Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = cyclic maps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 549 KB  
Article
Sleep Posture and Autonomic Nervous System Activity Across Age and Sex in a Clinical Cohort: Analysis of a Nationwide Ambulatory ECG Database
by Emi Yuda and Junichiro Hayano
Sensors 2025, 25(19), 5982; https://doi.org/10.3390/s25195982 - 26 Sep 2025
Abstract
Sleep posture has received limited attention in studies of autonomic nervous system (ANS) activity during sleep, particularly in clinical populations. We analyzed data from 130,885 individuals (56.1% female) in the Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR), a nationwide Japanese database of [...] Read more.
Sleep posture has received limited attention in studies of autonomic nervous system (ANS) activity during sleep, particularly in clinical populations. We analyzed data from 130,885 individuals (56.1% female) in the Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR), a nationwide Japanese database of 24 h Holter ECG recordings obtained for clinical purposes. Sleep posture was classified as supine, right lateral, left lateral, or prone using triaxial accelerometer data. Heart rate variability (HRV) indices—including heart rate (HR), standard deviation of RR intervals (SDRR), high-frequency (HF), low-frequency (LF), very low-frequency (VLF) components, cyclic variation in heart rate (CVHR), and HF spectral power concentration index (Hsi)—were calculated for each posture and stratified by age and sex. HR was consistently lowest in the left lateral posture and highest in the right lateral posture across most age groups. Other HRV indices also showed consistent laterality, although the effect sizes were generally small. Posture distribution differed slightly by estimated sleep apnea severity, but the effect size was negligible (η2 = 0.0013). These findings highlight sleep posture as a statistically significant and independent factor influencing ANS activity during sleep, though the magnitude of differences should be interpreted in the context of their clinical relevance. Full article
Show Figures

