Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = custom-made medical device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2673 KiB  
Article
Process Parameters Optimization and Mechanical Properties of Additively Manufactured Ankle–Foot Orthoses Based on Polypropylene
by Sahar Swesi, Mohamed Yousfi, Nicolas Tardif and Abder Banoune
Polymers 2025, 17(14), 1921; https://doi.org/10.3390/polym17141921 - 11 Jul 2025
Viewed by 424
Abstract
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent [...] Read more.
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent balance between flexibility, chemical resistance, biocompatibility, and long-term durability. However, Additive Manufacturing (AM) of AFOs based on PP remains a major challenge due to its limited bed adhesion and high shrinkage, especially for making large parts such as AFOs. The primary innovation of the present study lies in the optimization of FFF 3D printing parameters for the fabrication of functional, patient-specific orthoses using PP, a material still underutilized in the AM of medical devices. Firstly, a thorough thermomechanical characterization was conducted, allowing the implementation of a (thermo-)elastic material model for the used PP filament. Thereafter, a Taguchi design of experiments (DOE) was established to study the influence of several printing parameters (extrusion temperature, printing speed, layer thickness, infill density, infill pattern, and part orientation) on the mechanical properties of 3D-printed specimens. Three-point bending tests were conducted to evaluate the strength and stiffness of the samples, while additional tensile tests were performed on the 3D-printed orthoses using a home-made innovative device to validate the optimal configurations. The results showed that the maximum flexural modulus of 3D-printed specimens was achieved when the printing speed was around 50 mm/s. The most significant parameter for mechanical performance and reduction in printing time was shown to be infill density, contributing 73.2% to maximum stress and 75.2% to Interlaminar Shear Strength (ILSS). Finally, the applicability of the finite element method (FEM) to simulate the FFF process-induced deflections, part distortion (warpage), and residual stresses in 3D-printed orthoses was investigated using a numerical simulation tool (Digimat-AM®). The combination of Taguchi DOE with Digimat-AM for polypropylene AFOs highlighted that the 90° orientation appeared to be the most suitable configuration, as it minimizes deformation and von Mises stress, ensuring improved quality and robustness of the printed orthoses. The findings from this study contribute by providing a reliable method for printing PP parts with improved mechanical performance, thereby opening new opportunities for its use in medical-grade additive manufacturing. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Figure 1

8 pages, 429 KiB  
Article
Using a Standard Infrarenal Bifurcated Device as a Quadruple-Fenestrated Physician-Modified Endograft for Complex Abdominal Aortic Aneurysms—A Simulation Study
by Artúr Hüttl, András Szentiványi, Ákos Bérczi, Bendegúz Juhos, Fanni Éva Szablics, Péter Osztrogonácz, Judit Csőre, Sarolta Borzsák and Csaba Csobay-Novák
J. Clin. Med. 2025, 14(12), 4249; https://doi.org/10.3390/jcm14124249 - 15 Jun 2025
Viewed by 501
Abstract
Background/Objectives: We sought to demonstrate the versatility and economy of physician-modified endograft (PMEG) fenestrated endovascular aortic repair (FEVAR) based on the Treo (Terumo Aortic) platform for patients referred for custom-made device (CMD) FEVAR due to a complex abdominal aortic aneurysm (CAAA). Endovascular [...] Read more.
Background/Objectives: We sought to demonstrate the versatility and economy of physician-modified endograft (PMEG) fenestrated endovascular aortic repair (FEVAR) based on the Treo (Terumo Aortic) platform for patients referred for custom-made device (CMD) FEVAR due to a complex abdominal aortic aneurysm (CAAA). Endovascular planning was performed utilizing a standardized design incorporating all visceral arteries with a low supra-celiac landing zone. The pure cost of the aortic components was compared between the PMEG and CMD designs. Methods: A total of 39 consecutive patients treated with CMD FEVAR due to a CAAA between September 2018 and December 2023 were recruited at a tertiary vascular center for a retrospective evaluation. Endovascular planning was performed on readily available computed tomography angiography (CTA) datasets using 3Mensio Vascular (Pie Medical Imaging) software. The actual cost of the major components was compared between the implanted CMD platform produced by Cook and the planned Treo-based PMEG repair. Results: A total of 155 fenestrations were planned on 3 triple-, 34 quadruple-, and two quintuple-fenestrated devices. The 90 mm distance between the proximal edge and the flow divider of the 120 mm long main body of the Treo graft allowed for the placement of all necessary fenestrations of the target arteries without the need to reduce the 3 cm supra-celiac landing zone while also preserving a safety distance of >1 cm to the flow divider. The costs of the components were EUR 33896 for CMD and EUR 8878 for a PMEG. Conclusions: This retrospective study suggests that a quadruple-fenestrated PMEG based on the Treo bifurcation is a highly versatile alternative with a significant price advantage over custom-made devices for the treatment of complex abdominal aortic aneurysms. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

