Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = cyber sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 318
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 351
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

26 pages, 891 KiB  
Article
Modeling the Interactions Between Smart Urban Logistics and Urban Access Management: A System Dynamics Perspective
by Gaetana Rubino, Domenico Gattuso and Manfred Gronalt
Appl. Sci. 2025, 15(14), 7882; https://doi.org/10.3390/app15147882 - 15 Jul 2025
Viewed by 322
Abstract
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach [...] Read more.
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach to investigate how urban logistics and access management policies may interact. At the center, there is a Causal Loop Diagram (CLD) that illustrates dynamic interdependencies among fleet composition, access regulations, logistics productivity, and environmental externalities. The CLD is a conceptual basis for future stock-and-flow simulations to support data-driven decision-making. The approach highlights the importance of route optimization, dynamic access control, and smart parking management systems as strategic tools, increasingly enabled by Industry 4.0 technologies, such as IoT, big data analytics, AI, and cyber-physical systems, which support real-time monitoring and adaptive planning. In alignment with the Industry 5.0 paradigm, this technological integration is paired with social and environmental sustainability goals. The study also emphasizes public–private collaboration in designing access policies and promoting alternative fuel vehicle adoption, supported by specific incentives. These coordinated efforts contribute to achieving the objectives of the 2030 Agenda, fostering a cleaner, more efficient, and inclusive urban logistics ecosystem. Full article
Show Figures

Figure 1

18 pages, 3325 KiB  
Article
AI-Driven Arm Movement Estimation for Sustainable Wearable Systems in Industry 4.0
by Emanuel Muntean, Monica Leba and Andreea Cristina Ionica
Sustainability 2025, 17(14), 6372; https://doi.org/10.3390/su17146372 - 11 Jul 2025
Viewed by 270
Abstract
In an era defined by rapid technological advancements, the intersection of artificial intelligence and industrial innovation has garnered significant attention from both academic and industry stakeholders. The emergence of Industry 4.0, characterized by the integration of cyber–physical systems, the Internet of Things, and [...] Read more.
In an era defined by rapid technological advancements, the intersection of artificial intelligence and industrial innovation has garnered significant attention from both academic and industry stakeholders. The emergence of Industry 4.0, characterized by the integration of cyber–physical systems, the Internet of Things, and smart manufacturing, demands the evolution of operational methodologies to ensure processes’ sustainability. One area of focus is the development of wearable systems that utilize artificial intelligence for the estimation of arm movements, which can enhance the ergonomics and efficiency of labor-intensive tasks. This study proposes a Random Forest-based regression model to estimate upper arm kinematics using only shoulder orientation data, reducing the need for multiple sensors and thereby lowering hardware complexity and energy demands. The model was trained on biomechanical data collected via a minimal three-IMU wearable configuration and demonstrated high predictive performance across all motion axes, achieving R2 > 0.99 and low RMSE scores on training (1.14, 0.71, and 0.73), test (3.37, 1.97, and 2.04), and unseen datasets (2.77, 0.78, and 0.63). Statistical analysis confirmed strong biomechanical coupling between shoulder and upper arm motion, justifying the feasibility of a simplified sensor approach. The findings highlight the relevance of our method for sustainable wearable technology design and its potential applications in rehabilitation robotics, industrial exoskeletons, and human–robot collaboration systems. Full article
(This article belongs to the Special Issue Sustainable Engineering Trends and Challenges Toward Industry 4.0)
Show Figures