Figure 1

17 pages, 327 KB  
Article
Best Proximity Theory in Metrically Convex Menger PM-Spaces via Cyclic Kannan Maps
by Moosa Gabeleh, Elif Uyanık Ekici and Maggie Aphane
Symmetry 2025, 17(9), 1549; https://doi.org/10.3390/sym17091549 - 16 Sep 2025
Viewed by 215
Abstract
A Takahashi convex structure is considered on Menger PM-spaces and used to investigate the existence of best proximity points for weak cyclic Kannan contractions. We then introduce a concept of a probabilistic proximal quasi-normal structure on a convex pair of subsets of Menger [...] Read more.
A Takahashi convex structure is considered on Menger PM-spaces and used to investigate the existence of best proximity points for weak cyclic Kannan contractions. We then introduce a concept of a probabilistic proximal quasi-normal structure on a convex pair of subsets of Menger PM-spaces and prove that every compact and convex pair in metrically convex Menger PM-spaces has the probabilistic proximal quasi-normal structure. By applying this geometric property, we survey the existence of a best proximity point for cyclic relatively Kannan nonexpansive maps which preserves distance. In order to provide more accurate results, we obtain the same conclusions in the framework of CAT(0) spaces. Full article
17 pages, 344 KB  
Article
On Some Classes of Enriched Cyclic Contractive Self-Mappings and Their Boundedness and Convergence Properties
by Manuel De la Sen
Mathematics 2025, 13(18), 2948; https://doi.org/10.3390/math13182948 - 11 Sep 2025
Viewed by 198
Abstract
This paper focuses on dealing with several types of enriched cyclic contractions defined in the union of a set of non-empty closed subsets of normed or metric spaces. In general, any finite number p2 of subsets is permitted in the cyclic [...] Read more.
This paper focuses on dealing with several types of enriched cyclic contractions defined in the union of a set of non-empty closed subsets of normed or metric spaces. In general, any finite number p2 of subsets is permitted in the cyclic arrangement. The types of examined single-valued enriched cyclic contractions are, in general, less stringent from the point of view of constraints on the self-mappings compared to p-cyclic contractions while the essential properties of these last ones are kept. The convergence of distances is investigated as well as that of sequences generated by the considered enriched cyclic mappings. It is proved that, both in normed spaces and in simple metric spaces, the distances of sequences of points in adjacent subsets converge to the distance between such subsets under weak extra conditions compared to the cyclic contractive case, which is simply that the contractive constant be less than one. It is also proved that if the metric space is a uniformly convex Banach space and one of the involved subsets is convex then all the sequences between adjacent subsets converge to a unique set of best proximity points, one of them per subset which conform a limit cycle, although the sets of best proximity points are not all necessarily singletons in all the subsets. Full article
(This article belongs to the Topic Fixed Point Theory and Measure Theory)
19 pages, 7767 KB  
Article
Compilation of Load Spectrum of Loader Working Device and Application in Fatigue Life Prediction
by Xiaohua Shi, Wenming Guo, Jiyang Wang, Gang Li and Hao Lu
Sensors 2025, 25(17), 5585; https://doi.org/10.3390/s25175585 - 7 Sep 2025
Viewed by 833
Abstract
During the working process of the wheel loader, the repeated cycle of the shoveling and unloading process will produce an impact, so the loader is under a cyclic load for a long time, which leads to the frequent failure of its main parts. [...] Read more.
During the working process of the wheel loader, the repeated cycle of the shoveling and unloading process will produce an impact, so the loader is under a cyclic load for a long time, which leads to the frequent failure of its main parts. In this study, a new way of compiling the load spectrum of the loader’s working device and its application in fatigue life prediction is proposed. Through experimental data collection and preprocessing, the force of the cylinder block and hinge contact is corrected by mapping and inertia, which accurately reflects the actual force of the loader. The whole life cycle load spectrum is compiled by using the rainflow counting method and the extrapolation coefficient, and the test efficiency is optimized with the low-amplitude load omission method. By combining finite element analysis with material S-N curves using nCode DesignLife (version 11.1) and ANSYS Workbench frameworks (version 2024 R2), this research accurately predicts the fatigue life of the loader’s working unit and identifies key failure areas. The prediction results are consistent with the actual feedback data, and the accuracy of the method is verified. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 15455 KB  
Article
Study on the Spatial Matching Between Public Service Facilities and the Distribution of Population—An Example of Shandong Province
by Yin Feng and Yanjun Wang
Sustainability 2025, 17(17), 7866; https://doi.org/10.3390/su17177866 - 1 Sep 2025
Viewed by 644
Abstract
Against the backdrop of rapid new urbanisation and the ongoing integration of urban and rural areas, the evolving spatial dynamics between public service facilities and population distribution have increasingly garnered scholarly interest. The present study employs a grid-based spatial unit and a coupling [...] Read more.
Against the backdrop of rapid new urbanisation and the ongoing integration of urban and rural areas, the evolving spatial dynamics between public service facilities and population distribution have increasingly garnered scholarly interest. The present study employs a grid-based spatial unit and a coupling coordination model as a foundation. This model integrates POI data, Baidu heat maps, and other sources of spatial and temporal information. The objective is to explore the dynamic matching pattern of public service facilities and population distribution. The study’s findings are as follows: The population within the core urban area displays a strong propensity for agglomeration during the morning and evening peak hours, thereby forming a highly coordinated public service network characterised by high-density and piecemeal distribution of public service facilities. The population residing within the transition zone between urban and rural areas is commuting in a substantial number, and the relationship between the supply of and demand for facilities demonstrates cyclical fluctuations. Local areas are subject to time-periodic pressure on the supply of and demand for facilities. In rural areas, due to the continuous population outflow and dispersed residence, the layout of service facilities is fragmented, exhibiting the island effect. The study reveals a structural contradiction between traditional homogeneous planning and the gradient difference between urban and rural areas, providing a scientific basis for Shandong Province to promote new urbanisation and rural revitalisation strategies in an integrated manner. Full article
(This article belongs to the Topic Architectures, Materials and Urban Design, 2nd Edition)
Show Figures