10 pages, 1124 KiB  
Article
Energetics of a Novel 3D-Printed Custom Ankle Foot Orthosis in a Population of Individuals with Foot Drop: A Pilot Study
by Paolo Caravaggi, Giulia Rogati, Massimiliano Baleani, Roberta Fognani, Luca Zamagni, Maurizio Ortolani, Alessandro Zomparelli, Franco Cevolini, Zimi Sawacha and Alberto Leardini
Appl. Sci. 2025, 15(11), 5885; https://doi.org/10.3390/app15115885 - 23 May 2025
Viewed by 599
Abstract
Passive Dynamic Ankle–Foot Orthoses (PD-AFOs) are medical devices prescribed to individuals with foot drop, a condition characterized by weakness of the ankle dorsiflexor muscles. PD-AFOs can store and release energy during the stance phase of the gait cycle, while supporting the foot in [...] Read more.
Passive Dynamic Ankle–Foot Orthoses (PD-AFOs) are medical devices prescribed to individuals with foot drop, a condition characterized by weakness of the ankle dorsiflexor muscles. PD-AFOs can store and release energy during the stance phase of the gait cycle, while supporting the foot in the swing phase. This study aimed at estimating the energetics of a novel fiberglass-reinforced polyamide custom PD-AFO in a population of mild foot drop patients. Eight PD-AFOs were designed and 3D-printed via selective laser sintering for eight participants with a unilateral foot drop condition. Lower limb kinematics and AFO flexion/extension were recorded during comfortable walking speed via skin marker-based stereophotogrammetry. The stiffness of each AFO was measured via an ad hoc experimental setup. The elastic work performed by the PD-AFO during gait was calculated as the dot product of the calf-shell resisting moment and the rotation angle. The average maximum energy stored by the calf-shell across all PD-AFOs was 0.013 ± 0.005 J/kg. According to this study, 3D-printed custom PD-AFOs made with fiberglass-reinforced polyamide can store some elastic energy, which is released to the ankle during push-off. Further studies should be conducted to assess the effect of this energy return mechanism in improving the gait of individuals with deficits of the ankle plantarflexor muscles. Full article
(This article belongs to the Special Issue 3D Printing Technologies in Biomedical Engineering)
Show Figures

Figure 1

21 pages, 4985 KiB  
Article
Simulation of a Custom-Made Temporomandibular Joint—An Academic View on an Industrial Workflow
by Annchristin Andres, Kerstin Wickert, Elena Gneiting, Franziska Binmoeller, Stefan Diebels and Michael Roland
Bioengineering 2025, 12(5), 545; https://doi.org/10.3390/bioengineering12050545 - 20 May 2025
Viewed by 889
Abstract
Temporomandibular joint replacement is a critical intervention for severe temporomandibular joint disorders, enhancing pain levels, jaw function and overall quality of life. In this study, we compare two finite element method-based simulation workflows from both academic and industrial perspectives, focusing on a patient-specific [...] Read more.
Temporomandibular joint replacement is a critical intervention for severe temporomandibular joint disorders, enhancing pain levels, jaw function and overall quality of life. In this study, we compare two finite element method-based simulation workflows from both academic and industrial perspectives, focusing on a patient-specific case involving a custom-made temporomandibular joint prosthesis. Using computed tomography data and computer-aided design data, we generated different 3D models and performed mechanical testing, including wear and static compression tests. Our results indicate that the academic workflow, which is retrospective, purely image-based and applied post-operatively, produced peak stress values within 9–20% of those obtained from the industrial workflow. The industrial workflow is prospective, pre-operative, computer-aided design-based and guided by stringent regulatory standards and approval protocols. Observed differences between workflows were attributed primarily to distinct modelling assumptions, simplifications and constraints inherent in each method. To explicitly quantify these differences, multiple additional models were generated within the academic workflow using partial data from the industrial process, revealing specific sources of variation in stress distribution and implant performance. The findings underscore the potential of patient-specific simulations not only to refine temporomandibular joint prosthesis design and enhance patient outcomes, but also to highlight the interplay between academic research methodologies and industrial standards in the development of medical devices. Full article
Show Figures