Figure 1

26 pages, 5672 KiB  
Review
Development Status and Trend of Mine Intelligent Mining Technology
by Zhuo Wang, Lin Bi, Jinbo Li, Zhaohao Wu and Ziyu Zhao
Mathematics 2025, 13(13), 2217; https://doi.org/10.3390/math13132217 - 7 Jul 2025
Viewed by 838
Abstract
Intelligent mining technology, as the core driving force for the digital transformation of the mining industry, integrates cyber-physical systems, artificial intelligence, and industrial internet technologies to establish a “cloud–edge–end” collaborative system. In this paper, the development trajectory of intelligent mining technology has been [...] Read more.
Intelligent mining technology, as the core driving force for the digital transformation of the mining industry, integrates cyber-physical systems, artificial intelligence, and industrial internet technologies to establish a “cloud–edge–end” collaborative system. In this paper, the development trajectory of intelligent mining technology has been systematically reviewed, which has gone through four stages: stand-alone automation, integrated automation and informatization, digital and intelligent initial, and comprehensive intelligence. And the current development status of “cloud–edge–end” technologies has been reviewed: (i) The end layer achieves environmental state monitoring and precise control through a multi-source sensing network and intelligent equipment. (ii) The edge layer leverages 5G and edge computing to accomplish real-time data processing, 3D dynamic modeling, and safety early warning. (iii) The cloud layer realizes digital planning and intelligent decision-making, based on the industrial Internet platform. The three-layer collaboration forms a “perception–analysis–decision–execution” closed loop. Currently, there are still many challenges in the development of the technology, including the lack of a standardization system, the bottleneck of multi-source heterogeneous data fusion, the lack of a cross-process coordination of the equipment, and the shortage of interdisciplinary talents. Accordingly, this paper focuses on future development trends from four aspects, providing systematic solutions for a safe, efficient, and sustainable mining operation. Technological evolution will accelerate the formation of an intelligent ecosystem characterized by “standard-driven, data-empowered, equipment-autonomous, and human–machine collaboration”. Full article
(This article belongs to the Special Issue Mathematical Modeling and Analysis in Mining Engineering)
Show Figures

Figure 1

32 pages, 1107 KiB  
Review
Advanced Planning Systems in Production Planning Control: An Ethical and Sustainable Perspective in Fashion Sector
by Martina De Giovanni, Mariangela Lazoi, Romeo Bandinelli and Virginia Fani
Appl. Sci. 2025, 15(13), 7589; https://doi.org/10.3390/app15137589 - 7 Jul 2025
Viewed by 488
Abstract
In the shift toward sustainable and resource-efficient manufacturing, Artificial Intelligence (AI) is playing a transformative role in overcoming the limitations of traditional production scheduling methods. This study, based on a Systematic Literature Review (SLR), explores how AI techniques enhance Advanced Planning and Scheduling [...] Read more.
In the shift toward sustainable and resource-efficient manufacturing, Artificial Intelligence (AI) is playing a transformative role in overcoming the limitations of traditional production scheduling methods. This study, based on a Systematic Literature Review (SLR), explores how AI techniques enhance Advanced Planning and Scheduling (APS) systems, particularly under finite-capacity constraints. Traditional scheduling models often overlook real-time resource limitations, leading to inefficiencies in complex and dynamic production environments. AI, with its capabilities in data fusion, pattern recognition, and adaptive learning, enables the development of intelligent, flexible scheduling solutions. The integration of metaheuristic algorithms—especially Ant Colony Optimization (ACO) and hybrid models like GA-ACO—further improves optimization performance by offering high-quality, near-optimal solutions without requiring extensive structural modeling. These AI-powered APS systems enhance scheduling accuracy, reduce lead times, improve resource utilization, and enable the proactive identification of production bottlenecks. Especially relevant in high-variability sectors like fashion, these approaches support Industry 5.0 goals by enabling agile, sustainable, and human-centered manufacturing systems. The findings have been highlighted in a structured framework for AI-based APS systems supported by metaheuristics that compares the Industry 4.0 and Industry 5.0 perspectives. The study offers valuable implications for both academia and industry: academics can gain a synthesized understanding of emerging trends, while practitioners are provided with actionable insights for deploying intelligent planning systems that align with sustainability goals and operational efficiency in modern supply chains. Full article
Show Figures