Figure 1

23 pages, 6258 KB  
Article
Study on Mine Water Inflow Prediction for the Liangshuijing Coal Mine Based on the Chaos-Autoformer Model
by Jin Ma, Dangliang Wang, Zhixiao Wang, Chenyue Gao, Hu Zhou, Mengke Li, Jin Huang, Yangguang Zhao and Yifu Wang
Water 2025, 17(17), 2545; https://doi.org/10.3390/w17172545 - 27 Aug 2025
Viewed by 659
Abstract
Mine water hazards represent one of the principal threats to safe coal mine operations; therefore, accurately predicting mine water inflow is critical for drainage system design and water hazard mitigation. Because mine water inflow is governed by the combined influence of multiple hydrogeological [...] Read more.
Mine water hazards represent one of the principal threats to safe coal mine operations; therefore, accurately predicting mine water inflow is critical for drainage system design and water hazard mitigation. Because mine water inflow is governed by the combined influence of multiple hydrogeological factors and thus exhibits pronounced non-linear characteristics, conventional approaches are inadequate in terms of forecasting accuracy and medium- to long-term predictive capability. To address this issue, this study proposes a Chaos-Autoformer-based method for predicting mine water inflow. First, the univariate inflow series is mapped into an m-dimensional phase space by means of phase-space reconstruction from chaos theory, thereby fully preserving its non-linear features; the reconstructed vectors are then used to train and forecast inflow with an improved Chaos-Autoformer model. On top of the original Autoformer architecture, the proposed model incorporates a Chaos-Attention mechanism and a Lyap-Dropout scheme, which enhance sensitivity to small perturbations in initial conditions and complex non-linear propagation paths while improving stability in long-horizon forecasting. In addition, the loss function integrates the maximum Lyapunov exponent error and earth mode decomposition (EMD) indices so as to jointly evaluate dynamical consistency and predictive performance. An empirical analysis based on monitoring data from the Liangshuijing Coal Mine for 2022–2025 demonstrates that the trained model delivers high accuracy and stable performance. Ablation experiments further confirm the significant contribution of the chaos-aware components: when these modules are removed, forecasting accuracy declines to only 76.5%. Using the trained model to predict mine water inflow for the period from June 2024 to June 2025 yields a root mean square error (RMSE) of 30.73 m3/h and a coefficient of determination (R2) of 0.895 against observed data, indicating excellent fitting and predictive capability for medium- to long-term tasks. Extending the forecast to July 2025–November 2027 reveals a pronounced annual cyclical pattern in future mine water inflow, with markedly higher inflow in summer than in winter and an overall slowly declining trend. These findings show that the Chaos-Autoformer can achieve high-precision medium- and long-term predictions of mine water inflow, thereby providing technical support for proactive deployment and refined management of mine water hazard prevention. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 2449 KB  
Article
Synthesis and Characterization of a New Hydrogen-Bond-Stabilized 1,10-Phenanthroline–Phenol Schiff Base: Integrated Spectroscopic, Electrochemical, Theoretical Studies, and Antimicrobial Evaluation
by Alexander Carreño, Evys Ancede-Gallardo, Ana G. Suárez, Marjorie Cepeda-Plaza, Mario Duque-Noreña, Roxana Arce, Manuel Gacitúa, Roberto Lavín, Osvaldo Inostroza, Fernando Gil, Ignacio Fuentes and Juan A. Fuentes
Chemistry 2025, 7(4), 135; https://doi.org/10.3390/chemistry7040135 - 21 Aug 2025
Viewed by 1122
Abstract
A new Schiff base, (E)-2-(((1,10-phenanthrolin-5-yl)imino)methyl)-4,6-di-tert-butylphenol (Fen-IHB), was designed to incorporate an intramolecular hydrogen bond (IHB) between the phenolic OH and the azomethine nitrogen with the goal of modulating its physicochemical and biological properties. Fen-IHB was synthesized by condensation of [...] Read more.
A new Schiff base, (E)-2-(((1,10-phenanthrolin-5-yl)imino)methyl)-4,6-di-tert-butylphenol (Fen-IHB), was designed to incorporate an intramolecular hydrogen bond (IHB) between the phenolic OH and the azomethine nitrogen with the goal of modulating its physicochemical and biological properties. Fen-IHB was synthesized by condensation of 5-amino-1,10-phenanthroline with 3,5-di-tert-butyl-2-hydroxybenzaldehyde and exhaustively characterized by HR-ESI-MS, FTIR, 1D/2D NMR (1H, 13C, DEPT-45, HH-COSY, CH-COSY, D2O exchange), and UV–Vis spectroscopy. Cyclic voltammetry in anhydrous CH3CN revealed a single irreversible cathodic peak at −1.43 V (vs. Ag/Ag+), which is consistent with the intramolecular reductive coupling of the azomethine moiety. Density functional theory (DFT) calculations, including MEP mapping, Fukui functions, dual descriptor analysis, and Fukui potentials with dual descriptor potential, identified the exocyclic azomethine carbon as the principal nucleophilic site and the phenolic ring (hydroxyl oxygen and adjacent carbons) as the main electrophilic region. Noncovalent interaction (NCI) analysis further confirmed the strength and geometry of the intramolecular hydrogen bond (IHB). In vitro antimicrobial assays indicated that Fen-IHB was inactive against Gram-negative facultative anaerobes (Salmonella enterica serovar Typhimurium and Typhi, Escherichia coli) and strictly anaerobic Gram-positive species (Clostridioides difficile, Roseburia inulinivorans, Blautia coccoides), as any growth inhibition was indistinguishable from the DMSO control. Conversely, Fen-IHB displayed measurable activity against Gram-positive aerobes and aerotolerant anaerobes, including Bacillus subtilis, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Overall, these comprehensive characterization results confirm the distinctive chemical and electronic properties of Fen-IHB, underlining the crucial role of the intramolecular hydrogen bond and electronic descriptors in defining its reactivity profile and selective biological activity. Full article
Show Figures