Figure 1

10 pages, 1226 KiB  
Article
Maxillomandibular Advancement with the Use of Virtual Surgical Planning and the CAD/CAM Technology in OSA Surgery: Volumetric Analysis of the Posterior Airway Space
by Eleonora Segna, Funda Goker, Giulia Tirelli, Massimo Del Fabbro, Aldo Bruno Giannì, Giada Anna Beltramini and Diego Sergio Rossi
Medicina 2025, 61(2), 179; https://doi.org/10.3390/medicina61020179 - 22 Jan 2025
Viewed by 1879
Abstract
Background and Objectives: Obstructive sleep apnea is an extremely diffuse pathology that, if left untreated, can lead to very serious cardiovascular consequences. The primary goal of treatment is to maintain airflow in the upper airway tract, which can be obtained thanks to [...] Read more.
Background and Objectives: Obstructive sleep apnea is an extremely diffuse pathology that, if left untreated, can lead to very serious cardiovascular consequences. The primary goal of treatment is to maintain airflow in the upper airway tract, which can be obtained thanks to orthognathic surgery such as maxillo-mandibular advancement (MMA). This procedure increases the volume of the posterior airway space (PAS)—a parameter considered fundamental in OSA physiology. However, the correlation between the degree of advancement, the volume increase, and the clinical improvement in OSA is not yet clear, even in patients who undergo virtual surgical planning. Aiming to test the correlation of these parameters and the role of PAS volume changes, we present our pre- and post-operative volumetric analysis of the PAS using cone beam computed tomography (CBCT) following CAD/CAM-assisted maxillomandibular advancement. Materials and Methods: We collected information from patients who underwent MMA for moderate or severe OSA, planned virtually with custom-made devices, between 2020 and 2022 at the Maxillofacial Surgery and Odontostomatology Unit of the Policlinico Hospital in Milan. The degree of mandibular advancement (pogonion antero-posterior advancement) was noted. All patients underwent pre- and post-operative CBCT and pre- and post-operative polysomnography to measure the Apnea–Hypopnea Index (AHI) parameters. Both exams were performed within six months before and after surgery. The surgeries were planned virtually along with the production of custom-made devices (cutting guides and mandibular osteosynthesis plates). Volumetric analysis of the PAS was performed pre- and post-CBCT images using medical segmentation software (Mimics, Materialise, Mimcs 26.0). Results: Ten patients (nine men and one woman) with a mean age of 51 years were included in this study. The mean pogonion advancement was 14.5 mm, ranging from 13.8 to 15.6. The mean pre-surgical AHI was 52.31 events/h, while the mean post-surgical AHI was 5.94 events/h (SD 5.34). The improvement in AHI was statistically significant (Wilcoxon matched-pairs signed-rank test, p value 0.004). The mean pre-surgical PAS volume was 8933 mm3, while the mean post-surgical volume was 10,609 mm3. In 8 out of 10 patients, the volume increased, with a mean increase of 2640 mm3 (max. 5183, min. 951), corresponding to a percentage increase variation ranging from 78% to 6%. In two patients, the volume decreased by 1591 (−16%) and 2767 mm3 (−31%), respectively. The difference between pre- and post-operative results was not statistically significant (paired t-test, p value 0.033). Conclusions: The results obtained confirm the efficacy of virtually planned MMA performed with custom-made devices in OSA therapy. However, they also show that PAS volume should not be used as a comprehensive parameter for OSA treatment evaluation because it does not always have a positive correlation with advancement and AHI. Full article
(This article belongs to the Special Issue Challenges and Features Facing Contemporary Orthognathic Surgery)
Show Figures