Figure 1

34 pages, 977 KiB  
Review
Autonomous Cyber-Physical Systems Enabling Smart Positive Energy Districts
by Dimitrios Siakas, Georgios Lampropoulos and Kerstin Siakas
Appl. Sci. 2025, 15(13), 7502; https://doi.org/10.3390/app15137502 - 3 Jul 2025
Viewed by 532
Abstract
The European Union (EU) is striving to achieve its goal of being climate-neutral by 2050. Aligned with the European Green Deal and in search of means to decarbonize its urban environments, the EU advocates for smart positive energy districts (PEDs). PEDs contribute to [...] Read more.
The European Union (EU) is striving to achieve its goal of being climate-neutral by 2050. Aligned with the European Green Deal and in search of means to decarbonize its urban environments, the EU advocates for smart positive energy districts (PEDs). PEDs contribute to the United Nations’ (UN) sustainable development goals (SDGs) of “Sustainable Cities and Communities”, “Affordable and Clean Energy”, and “Climate Action”. PEDs are urban neighborhoods that generate renewable energy to a higher extent than they consume, mainly through the utilization of innovative technologies and renewable energy sources. In accordance with the EU 2050 aim, the PED concept is attracting growing research interest. PEDs can transform existing energy systems and aid in achieving carbon neutrality and sustainable urban development. PED is a novel concept and its implementation is challenging. This study aims to present the emerging technologies enabling the proliferation of PEDs by identifying the main challenges and potential solutions to effective adoption and implementation of PEDs. This paper examines the importance and utilization of cyber-physical systems (CPSs), digital twins (DTs), artificial intelligence (AI), the Internet of Things (IoT), edge computing, and blockchain technologies, which are all fundamental to the creation of PEDs for enhancing energy efficiency, sustainable energy, and user engagement. These systems combine physical infrastructure with digital technologies to create intelligent and autonomous systems to optimize energy production, distribution, and consumption, thus positively contributing to achieving smart and sustainable development. Full article
Show Figures

Figure 1

29 pages, 2891 KiB  
Article
Cybersecurity Risks in EV Mobile Applications: A Comparative Assessment of OEM and Third-Party Solutions
by Bilal Saleem, Alishba Rehman, Muhammad Ali Hassan and Zia Muhammad
World Electr. Veh. J. 2025, 16(7), 364; https://doi.org/10.3390/wevj16070364 - 30 Jun 2025
Viewed by 580
Abstract
As the world accelerates toward a sustainable future with electric vehicles (EVs), smartphone applications have become an indispensable tool for drivers. These applications, developed by both EV manufacturers and third-party developers, offer functionalities such as remote vehicle control, charging station location, and route [...] Read more.
As the world accelerates toward a sustainable future with electric vehicles (EVs), smartphone applications have become an indispensable tool for drivers. These applications, developed by both EV manufacturers and third-party developers, offer functionalities such as remote vehicle control, charging station location, and route planning. However, they also have access to sensitive information, making them potential targets for cyber threats. This paper presents a comprehensive survey of the cybersecurity vulnerabilities, weaknesses, and permissions in these applications. We categorize 20 applications into two groups: those developed by EV manufacturers and those by third parties, and conduct a comparative analysis of their functionalities by performing static and dynamic analysis. Our findings reveal major security flaws such as poor authentication, broken encryption, and insecure communication, among others. The paper also discusses the implications of these vulnerabilities and the risks they pose to users. Furthermore, we analyze 10 permissions and 12 functionalities that are not present in official EV applications and mostly present in third-party apps, leading users to rely on poorly built third-party applications, thereby increasing their attack surface. To address these issues, we propose defensive measures which include 10 CWE AND OWASP top 10 defenses to enhance the security of these applications, ensuring a safe and secure transition to EVs. Full article
Show Figures

Figure 1

22 pages, 4096 KiB  
Review
AI, Optimization, and Human Values: Mapping the Intellectual Landscape of Industry 4.0 to 5.0
by Albérico Travassos Rosário and Ricardo Jorge Gomes Raimundo
Appl. Sci. 2025, 15(13), 7264; https://doi.org/10.3390/app15137264 - 27 Jun 2025
Viewed by 424
Abstract
This study conducts a systematic bibliometric literature review to explore the conceptual and technological transition from Industry 4.0 to Industry 5.0, focusing on the roles of artificial intelligence (AI), optimization, and human values. Applying the PRISMA 2020 protocol, the analysis includes 53 peer-reviewed [...] Read more.
This study conducts a systematic bibliometric literature review to explore the conceptual and technological transition from Industry 4.0 to Industry 5.0, focusing on the roles of artificial intelligence (AI), optimization, and human values. Applying the PRISMA 2020 protocol, the analysis includes 53 peer-reviewed sources from the Scopus database, emphasizing the integration of advanced technologies such as cyber–physical systems, the Internet of Things, collaborative robotics, and explainable AI. While Industry 4.0 is marked by intelligent automation and digital connectivity, Industry 5.0 introduces a human-centric paradigm emphasizing sustainability, resilience, and co-creation. The findings underscore the significance of human–machine collaboration, process personalization, AI education, and ethical governance as foundational pillars of this new industrial era. This review highlights the emerging role of enabling technologies that reconcile technical performance with social and environmental values, promoting a more inclusive and sustainable model for industrial development. Full article
Show Figures