Figure 1

24 pages, 11098 KB  
Article
Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications
by Chien-Te Huang, Fei-Yi Hung and Kai-Chieh Chang
Appl. Sci. 2025, 15(15), 8572; https://doi.org/10.3390/app15158572 - 1 Aug 2025
Viewed by 413
Abstract
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained [...] Read more.
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained electrical integrity up to 0.30 A for 15,000 cycles. Above 0.35 A, rapid oxide growth and abnormal grain coarsening resulted in surface embrittlement and mechanical degradation. Current-assisted tensile testing revealed a transition from recovery-dominated behavior at ≤0.20 A to significant thermal softening and ductility loss at ≥0.25 A, corresponding to a threshold temperature of approximately 200 °C. These results establish the endurance limit of 631 stainless steel wire under coupled thermal–mechanical–electrical stress and clarify the roles of Joule heating, oxidation, and microstructural evolution in electrical fatigue resistance. A degradation map is proposed to inform design margins and operational constraints for fatigue-tolerant, electrically stable interconnects in high-reliability probe spring applications. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

13 pages, 1647 KB  
Article
Electrochemical Sensing of Hg2+ Ions Using an SWNTs/Ag@ZnBDC Composite with Ultra-Low Detection Limit
by Gajanan A. Bodkhe, Bhavna Hedau, Mayuri S. More, Myunghee Kim and Mahendra D. Shirsat
Chemosensors 2025, 13(7), 259; https://doi.org/10.3390/chemosensors13070259 - 16 Jul 2025
Viewed by 590
Abstract
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag [...] Read more.
A novel single-walled carbon nanotube (SWNT), silver (Ag) nanoparticle, and zinc benzene carboxylate (ZnBDC) metal–organic framework (MOF) composite was synthesised and systematically characterised to develop an efficient platform for mercury ion (Hg2+) detection. X-ray diffraction confirmed the successful incorporation of Ag nanoparticles and SWNTs without disrupting the crystalline structure of ZnBDC. Meanwhile, field-emission scanning electron microscopy and energy-dispersive spectroscopy mapping revealed a uniform elemental distribution. Thermogravimetric analysis indicated enhanced thermal stability. Electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) demonstrated improved charge transfer properties. Electrochemical sensing investigations using differential pulse voltammetry revealed that the SWNTs/Ag@ZnBDC-modified glassy carbon electrode exhibited high selectivity toward Hg2+ ions over other metal ions (Cd2+, Co2+, Cr3+, Fe3+, and Zn2+), with optimal performance at pH 4. The sensor displayed a linear response in the concentration range of 0.1–1.0 nM (R2 = 0.9908), with a calculated limit of detection of 0.102 nM, slightly close to the lowest tested point, confirming its high sensitivity for ultra-trace Hg2+ detection. The outstanding sensitivity, selectivity, and reproducibility underscore the potential of SWNTs/Ag@ZnBDC as a promising electrochemical platform for detecting trace levels of Hg2+ in environmental monitoring. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Figure 1