Figure 1

19 pages, 3744 KiB  
Article
In-House Fabrication and Validation of 3D-Printed Custom-Made Medical Devices for Planning and Simulation of Peripheral Endovascular Therapies
by Arianna Mersanne, Ruben Foresti, Chiara Martini, Cristina Caffarra Malvezzi, Giulia Rossi, Anna Fornasari, Massimo De Filippo, Antonio Freyrie and Paolo Perini
Diagnostics 2025, 15(1), 8; https://doi.org/10.3390/diagnostics15010008 - 25 Dec 2024
Cited by 1 | Viewed by 1104
Abstract
Objectives: This study aims to develop and validate a standardized methodology for creating high-fidelity, custom-made, patient-specific 3D-printed vascular models that serve as tools for preoperative planning and training in the endovascular treatment of peripheral artery disease (PAD). Methods: Ten custom-made 3D-printed vascular models [...] Read more.
Objectives: This study aims to develop and validate a standardized methodology for creating high-fidelity, custom-made, patient-specific 3D-printed vascular models that serve as tools for preoperative planning and training in the endovascular treatment of peripheral artery disease (PAD). Methods: Ten custom-made 3D-printed vascular models were produced using computed tomography angiography (CTA) scans of ten patients diagnosed with PAD. CTA images were analyzed using Syngo.via by a specialist to formulate a medical prescription that guided the model’s creation. The CTA data were then processed in OsiriX MD to generate the .STL file, which is further refined in a Meshmixer. Stereolithography (SLA) 3D printing technology was employed, utilizing either flexible or rigid materials. The dimensional accuracy of the models was evaluated by comparing their CT scan images with the corresponding patient data, using OsiriX MD. Additionally, both flexible and rigid models were evaluated by eight vascular surgeons during simulations in an in-house-designed setup, assessing both the technical aspects and operator perceptions of the simulation. Results: Each model took approximately 21.5 h to fabricate, costing €140 for flexible and €165 for rigid materials. Bland–Alman plots revealed a strong agreement between the 3D models and patient anatomy, with outliers ranging from 4.3% to 6.9%. Simulations showed that rigid models performed better in guidewire navigation and catheter stability, while flexible models offered improved transparency and lesion treatment. Surgeons confirmed the models’ realism and utility. Conclusions: The study highlights the cost-efficient, high-fidelity production of 3D-printed vascular models, emphasizing their potential to enhance training and planning in endovascular surgery. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