Figure 1

24 pages, 310 KiB  
Article
Technological Adoption Sequences and Sustainable Innovation Performance: A Longitudinal Analysis of Optimal Pathways
by Francisco Gustavo Bautista Carrillo and Daniel Arias-Aranda
Sustainability 2025, 17(13), 5719; https://doi.org/10.3390/su17135719 - 21 Jun 2025
Viewed by 681
Abstract
This study explores how the sequence and timing of Industry 4.0 technology adoption affect sustainable innovation in manufacturing firms. Using longitudinal data from the State Society of Industrial Participations, we track the adoption patterns of eight technologies, including industrial IoT, cloud computing, RFID, [...] Read more.
This study explores how the sequence and timing of Industry 4.0 technology adoption affect sustainable innovation in manufacturing firms. Using longitudinal data from the State Society of Industrial Participations, we track the adoption patterns of eight technologies, including industrial IoT, cloud computing, RFID, machine learning, robotics, additive manufacturing, autonomous robots, and generative AI. Sequence analysis reveals five distinct adoption profiles: data-centric foundations, automation pioneers, holistic integrators, cautious adopters, and product-centric innovators. Our results show that these adoption pathways differentially impact sustainability outcomes such as circular material innovation, energy transition, operational eco-efficiency, and emissions reduction. Mediation analysis indicates that data orchestration capabilities significantly enhance resource productivity in holistic integrators, generative design competencies accelerate biomaterial innovation in product-centric innovators, and cyber-physical integration reduces lifecycle emissions in automation pioneers. By highlighting how temporal complementarities among technologies shape sustainability performance, this research advances dynamic capabilities theory and emphasizes the path-dependent nature of sustainable innovation. The findings provide practical guidance for firms to align digital transformation with sustainability objectives and offer policymakers insights into designing timely support mechanisms for industrial transitions. This work bridges innovation timing with ecological modernization, contributing a new understanding of capability development for sustainable value creation. Full article
36 pages, 480 KiB  
Review
A Systematic Literature Review on Cyber Security and Privacy Risks in MaaS (Mobility-as-a-Service) Systems
by Rahime Belen-Saglam, Haiyue Yuan, Maria Sophia Heering, Ramsha Ashraf and Shujun Li
Information 2025, 16(7), 514; https://doi.org/10.3390/info16070514 - 20 Jun 2025
Viewed by 759
Abstract
Mobility as a Service (MaaS) is anticipated to revolutionize transport by integrating conventional public transport with on-demand and shared services. This innovation promises enhanced convenience, flexibility, and sustainability in urban mobility, drawing interest from both researchers and industry. However, those systems heavily rely [...] Read more.
Mobility as a Service (MaaS) is anticipated to revolutionize transport by integrating conventional public transport with on-demand and shared services. This innovation promises enhanced convenience, flexibility, and sustainability in urban mobility, drawing interest from both researchers and industry. However, those systems heavily rely on the collection and sharing of personal data among various stakeholders, introducing security and privacy risks. To understand the scale and scope of cyber security and privacy concerns and risks associated with MaaS, we conducted a systematic literature review (SLR) covering 87 relevant research papers published between 2017 and April 2025. Our review represents the most comprehensive examination focusing on cyber security and privacy issues of MaaS systems. Our findings reveal three themes discussed within the MaaS literature: (i) cyber security and privacy risks inherent to MaaS systems, alongside proposed solutions to mitigate such risks; (ii) users’ concerns about these risks and how they affect MaaS adoption; and (iii) laws and policies that govern cyber security and privacy aspects of MaaS systems and solutions. As such, our research serves to not only inform MaaS service providers and users but also advise policymakers and legislators on the potential risks involved and the regulatory measures required to address them. Full article
Show Figures