20 pages, 1104 KB  
Article
Fast Algorithms for the Small-Size Type IV Discrete Hartley Transform
by Vitalii Natalevych, Marina Polyakova and Aleksandr Cariow
Electronics 2025, 14(14), 2841; https://doi.org/10.3390/electronics14142841 - 15 Jul 2025
Viewed by 313
Abstract
This paper presents new fast algorithms for the fourth type discrete Hartley transform (DHT-IV) for input data sequences of lengths from 3 to 8. Fast algorithms for small-sized trigonometric transforms can be used as building blocks for synthesizing algorithms for large-sized transforms. Additionally, [...] Read more.
This paper presents new fast algorithms for the fourth type discrete Hartley transform (DHT-IV) for input data sequences of lengths from 3 to 8. Fast algorithms for small-sized trigonometric transforms can be used as building blocks for synthesizing algorithms for large-sized transforms. Additionally, they can be utilized to process small data blocks in various digital signal processing applications, thereby reducing overall system latency and computational complexity. The existing polynomial algebraic approach and the approach based on decomposing the transform matrix into cyclic convolution submatrices involve rather complicated housekeeping and a large number of additions. To avoid the noted drawback, this paper uses a structural approach to synthesize new algorithms. The starting point for constructing fast algorithms was to represent DHT-IV as a matrix–vector product. The next step was to bring the block structure of the DHT-IV matrix to one of the matrix patterns following the structural approach. In this case, if the block structure of the DHT-IV matrix did not match one of the existing patterns, its rows and columns were reordered, and, if necessary, the signs of some entries were changed. If this did not help, the DHT-IV matrix was represented as the sum of two or more matrices, and then each matrix was analyzed separately, if necessary, subjecting the matrices obtained by decomposition to the above transformations. As a result, the factorizations of matrix components were obtained, which led to a reduction in the arithmetic complexity of the developed algorithms. To illustrate the space–time structures of computational processes described by the developed algorithms, their data flow graphs are presented, which, if necessary, can be directly mapped onto the VLSI structure. The obtained DHT-IV algorithms can reduce the number of multiplications by an average of 75% compared with the direct calculation of matrix–vector products. However, the number of additions has increased by an average of 4%. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