16 pages, 1752 KiB  
Article
Custom-Made Device (CMD) for the Repair of Thoraco-Abdominal Aneurysm (TAA): Mid-Long Term Outcomes from a Single Southeast Asian Centre Experience in Singapore
by Nick Zhi Peng Ng, Jolyn Hui Qing Pang, Charyl Jia Qi Yap, Victor Tar Toong Chao, Kiang Hiong Tay and Tze Tec Chong
J. Clin. Med. 2024, 13(20), 6145; https://doi.org/10.3390/jcm13206145 - 15 Oct 2024
Cited by 1 | Viewed by 1460
Abstract
Introduction: Given the high risk of peri-operative morbidity and mortality associated with open repair, endovascular repair for thoraco-abdominal aneurysms is increasingly performed. This study aims to describe mid to long-term results for patients who were treated with COOK Custom-Made Endograft Device at a [...] Read more.
Introduction: Given the high risk of peri-operative morbidity and mortality associated with open repair, endovascular repair for thoraco-abdominal aneurysms is increasingly performed. This study aims to describe mid to long-term results for patients who were treated with COOK Custom-Made Endograft Device at a single Southeast Asian tertiary centre. Methods: Mid to long-term results of patients treated from 2012 to 2022 were retrospectively reviewed. Indications for treatment were aortic diameter > 5.5 cm, enlargement > 5 mm in 6 months or high-risk morphology. Clinical, operative, early to late complications and reintervention details were captured. The endpoints were technical success, primary patency and primary assisted patency. Results: Electronic medical records of 29 consecutive patients (64.4 ± 1.6 years old; 26/29 males 89.6%) were reviewed. 24/29 (83%) were hypertensive, and 20/29 (69%) were smokers. The mean diameter was 5.5 cm, and the majority were treated for Crawford type IV (19/29, 65.5%). Endograft deployment was 100%. Catheterisation of fenestration was successful in 109/116 (94%). 30-day mortality and morbidity were observed in 12/29 (41%), for which access site complications were most common. No significant haemorrhage or graft explant was recorded. The mean follow-up period was 32.4 months (range 1–108 months). Primary patency was 92.9% (95% CI: 83.8–100.0) at 6 months and decreased to 77.7% (95% CI: 63.4–95.2) at 24 months. Sac shrinkage or stability was noted in 17/29 (58.6%). Re-intervention was performed in 9/29 (31%) for limb occlusion (2/9, 22.2%), renal artery stent occlusion (1/9, 11.1%) and endoleaks (6/9, 66.6%). Assisted patency was maintained at 100% for 12 months before decreasing to 66.7% (95% CI: 37.9–100.0) at 24 months. Conclusions: The study reports the first mid-long-term result in this region, though limited by the sample size. Re-intervention at 30% suggests that disease and procedures remain challenging, emphasising the need to assimilate lessons and experience at high-volume centres. Full article
(This article belongs to the Special Issue Clinical Advances in Aortic Disease and Revascularization)
Show Figures

Figure 1

10 pages, 2527 KiB  
Article
A Novel Design of an Oral Appliance for Monitoring Electromyograms of the Genioglossus Muscle in Obstructive Sleep Apnea Syndrome
by Thamer Y. Marghalani, Ruwaa M. Salamah and Haitham M. Alangari
Life 2024, 14(8), 952; https://doi.org/10.3390/life14080952 - 29 Jul 2024
Cited by 1 | Viewed by 2768
Abstract
Obstructive sleep apnea (OSA) is a prevalent source of sleep-disordered breathing. OSA is most commonly associated with dysfunctions in the genioglossus (GG) muscle. In this study, we present the first version of a medical device that produces an electromyogram (EMG) of the GG. [...] Read more.
Obstructive sleep apnea (OSA) is a prevalent source of sleep-disordered breathing. OSA is most commonly associated with dysfunctions in the genioglossus (GG) muscle. In this study, we present the first version of a medical device that produces an electromyogram (EMG) of the GG. The prototype is composed of a (custom-made) 3D-printed mouthpiece. Impressions were taken for the lower arch and scanned with a lab scanner to be converted into digital impressions. ExoCad software was used to design the appliance. Fusion 360 software was then used to modify the design and create tubes to house the electrodes in a bilateral configuration to secure excellent and continuous contact with the GG muscle. Silver–silver chloride electrodes were incorporated within the appliance through the created tubes to produce a muscle EMG. In this preliminary prototype, an EMG amplifier was placed outside the mouth, and isolated electric wires were connected to the amplifier input. To test the design, we ran experiments to acquire EMG signals from a group of OSA patients and a control group in wakefulness. The GG EMGs were acquired from the participants for 60 s in a resting state whereby they rested their tongues without performing any movement. Then, the subjects pushed their tongues against the fontal teeth with steady force while keeping the mouth closed (active state). Several features were extracted from the acquired EMGs, and statistical tests were applied to evaluate the significant differences in these features between the two groups. The results showed that the mean power and standard deviation were higher in the control group than in the OSA group (p < 0.01). Regarding the wavelength during the active state, the control group had a significantly longer wavelength than the OSA group (p < 0.01). Meanwhile, the mean frequency was higher in the OSA group (p < 0.01) at rest. These findings support research that showed that impairment in GG activity continues in the daytime and does not only occur during sleep. Future research should focus on developing the device to be more user-friendly and easily used at home during wakefulness and sleep. Full article
(This article belongs to the Special Issue Obstructive Sleep Apnea: Current Knowledge and Future Perspectives)
Show Figures