Figure 1

25 pages, 3539 KiB  
Article
Deceptive Cyber-Resilience in PV Grids: Digital Twin-Assisted Optimization Against Cyber-Physical Attacks
by Bo Li, Xin Jin, Tingjie Ba, Tingzhe Pan, En Wang and Zhiming Gu
Energies 2025, 18(12), 3145; https://doi.org/10.3390/en18123145 - 16 Jun 2025
Viewed by 400
Abstract
The increasing integration of photovoltaic (PV) systems into smart grids introduces new cybersecurity vulnerabilities, particularly against cyber-physical attacks that can manipulate grid operations and disrupt renewable energy generation. This paper proposes a multi-layered cyber-resilient PV optimization framework, leveraging digital twin-based deception, reinforcement learning-driven [...] Read more.
The increasing integration of photovoltaic (PV) systems into smart grids introduces new cybersecurity vulnerabilities, particularly against cyber-physical attacks that can manipulate grid operations and disrupt renewable energy generation. This paper proposes a multi-layered cyber-resilient PV optimization framework, leveraging digital twin-based deception, reinforcement learning-driven cyber defense, and blockchain authentication to enhance grid security and operational efficiency. A deceptive cyber-defense mechanism is developed using digital twin technology to mislead adversaries, dynamically generating synthetic PV operational data to divert attack focus away from real assets. A deep reinforcement learning (DRL)-based defense model optimizes adaptive attack mitigation strategies, ensuring real-time response to evolving cyber threats. Blockchain authentication is incorporated to prevent unauthorized data manipulation and secure system integrity. The proposed framework is modeled as a multi-objective optimization problem, balancing attack diversion efficiency, system resilience, computational overhead, and energy dispatch efficiency. A non-dominated sorting genetic algorithm (NSGA-III) is employed to achieve Pareto-optimal solutions, ensuring high system resilience while minimizing computational burdens. Extensive case studies on a realistic PV-integrated smart grid test system demonstrate that the framework achieves an attack diversion efficiency of up to 94.2%, improves cyberattack detection rates to 98.5%, and maintains an energy dispatch efficiency above 96.2%, even under coordinated cyber threats. Furthermore, computational overhead is analyzed to ensure that security interventions do not impose excessive delays on grid operation. The results validate that digital twin-based deception, reinforcement learning, and blockchain authentication can significantly enhance cyber-resilience in PV-integrated smart grids. This research provides a scalable and adaptive cybersecurity framework that can be applied to future renewable energy systems, ensuring grid security, operational stability, and sustainable energy management under adversarial conditions. Full article
(This article belongs to the Special Issue Big Data Analysis and Application in Power System)
Show Figures

Figure 1

13 pages, 1400 KiB  
Communication
Human and Humanoid-in-the-Loop (HHitL) Ecosystem: An Industry 5.0 Perspective
by Mahdi Sadeqi Bajestani, Mohammad Mahruf Mahdi, Duhwan Mun and Duck Bong Kim
Machines 2025, 13(6), 510; https://doi.org/10.3390/machines13060510 - 12 Jun 2025
Viewed by 732
Abstract
As manufacturing transitions into the era of Industry 5.0, the demand for systems that are not only intelligent but also human-centric, resilient, and sustainable is becoming increasingly critical. This paper introduces the Human and Humanoid-in-the-Loop (HHitL) ecosystem, a novel framework that integrates both [...] Read more.
As manufacturing transitions into the era of Industry 5.0, the demand for systems that are not only intelligent but also human-centric, resilient, and sustainable is becoming increasingly critical. This paper introduces the Human and Humanoid-in-the-Loop (HHitL) ecosystem, a novel framework that integrates both humans and humanoid robots as collaborative agents within cyber–physical manufacturing environments. Building on the foundational principles of Industry 5.0, the paper presents a 6P architecture that includes participation, purpose, preservation, physical assets, persistence, and projection. The core features of this ecosystem, including anthropomorphism, perceptual intelligence, cognitive adaptability, and dexterity/locomotion, are identified, and their enablers are also introduced. This work presents a forward-looking vision for next-generation manufacturing ecosystems where human values and robotic capabilities converge to form adaptive, ethical, and high-performance systems. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

