Deceptive Cyber-Resilience in PV Grids: Digital Twin-Assisted Optimization Against Cyber-Physical Attacks
Abstract
:1. Introduction
2. Problem Formulation
3. The Proposed Method
4. Case Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bukar, A.L.; Chaitusaney, S.; Kawabe, K. Optimal design of on-site PV-based battery grid-tied green hydrogen production system. Energy Convers. Manag. 2024, 307, 118378. [Google Scholar] [CrossRef]
- Feng, C.; Shao, L.; Wang, J.; Zhang, Y.; Wen, F. Short-term Load Forecasting of Distribution Transformer Supply Zones Based on Federated Model-Agnostic Meta Learning. IEEE Trans. Power Syst. 2024, 40, 31–45. [Google Scholar] [CrossRef]
- Zhao, A.P.; Alhazmi, M.; Huo, D.; Li, W. Psychological modeling for community energy systems. Energy Rep. 2025, 13, 2219–2229. [Google Scholar] [CrossRef]
- Solat, A.; Gharehpetian, G.B.; Naderi, M.S.; Anvari-Moghaddam, A. On the control of microgrids against cyber-attacks: A review of methods and applications. Appl. Energy 2024, 353, 122037. [Google Scholar] [CrossRef]
- Alasali, F.; Itradat, A.; Ghalyon, S.A.; Abudayyeh, M.; El-Naily, N.; Hayajneh, A.M.; AlMajali, A. Smart Grid Resilience for Grid-Connected PV and Protection Systems under Cyber Threats. Smart Cities 2024, 7, 51–77. [Google Scholar] [CrossRef]
- Ju, X.; Hamon, F.P.; Wen, G.; Kanfar, R.; Araya-Polo, M.; Tchelepi, H.A. Learning CO2 plume migration in faulted reservoirs with Graph Neural Networks. Comput. Geosci. 2024, 193, 105711. [Google Scholar] [CrossRef]
- Manzolini, G.; Fusco, A.; Gioffrè, D.; Matrone, S.; Ramaschi, R.; Saleptsis, M.; Simonetti, R.; Sobic, F.; Wood, M.J.; Ogliari, E.; et al. Impact of PV and EV Forecasting in the Operation of a Microgrid. Forecasting 2024, 6, 591–615. [Google Scholar] [CrossRef]
- Prabawa, P.; Choi, D.-H. Distributionally robust PV planning and curtailment considering cyber attacks on electric vehicle charging under PV/load uncertainties. Energy Rep. 2024, 11, 3436–3449. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, Y.; Li, J. Aggregator-Network Coordinated Peer-to-Peer Multi-Energy Trading via Adaptive Robust Stochastic Optimization. IEEE Trans. Power Syst. 2024, 39, 7124–7137. [Google Scholar] [CrossRef]
- Zhao, A.P.; Li, S.; Li, Z.; Wang, Z.; Fei, X.; Hu, Z.; Alhazmi, M.; Yan, X.; Wu, C.; Lu, S.; et al. Electric Vehicle Charging Planning: A Complex Systems Perspective. IEEE Trans. Smart Grid 2025, 16, 754–772. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, J.; Luo, F.; Weller, S.R.; Dong, Z.Y. A Review of False Data Injection Attacks Against Modern Power Systems. IEEE Trans. Smart Grid 2017, 8, 1630–1638. [Google Scholar] [CrossRef]
- Tajer, A. False Data Injection Attacks in Electricity Markets by Limited Adversaries: Stochastic Robustness. IEEE Trans. Smart Grid 2019, 10, 128–138. [Google Scholar] [CrossRef]
- Wang, Q.; Tai, W.; Tang, Y.; Ni, M.; You, S. A two-layer game theoretical attack-defense model for a false data injection attack against power systems. Int. J. Electr. Power Energy Syst. 2019, 104, 169–177. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, P.; Xun, P.; Liu, B.; Kang, W.; Xiong, Y.; Shi, W. CPMTD: Cyber-physical moving target defense for hardening the security of power system against false data injected attack. Comput. Secur. 2021, 111, 102465. [Google Scholar] [CrossRef]
- Yi, N.; Wang, Q.; Yan, L.; Tang, Y.; Xu, J. A multi-stage game model for the false data injection attack from attacker’s perspective. Sustainable Energy, Grids Netw. 2021, 28, 100541. [Google Scholar] [CrossRef]
- Sun, S.; Hossain-McKenzie, S.; Al Homoud, L.; Haque, K.A.; Goulart, A.; Davis, K. An AI-based Approach for Scalable Cyber-Physical Optimal Response in Power Systems. In Proceedings of the 2024 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 12–13 February 2024; pp. 1–6. [Google Scholar]
- Tian, J.; Wang, B.; Li, J.; Konstantinou, C. Datadriven false data injection attacks against cyber-physical power systems. Comput. Secur. 2022, 121, 102836. [Google Scholar] [CrossRef]
- Sahu, A.; Mao, Z.; Wlazlo, P.; Huang, H.; Davis, K.; Goulart, A.; Zonouz, S. Multi-Source Multi-Domain Data Fusion for Cyberattack Detection in Power Systems. IEEE Access 2021, 9, 119118–119138. [Google Scholar] [CrossRef]
- Basnet, M.; Ali, M.H. Deep Reinforcement Learning-Driven Mitigation of Adverse Effects of Cyber-Attacks on Electric Vehicle Charging Station. Energies 2023, 16, 7296. [Google Scholar] [CrossRef]