31 pages, 417 KB  
Article
On the Properties of Iterations Generated with Composition Maps of Cyclic Contractive Self-Mappings and Strict Contractions in Metric Spaces
by Manuel De la Sen
Mathematics 2025, 13(14), 2224; https://doi.org/10.3390/math13142224 - 8 Jul 2025
Cited by 1 | Viewed by 332
Abstract
This paper studies the convergence of distances between sequences of points and that of sequences of points in metric spaces. This investigation is focused on the iterative processes built with composed self-mappings of a cyclic contraction, which can involve more than two nonempty [...] Read more.
This paper studies the convergence of distances between sequences of points and that of sequences of points in metric spaces. This investigation is focused on the iterative processes built with composed self-mappings of a cyclic contraction, which can involve more than two nonempty closed subsets in a metric space, which are combined with compositions of a strict contraction with itself, which operates in each of the individual subsets, in any order and any number of mutual compositions. It is admitted, in the most general case, the involvement of any number of repeated compositions of both self-maps with themselves. It is basically seen that, if one of the best-proximity points in the cyclic disposal is unique in a boundedly compact subset of the metric space is sufficient to achieve unique asymptotic cycles formed by a best-proximity point per each adjacent subset. The same property is achievable if such a subset is strictly convex and the metric space is a uniformly convex Banach space. Furthermore, all the sequences with arbitrary initial points in the union of all the subsets of the cyclic disposal converge to such a limit cycle. Full article
(This article belongs to the Special Issue Applied Mathematical Modelling and Dynamical Systems, 2nd Edition)
14 pages, 4026 KB  
Article
Grain Refinement Caused by Dynamic Recrystallization Under Pulsed-Wave Laser Multi-Layer Cyclic Thermal Load
by Manping Cheng, Xi Zou, Yuan Zhu, Tengfei Chang, Qi Cao, Houlai Ju, Jiawei Ning, Yang Ding and Lijun Qiang
Coatings 2025, 15(7), 788; https://doi.org/10.3390/coatings15070788 - 3 Jul 2025
Viewed by 437
Abstract
In the Direct Energy Deposition (DED) process, the deposited material experiences intricate thermo-mechanical processes. Subsequent thermal cycling can trigger Dynamic Recrystallization (DRX) under suitable conditions, with specific strain and temperature parameters facilitating grain refinement and homogenization. While prior research has examined the impact [...] Read more.
In the Direct Energy Deposition (DED) process, the deposited material experiences intricate thermo-mechanical processes. Subsequent thermal cycling can trigger Dynamic Recrystallization (DRX) under suitable conditions, with specific strain and temperature parameters facilitating grain refinement and homogenization. While prior research has examined the impact of thermal cycling in continuous wave (CW) lasers on DRX in 316 L stainless steel deposits, this study delves into the effects of pulsed wave (PW) laser thermal cycling on DRX. Here, the thermo-mechanical response to PW cyclic thermal loading is empirically assessed, and the evolution of microstructure, grain morphology, geometric dislocation density (GND), and misorientation map during PW DED of 316 L stainless steel is scrutinized. Findings reveal that DRX is activated between the 8th and 44th thermal cycles, with temperatures fluctuating in the range of 680 K–750 K–640 K and grains evolving within a 5.6%–6.2%–5.2% strain range. After 90 thermal cycles, the grain microstructure undergoes significant alteration. Throughout the thermal cycling, dynamic recovery (DRV) occurs, marked by sub-grain formation and low-angle grain boundaries (LAGBs). Continuous dynamic recrystallization (CDRX) accompanies discontinuous dynamic recrystallization (DDRX), with LAGBs progressively converting into high-angle grain boundaries (HAGBs). Elevated temperatures and accumulated strain drive dislocation movement and entanglement, augmenting GND. The study also probes the influence of frequency and duty cycle on grain microstructure, finding that low pulse frequency spurs CDRX, high pulse frequency favors DRV, and the duty cycle has minimal impact on grain microstructure under PW cyclic thermal load. Full article
Show Figures

Figure 1

39 pages, 7243 KB  
Article
Binary Chaotic White Shark Optimizer for the Unicost Set Covering Problem
by Pablo Zúñiga-Valenzuela, Broderick Crawford, Felipe Cisternas-Caneo, Eduardo Rodriguez-Tello, Ricardo Soto, José Barrera-Garcia and Fernando Lepe-Silva
Mathematics 2025, 13(13), 2175; https://doi.org/10.3390/math13132175 - 3 Jul 2025
Viewed by 522
Abstract
The Unicost Set Covering Problem (USCP), an NP-hard combinatorial optimization challenge, demands efficient methods to minimize the number of sets covering a universe. This study introduces a binary White Shark Optimizer (WSO) enhanced with V3 transfer functions, elitist binarization, and chaotic maps. To [...] Read more.
The Unicost Set Covering Problem (USCP), an NP-hard combinatorial optimization challenge, demands efficient methods to minimize the number of sets covering a universe. This study introduces a binary White Shark Optimizer (WSO) enhanced with V3 transfer functions, elitist binarization, and chaotic maps. To evaluate algorithm performance, we employ the Relative Percentage Deviation (RPD), which measures the percentage difference between the obtained solutions and optimal values. Our approach achieves outstanding results on six benchmark instances: WSO-ELIT_CIRCLE delivers an RPD of 0.7% for structured instances, while WSO-ELIT_SINU attains an RPD of 0.96% in cyclic instances, showing empirical improvements over standard methods. Experimental results demonstrate that circle chaotic maps excel in structured problems, while sinusoidal maps perform optimally in cyclic instances, with observed improvements up to 7.31% over baseline approaches. Diversity and convergence analyses show structured instances favor exploitation-driven strategies, whereas cyclic instances benefit from adaptive exploration. This work establishes WSO as a robust metaheuristic for USCP, with applications in resource allocation and network design. Full article
(This article belongs to the Special Issue Metaheuristic Algorithms, 2nd Edition)
Show Figures

