C5 CC genotype, younger piglets, piglets that deviated from physiological norms and older piglets, a greater number and/or percentage of monocytes were recorded in the blood. Older piglets also showed an increase in the number of leukocytes and granulocytes, along with a tendency for a decrease in the percentage of lymphocytes in their blood. We concluded that a polymorphism in the C1R gene may exhibit a functional association or genetic linkage with other genes involved in the process of erythropoiesis. Furthermore the relationship between the C5 gene polymorphism and the number and/or percentage of monocytes in the blood may modify the body’s defense abilities. Piglets with the CC genotype, having an increased number/proportion of these cells in their blood, probably display a weakened immune response to pathogens or a chronic stimulation of the immune system. Full article
(This article belongs to the Section Animal Genetics and Genomics)
12 pages, 1362 KiB  
Article
Oct4 and Hypoxia Dual-Regulated Oncolytic Adenovirus Armed with shRNA-Targeting Dendritic Cell Immunoreceptor Exerts Potent Antitumor Activity against Bladder Cancer
by Che-Yuan Hu, Chi-Feng Hung, Pi-Che Chen, Jia-Yu Hsu, Chung-Teng Wang, Ming-Derg Lai, Yuh-Shyan Tsai, Ai-Li Shiau, Gia-Shing Shieh and Chao-Liang Wu
Biomedicines 2023, 11(10), 2598; https://doi.org/10.3390/biomedicines11102598 - 22 Sep 2023
Cited by 4 | Viewed by 1805
Abstract
Immunotherapy has emerged as a promising modality for cancer treatment. Dendritic cell immunoreceptor (DCIR), a C-type lectin receptor, is expressed mainly by dendritic cells (DCs) and mediates inhibitory intracellular signaling. Inhibition of DCIR activation may enhance antitumor activity. DCIR is encoded by CLEC4A [...] Read more.
Immunotherapy has emerged as a promising modality for cancer treatment. Dendritic cell immunoreceptor (DCIR), a C-type lectin receptor, is expressed mainly by dendritic cells (DCs) and mediates inhibitory intracellular signaling. Inhibition of DCIR activation may enhance antitumor activity. DCIR is encoded by CLEC4A in humans and by Clec4a2 in mice. Gene gun-mediated delivery of short hairpin RNA (shRNA) targeting Clec4a2 into mice bearing bladder tumors reduces DCIR expression in DCs, inhibiting tumor growth and inducing CD8+ T cell immune responses. Various oncolytic adenoviruses have been developed in clinical trials. Previously, we have developed Ad.LCY, an oncolytic adenovirus regulated by Oct4 and hypoxia, and demonstrated its antitumor efficacy. Here, we generated a Clec4a2 shRNA-expressing oncolytic adenovirus derived from Ad.LCY, designated Ad.shDCIR, aimed at inducing more robust antitumor immune responses. Our results show that treatment with Ad.shDCIR reduced Clec4a expression in DCs in cell culture. Furthermore, Ad.shDCIR exerted cytolytic effects solely on MBT-2 bladder cancer cells but not on normal NIH 3T3 mouse fibroblasts, confirming the tumor selectivity of Ad.shDCIR. Compared to Ad.LCY, Ad.shDCIR induced higher cytotoxic T lymphocyte (CTL) activity in MBT-2 tumor-bearing immunocompetent mice. In addition, Ad.shDCIR and Ad.LCY exhibited similar antitumor effects on inhibiting tumor growth. Notably, Ad.shDCIR was superior to Ad.LCY in prolonging the survival of tumor-bearing mice. In conclusion, Ad.shDCIR may be further explored as a combination therapy of virotherapy and immunotherapy for bladder cancer and likely other types of cancer. Full article
Show Figures