Figure 1

12 pages, 780 KiB  
Article
Comparison of Macintosh Laryngoscope, King Vision®, VividTrac®, AirAngel Blade®, and a Custom-Made 3D-Printed Video Laryngoscope for Difficult and Normal Airways in Mannequins by Novices—A Non-Inferiority Trial
by Viktor Bacher, Márton Németh, Szilárd Rendeki, Balázs Tornai, Martin Rozanovic, Andrea Pankaczi, János Oláh, József Farkas, Melánia Chikhi, Ádám Schlégl, Péter Maróti and Bálint Nagy
J. Clin. Med. 2024, 13(11), 3213; https://doi.org/10.3390/jcm13113213 - 30 May 2024
Cited by 1 | Viewed by 1791
Abstract
Background: Endotracheal intubation (ETI) is a cornerstone of airway management. The gold standard device for ETI is still the direct laryngoscope (DL). However, video laryngoscopes (VLs) are now also widely available and have several proven advantages. The VL technique has been included in [...] Read more.
Background: Endotracheal intubation (ETI) is a cornerstone of airway management. The gold standard device for ETI is still the direct laryngoscope (DL). However, video laryngoscopes (VLs) are now also widely available and have several proven advantages. The VL technique has been included in the major airway management guidelines. During the COVID-19 pandemic, supply chain disruption has raised demand for 3D-printed medical equipment, including 3D-printed VLs. However, studies on performance are only sparsely available; thus, we aimed to compare 3D-printed VLs to the DL and other VLs made with conventional manufacturing technology. Methods: Forty-eight medical students were recruited to serve as novice users. Following brief, standardized training, students executed ETI with the DL, the King Vision® (KV), the VividTrac® (VT), the AirAngel Blade® (AAB), and a custom-made 3D-printed VL (3DVL) on the Laerdal® airway management trainer in normal and difficult airway scenarios. We evaluated the time to and proportion of successful intubation, the best view of the glottis, esophageal intubation, dental trauma, and user satisfaction. Results: The KV and VT are proved to be superior (p < 0.05) to the DL in both scenarios. The 3DVL’s performance was similar (p > 0.05) or significantly better than that of the DL and mainly non-inferior (p > 0.05) compared to the KV and VT in both scenarios. Regardless of the scenario, the AAB proved to be inferior (p < 0.05) even to the DL in the majority of the variables. The differences between the devices were more pronounced in the difficult airway scenario. The user satisfaction scores were in concordance with the aforementioned performance of the scopes. Conclusions: Based upon our results, we cannot recommend the AAB over the DL, KV, or VT. However, as the 3DVL showed, 3D printing indeed can provide useful or even superior VLs, but prior to clinical use, meticulous evaluation might be recommended. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

13 pages, 534 KiB  
Article
A Novel Approach to Managing System-on-Chip Sub-Blocks Using a 16-Bit Real-Time Operating System
by Boisy Pitre and Martin Margala
Electronics 2024, 13(10), 1978; https://doi.org/10.3390/electronics13101978 - 18 May 2024
Cited by 3 | Viewed by 1717
Abstract
Embedded computers are ubiquitous in products across various industries, including the automotive and medical industries, and in consumer goods such as appliances and entertainment devices. These specialized computing systems utilize Systems on Chips (SoCs), devices that are made up of one or more [...] Read more.
Embedded computers are ubiquitous in products across various industries, including the automotive and medical industries, and in consumer goods such as appliances and entertainment devices. These specialized computing systems utilize Systems on Chips (SoCs), devices that are made up of one or more main microprocessor cores. SoCs are augmented with sub-blocks that perform dedicated tasks to support the system. Sub-blocks contain custom logic or small-footprint microprocessors, depending upon their complexity, and perform support functions such as clock generation, device testing, phase-locked loop synchronization and peripheral management for interfaces such as a Universal Serial Bus (USB) or Serial Peripheral Interface (SPI). SoC designers have traditionally obtained sub-blocks from commercial vendors. While these sub-blocks have well-defined interfaces, their internal implementations are opaque. Without visibility of the specifics of the implementation, SoC designers are limited to the degree to which they can optimize these off-the-shelf sub-blocks. The result is that power and area constraints are dictated by the design of a third-party vendor. This work introduces a novel idea: using an open-source, small, multitasking, real-time operating system inside an SoC sub-block to manage multiple processes, thereby conserving code space. This OS is TurbOS, a new operating system whose primary goal is to provide the highest performance using the least amount of space. It is written in the assembly language of a new pipelined 16-bit microprocessor developed at the University of Florida, the Turbo9. TurbOS is derived from and incorporates the design benefits of an existing operating system called NitrOS-9, and reduces the code size from its progenitor by nearly 20%. Furthermore, it is over 80% smaller than the popular FreeRTOS operating system. TurbOS delivers a rich feature set for managing memory and process resources that are useful in SoC sub-block applications in an extremely small footprint of only 3 kilobytes. Full article
(This article belongs to the Special Issue Progress and Future Development of Real-Time Systems on Chip)
Show Figures