33 pages, 648 KiB  
Review
Impact of EU Laws on AI Adoption in Smart Grids: A Review of Regulatory Barriers, Technological Challenges, and Stakeholder Benefits
by Bo Nørregaard Jørgensen, Saraswathy Shamini Gunasekaran and Zheng Grace Ma
Energies 2025, 18(12), 3002; https://doi.org/10.3390/en18123002 - 6 Jun 2025
Viewed by 986
Abstract
This scoping review examines the evolving landscape of European Union (EU) legislation, as it pertains to the implementation of artificial intelligence (AI) in smart grid systems. By outlining the current regulatory landscape, including the General Data Protection Regulation (GDPR), the EU Artificial Intelligence [...] Read more.
This scoping review examines the evolving landscape of European Union (EU) legislation, as it pertains to the implementation of artificial intelligence (AI) in smart grid systems. By outlining the current regulatory landscape, including the General Data Protection Regulation (GDPR), the EU Artificial Intelligence Act, the EU Data Act, the EU Data Governance Act, the ePrivacy framework, the Network and Information Systems (NIS2) Directive, the EU Cyber Resilience Act, the EU Network Code on Cybersecurity for the electricity sector, and the EU Cybersecurity Act, it highlights both constraints and opportunities for stakeholders, including energy utilities, technology providers, and end-users. The analysis delves into regulatory barriers such as data protection requirements, algorithmic transparency mandates, and liability concerns that can limit the scope and scale of AI deployment. Technological challenges are also addressed, ranging from the integration of distributed energy resources and real-time data processing to cybersecurity and standardization issues. Despite these challenges, this review emphasizes how compliance with EU laws may ultimately boost consumer trust, promote ethical AI usage, and streamline the roll-out of robust, scalable smart grid solutions. The paper further explores stakeholder benefits, including enhanced grid stability, cost reductions through automation, and improved sustainability targets aligned with the EU’s broader energy and climate strategies. By synthesizing these findings, the review offers insights into policy gaps, technological enablers, and collaborative frameworks critical for accelerating AI-driven innovation in the energy sector, helping stakeholders navigate a complex regulatory environment while reaping its potential rewards. Full article
Show Figures

Figure 1

23 pages, 377 KiB  
Article
Open Source as the Foundation of Safety and Security in Logistics Digital Transformation
by Mihael Plevnik and Roman Gumzej
Systems 2025, 13(6), 424; https://doi.org/10.3390/systems13060424 - 1 Jun 2025
Viewed by 875
Abstract
In this article, we explored how open-source software serves as a strategic enabler for safety and security in the digital transformation of logistics systems. Open source is examined across multiple dimensions, including transparency, community collaboration, digital sovereignty, and long-term infrastructure resilience. The analysis [...] Read more.
In this article, we explored how open-source software serves as a strategic enabler for safety and security in the digital transformation of logistics systems. Open source is examined across multiple dimensions, including transparency, community collaboration, digital sovereignty, and long-term infrastructure resilience. The analysis focuses on the logistics domain, where interoperability, critical infrastructure protection, and supply chain continuity are essential. Key elements of open-source development—such as modular architectures, legal and licensing frameworks, and peer-reviewed codebases—support rapid vulnerability management, increased transparency, and the creation of sustainable digital ecosystems. Emphasis is placed on the role of open-source models in strengthening institutional trust, reducing dependency on proprietary vendors, and enhancing responsiveness to cyber threats. Our findings indicate that open source is not merely a technical alternative, but a strategic decision with legal, economic, and political implications, shaping secure, sovereign, and adaptive digital environments—particularly in mission-critical sectors. Full article
Back to TopTop