Figure 1

26 pages, 1606 KiB  
Article
Cytotoxic T Lymphocytes Control Growth of B16 Tumor Cells in Collagen–Fibrin Gels by Cytolytic and Non-Lytic Mechanisms
by Barun Majumder, Sadna Budhu and Vitaly V. Ganusov
Viruses 2023, 15(7), 1454; https://doi.org/10.3390/v15071454 - 27 Jun 2023
Cited by 5 | Viewed by 2033
Abstract
Cytotoxic T lymphocytes (CTLs) are important in controlling some viral infections, and therapies involving the transfer of large numbers of cancer-specific CTLs have been successfully used to treat several types of cancers in humans. While the molecular mechanisms of how CTLs kill their [...] Read more.
Cytotoxic T lymphocytes (CTLs) are important in controlling some viral infections, and therapies involving the transfer of large numbers of cancer-specific CTLs have been successfully used to treat several types of cancers in humans. While the molecular mechanisms of how CTLs kill their targets are relatively well understood, we still lack a solid quantitative understanding of the kinetics and efficiency by which CTLs kill their targets in vivo. Collagen–fibrin-gel-based assays provide a tissue-like environment for the migration of CTLs, making them an attractive system to study T cell cytotoxicity in in vivo-like conditions. Budhu.et al. systematically varied the number of peptide (SIINFEKL)-pulsed B16 melanoma cells and SIINFEKL-specific CTLs (OT-1) and measured the remaining targets at different times after target and CTL co-inoculation into collagen–fibrin gels. The authors proposed that their data were consistent with a simple model in which tumors grow exponentially and are killed by CTLs at a per capita rate proportional to the CTL density in the gel. By fitting several alternative mathematical models to these data, we found that this simple “exponential-growth-mass-action-killing” model did not precisely describe the data. However, determining the best-fit model proved difficult because the best-performing model was dependent on the specific dataset chosen for the analysis. When considering all data that include biologically realistic CTL concentrations (E107cell/mL), the model in which tumors grow exponentially and CTLs suppress tumor’s growth non-lytically and kill tumors according to the mass–action law (SiGMA model) fit the data with the best quality. A novel power analysis suggested that longer experiments (∼3–4 days) with four measurements of B16 tumor cell concentrations for a range of CTL concentrations would best allow discriminating between alternative models. Taken together, our results suggested that the interactions between tumors and CTLs in collagen–fibrin gels are more complex than a simple exponential-growth-mass–action killing model and provide support for the hypothesis that CTLs’ impact on tumors may go beyond direct cytotoxicity. Full article
(This article belongs to the Special Issue CAR-T Cell Therapy for HIV Cure 2023)
Show Figures

Figure 1

12 pages, 19721 KiB  
Article
Targeting the P10 Peptide in Maturing Dendritic Cells via the DEC205 Receptor In Vivo: A New Therapeutic Strategy against Paracoccidioidomycosis
by Suelen S. Santos, Eline Rampazo, Carlos P. Taborda, Joshua D. Nosanchuk, Silvia B. Boscardin and Sandro R. Almeida
J. Fungi 2023, 9(5), 548; https://doi.org/10.3390/jof9050548 - 10 May 2023
Viewed by 2322
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as [...] Read more.
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as the tenth most common cause of death among chronic infectious diseases. Hence, vaccines are in development to combat this insidious pathogen. It is likely that effective vaccines will need to elicit strong T cell-mediated immune responses composed of IFNγ secreting CD4+ helper and CD8+ cytolytic T lymphocytes. To induce such responses, it would be valuable to harness the dendritic cell (DC) system of antigen-presenting cells. To assess the potential of targeting P10, which is a peptide derived from gp43 secreted by the fungus, directly to DCs, we cloned the P10 sequence in fusion with a monoclonal antibody to the DEC205 receptor, an endocytic receptor that is abundant on DCs in lymphoid tissues. We verified that a single injection of the αDEC/P10 antibody caused DCs to produce a large amount of IFNγ. Administration of the chimeric antibody to mice resulted in a significant increase in the levels of IFN-γ and IL-4 in lung tissue relative to control animals. In therapeutic assays, mice pretreated with αDEC/P10 had significantly lower fungal burdens compared to control infected mice, and the architecture of the pulmonary tissues of αDEC/P10 chimera-treated mice was largely normal. Altogether, the results obtained so far indicate that targeting P10 through a αDEC/P10 chimeric antibody in the presence of polyriboinosinic: polyribocytidylic acid is a promising strategy in vaccination and therapeutic protocols to combat PCM. Full article
(This article belongs to the Special Issue Young Investigator in Fungal Infections, 2nd Edition)
Show Figures