- Hou, J.; Hu, C.; Lei, S.; Hou, Y. Cyber Resilience of Power Electronics-Enabled Power Systems: A Review. Renew. Sustain. Energy Rev. 2024, 189, 114036. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, L. Resilient microgrid modeling in Digital Twin considering demand response and landscape design of renewable energy. Sustain. Energy Technol. Assess. 2024, 64, 103628. [Google Scholar] [CrossRef]
- Sahoo, S.; Yang, Y.; Blaabjerg, F. Resilient Synchronization Strategy for AC Microgrids Under Cyber Attacks. IEEE Trans. Power Electron. 2021, 36, 73–77. [Google Scholar] [CrossRef]
- Bassey, K.E.; Opoku-Boateng, J.; Antwi, B.O.; Ntiakoh, A. Economic impact of digital twins on renewable energy investments. Eng. Sci. Technol. J. 2024, 5, 2232–2247. [Google Scholar] [CrossRef]
- Islam, M.Z.; Lin, Y.; Vokkarane, V.M.; Venkataramanan, V. Cyber-Physical Cascading Failure and Resilience of Power Grid: A Comprehensive Review. Front. Energy Res. 2023, 11, 1095303. [Google Scholar] [CrossRef]
- Xiang, Y.; Lu, Y.; Liu, J. Deep reinforcement learning based topology-aware voltage regulation of distribution networks with distributed energy storage. Appl. Energy 2023, 332, 120510. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
Real power output of PV unit i at time t (kW) | |
Deceptive digital twin power output at time t (kW) | |
Total system load demand at time t (kW) | |
Power supplied by energy storage systems (kW) | |
Power loss due to network impedance at time t (kW) | |
Real voltage of PV unit i at time t (V) | |
Deceptive digital twin voltage injection at time t (V) | |
Reference voltage for system stability (V) | |
Forecasted power output of PV unit i at time t (kW) | |
Acceptable load forecasting error bound (kW) | |
Measured power output of PV unit i at time t (kW) | |
Expected power output of PV unit i at time t (kW) | |
Cyberattack detection threshold | |
Entropy of real power dispatch information (bits) | |
Entropy of deceptive digital twin operations (bits) | |
Number of blockchain hash computations at time t | |
Quantum encryption scaling factor | |
Defender’s probability of selecting strategy at node i | |
Attacker’s probability of selecting strategy at node i | |
System state at time t | |
Action selected by reinforcement learning agent | |
State transition probability function | |
Q-value function in reinforcement learning | |
Reward function for defense reinforcement learning | |
Probability of an attack targeting digital twin j | |
Computational cost of digital twin operations | |
Computational cost of blockchain authentication | |
Grid observability metric | |
Adversarial engagement with digital twin j | |
Cyber-resilience score of the PV-integrated smart grid | |
Energy efficiency loss function | |
Computational overhead cost function | |
Security loss function | |
Blockchain authentication success probability |
Scenario | PV Stability | Detection | Dispatch | Comp. | Resilience |
---|---|---|---|---|---|
(kW dev.) | (%) | (%) | Overhead (ms) | Score (0–100) | |
Baseline (No Attack) | 5.2 | 0.0 | 97.8 | 5 | 85.2 |
Under Attack (No Def.) | 38.7 | 45.2 | 68.4 | 0 | 45.3 |
Digital Twin Defense | 12.4 | 78.6 | 85.1 | 42 | 70.1 |
RL-Based Cyber Defense | 9.1 | 92.3 | 91.6 | 78 | 88.5 |
Full Cyber-Resilient Opt. | 6.8 | 98.5 | 96.2 | 120 | 94.8 |
Scenario | Power Loss | Response | Blockchain | Attack | RL Adapt. |
---|---|---|---|---|---|
(MW) | Time (s) | Success (%) | Diversion (%) | Time (s) | |
Baseline (No Attack) | 0.05 | 0.0 | 99.9 | 0.0 | 0.0 |
Under Attack (No Def.) | 1.25 | 25.4 | 65.2 | 0.0 | 0.0 |
Digital Twin Defense | 0.48 | 12.3 | 85.4 | 65.8 | 0.0 |
RL-Based Cyber Defense | 0.22 | 7.9 | 92.7 | 81.4 | 22.3 |
Full Cyber-Resilient Opt. | 0.11 | 4.5 | 98.3 | 94.2 | 18.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Jin, X.; Ba, T.; Pan, T.; Wang, E.; Gu, Z. Deceptive Cyber-Resilience in PV Grids: Digital Twin-Assisted Optimization Against Cyber-Physical Attacks. Energies 2025, 18, 3145. https://doi.org/10.3390/en18123145
Li B, Jin X, Ba T, Pan T, Wang E, Gu Z. Deceptive Cyber-Resilience in PV Grids: Digital Twin-Assisted Optimization Against Cyber-Physical Attacks. Energies. 2025; 18(12):3145. https://doi.org/10.3390/en18123145
Chicago/Turabian StyleLi, Bo, Xin Jin, Tingjie Ba, Tingzhe Pan, En Wang, and Zhiming Gu. 2025. "Deceptive Cyber-Resilience in PV Grids: Digital Twin-Assisted Optimization Against Cyber-Physical Attacks" Energies 18, no. 12: 3145. https://doi.org/10.3390/en18123145
APA StyleLi, B., Jin, X., Ba, T., Pan, T., Wang, E., & Gu, Z. (2025). Deceptive Cyber-Resilience in PV Grids: Digital Twin-Assisted Optimization Against Cyber-Physical Attacks. Energies, 18(12), 3145. https://doi.org/10.3390/en18123145