Figure 1

24 pages, 7981 KB  
Article
Robust Forward-Looking Sonar-Image Mosaicking Without External Sensors for Autonomous Deep-Sea Mining
by Xinran Liu, Jianmin Yang, Changyu Lu, Enhua Zhang and Wenhao Xu
J. Mar. Sci. Eng. 2025, 13(7), 1291; https://doi.org/10.3390/jmse13071291 - 30 Jun 2025
Viewed by 579
Abstract
With the increasing significance of deep-sea resource development, Forward-Looking Sonar (FLS) has become an essential technology for real-time environmental mapping and navigation in deep-sea mining vehicles (DSMV). However, FLS images often suffer from a limited field of view, uneven imaging, and complex noise [...] Read more.
With the increasing significance of deep-sea resource development, Forward-Looking Sonar (FLS) has become an essential technology for real-time environmental mapping and navigation in deep-sea mining vehicles (DSMV). However, FLS images often suffer from a limited field of view, uneven imaging, and complex noise sources, making single-frame images insufficient for providing continuous and complete environmental awareness. Existing mosaicking methods typically rely on external sensors or controlled laboratory conditions, often failing to account for the high levels of uncertainty and error inherent in real deep-sea environments. Consequently, their performance during sea trials tends to be unsatisfactory. To address these challenges, this study introduces a robust FLS image mosaicking framework that functions without additional sensor input. The framework explicitly models the noise characteristics of sonar images captured in deep-sea environments and integrates bidirectional cyclic consistency filtering with a soft-weighted feature refinement strategy during the feature-matching stage. For image fusion, a radial adaptive fusion algorithm with a protective frame is proposed to improve edge transitions and preserve structural consistency in the resulting panoramic image. The experimental results demonstrate that the proposed framework achieves high robustness and accuracy under real deep-sea conditions, effectively supporting DSMV tasks such as path planning, obstacle avoidance, and simultaneous localization and mapping (SLAM), thus enabling reliable perceptual capabilities for intelligent underwater operations. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

18 pages, 4309 KB  
Article
OMRoadNet: A Self-Training-Based UDA Framework for Open-Pit Mine Haul Road Extraction from VHR Imagery
by Suchuan Tian, Zili Ren, Xingliang Xu, Zhengxiang He, Wanan Lai, Zihan Li and Yuhang Shi
Appl. Sci. 2025, 15(12), 6823; https://doi.org/10.3390/app15126823 - 17 Jun 2025
Viewed by 558
Abstract
Accurate extraction of dynamically evolving haul roads in open-pit mines from very-high-resolution (VHR) satellite imagery remains a critical challenge due to domain gaps between urban and mining environments, prohibitive annotation costs, and morphological irregularities. This paper introduces OMRoadNet, an unsupervised domain adaptation (UDA) [...] Read more.
Accurate extraction of dynamically evolving haul roads in open-pit mines from very-high-resolution (VHR) satellite imagery remains a critical challenge due to domain gaps between urban and mining environments, prohibitive annotation costs, and morphological irregularities. This paper introduces OMRoadNet, an unsupervised domain adaptation (UDA) framework for open-pit mine road extraction, which synergizes self-training, attention-based feature disentanglement, and morphology-aware augmentation to address these challenges. The framework employs a cyclic GAN (generative adversarial network) architecture with bidirectional translation pathways, integrating pseudo-label refinement through confidence thresholds and geometric rules (eight-neighborhood connectivity and adaptive kernel resizing) to resolve domain shifts. A novel exponential moving average unit (EMAU) enhances feature robustness by adaptively weighting historical states, while morphology-aware augmentation simulates variable road widths and spectral noise. Evaluations on cross-domain datasets demonstrate state-of-the-art performance with 92.16% precision, 80.77% F1-score, and 67.75% IoU (intersection over union), outperforming baseline models by 4.3% in precision and reducing annotation dependency by 94.6%. By reducing per-kilometer operational costs by 78% relative to LiDAR (Light Detection and Ranging) alternatives, OMRoadNet establishes a practical solution for intelligent mining infrastructure mapping, bridging the critical gap between structured urban datasets and unstructured mining environments. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

Back to TopTop