Figure 1

19 pages, 3491 KiB  
Article
A2AR as a Prognostic Marker and a Potential Immunotherapy Target in Human Glioma
by Soumaya Rafii, Amina Ghouzlani, Oumayma Naji, Saadia Ait Ssi, Sarah Kandoussi, Abdelhakim Lakhdar and Abdallah Badou
Int. J. Mol. Sci. 2023, 24(7), 6688; https://doi.org/10.3390/ijms24076688 - 3 Apr 2023
Cited by 9 | Viewed by 2986
Abstract
Gliomas are considered one of the most malignant tumors in the body. The immune system has the ability to control the initiation and development of tumors, including gliomas. Thus, immune cells find themselves controlled by various molecular pathways, inhibiting their activation, such as [...] Read more.
Gliomas are considered one of the most malignant tumors in the body. The immune system has the ability to control the initiation and development of tumors, including gliomas. Thus, immune cells find themselves controlled by various molecular pathways, inhibiting their activation, such as the immunosuppressive adenosine 2A receptor (A2AR). Our objective was to establish the expression profile and role of A2AR at the transcriptomic level, using real-time RT-PCR in Moroccan glioma patients, in addition to TCGA and CGGA cohorts. The real-time RT-PCR results in Moroccan patients showed that high expression of this gene was associated with poor survival in males. Our study on the CGGA cohort corroborated these results. In addition, there was a positive association of A2AR with T-cell exhaustion genes. A2AR also correlated strongly with genes that are primarily enriched in focal adhesion and extracellular matrix interactions, inducing epithelial mesenchymal transition, angiogenesis, and glioma growth. However, in the TCGA cohort, the A2AR showed results that were different from the two previously examined cohorts. In fact, this gene was instead linked to a good prognosis in patients with the astrocytoma histological type. The correlation and enrichment results reinforced the prognostic role of A2AR in this TCGA cohort, in which its high expression was shown to be related to lymphocyte differentiation and a successful cytolytic response, suggesting a more efficient anti-tumor immune response. Correlations and differential analyses based on A2AR gene expression, to understand the cause of the association of this gene with two different prognoses (CGGA males and TCGA Astrocytoma), showed that the overexpression of A2AR in Chinese male patients could be associated with the overexpression of extracellular adenosine, which binds to A2AR to induce immunosuppression and consequently a poor prognosis. However, in the second group (TCGA astrocytomas), the overexpression of the gene could be associated with an adenosine deficiency, and therefore this receptor does not undergo activation. The absence of A2AR activation in these patients may have protected them from immunosuppression, which could reflect the good prognosis. A2AR can be considered a promising therapeutic target in male CGGA and Moroccan patients with gliomas. Full article
(This article belongs to the Special Issue Cancer Immunotherapy: Recent Progress)
Show Figures

Figure 1

27 pages, 1196 KiB  
Review
Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections
by Matthew S. Linz, Arun Mattappallil, Diana Finkel and Dane Parker
Antibiotics 2023, 12(3), 557; https://doi.org/10.3390/antibiotics12030557 - 11 Mar 2023
Cited by 127 | Viewed by 23927
Abstract
The pathogenic bacterium Staphylococcus aureus is the most common pathogen isolated in skin-and-soft-tissue infections (SSTIs) in the United States. Most S. aureus SSTIs are caused by the epidemic clone USA300 in the USA. These infections can be serious; in 2019, SSTIs with S. aureus were [...] Read more.
The pathogenic bacterium Staphylococcus aureus is the most common pathogen isolated in skin-and-soft-tissue infections (SSTIs) in the United States. Most S. aureus SSTIs are caused by the epidemic clone USA300 in the USA. These infections can be serious; in 2019, SSTIs with S. aureus were associated with an all-cause, age-standardized mortality rate of 0.5 globally. Clinical presentations of S. aureus SSTIs vary from superficial infections with local symptoms to monomicrobial necrotizing fasciitis, which can cause systemic manifestations and may lead to serious complications or death. In order to cause skin infections, S. aureus employs a host of virulence factors including cytolytic proteins, superantigenic factors, cell wall-anchored proteins, and molecules used for immune evasion. The immune response to S. aureus SSTIs involves initial responders such as keratinocytes and neutrophils, which are supported by dendritic cells and T-lymphocytes later during infection. Treatment for S. aureus SSTIs is usually oral therapy, with parenteral therapy reserved for severe presentations; it ranges from cephalosporins and penicillin agents such as oxacillin, which is generally used for methicillin-sensitive S. aureus (MSSA), to vancomycin for methicillin-resistant S. aureus (MRSA). Treatment challenges include adverse effects, risk for Clostridioides difficile infection, and potential for antibiotic resistance. Full article
Show Figures

Figure 1

Back to TopTop