Figure 1

18 pages, 5123 KiB  
Review
Vat Photopolymerization 3D Printing in Dentistry: A Comprehensive Review of Actual Popular Technologies
by Elisa Caussin, Christian Moussally, Stéphane Le Goff, Timothy Fasham, Max Troizier-Cheyne, Laurent Tapie, Elisabeth Dursun, Jean-Pierre Attal and Philippe François
Materials 2024, 17(4), 950; https://doi.org/10.3390/ma17040950 - 19 Feb 2024
Cited by 27 | Viewed by 4777
Abstract
In this comprehensive review, the current state of the art and recent advances in 3D printing in dentistry are explored. This article provides an overview of the fundamental principles of 3D printing with a focus on vat photopolymerization (VP), the most commonly used [...] Read more.
In this comprehensive review, the current state of the art and recent advances in 3D printing in dentistry are explored. This article provides an overview of the fundamental principles of 3D printing with a focus on vat photopolymerization (VP), the most commonly used technological principle in dental practice, which includes SLA, DLP, and LCD (or mSLA) technologies. The advantages, disadvantages, and shortcomings of these technologies are also discussed. This article delves into the key stages of the dental 3D printing process, from computer-aided design (CAD) to postprocessing, emphasizing the importance of postrinsing and postcuring to ensure the biocompatibility of custom-made medical devices. Legal considerations and regulatory obligations related to the production of custom medical devices through 3D printing are also addressed. This article serves as a valuable resource for dental practitioners, researchers, and health care professionals interested in applying this innovative technology in clinical practice. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials Studies for Oral Health)
Show Figures

Figure 1

26 pages, 899 KiB  
Article
IoT Vulnerabilities and Attacks: SILEX Malware Case Study
by Basem Ibrahim Mukhtar, Mahmoud Said Elsayed, Anca D. Jurcut and Marianne A. Azer
Symmetry 2023, 15(11), 1978; https://doi.org/10.3390/sym15111978 - 26 Oct 2023
Cited by 17 | Viewed by 12548
Abstract
The Internet of Things (IoT) is rapidly growing and is projected to develop in future years. The IoT connects everything from Closed Circuit Television (CCTV) cameras to medical equipment to smart home appliances to smart automobiles and many more gadgets. Connecting these gadgets [...] Read more.
The Internet of Things (IoT) is rapidly growing and is projected to develop in future years. The IoT connects everything from Closed Circuit Television (CCTV) cameras to medical equipment to smart home appliances to smart automobiles and many more gadgets. Connecting these gadgets is revolutionizing our lives today by offering higher efficiency, better customer service, and more effective goods and services in a variety of industries and sectors. With this anticipated expansion, many challenges arise. Recent research ranked IP cameras as the 2nd highest target for IoT attacks. IoT security exhibits an inherent asymmetry where resource-constrained devices face attackers with greater resources and time, creating an imbalanced power dynamic. In cybersecurity, there is a symmetrical aspect where defenders implement security measures while attackers seek symmetrical weaknesses. The SILEX malware case highlights this asymmetry, demonstrating how IoT devices’ limited security made them susceptible to a relatively simple yet destructive attack. These insights underscore the need for robust, proactive IoT security measures to address the asymmetrical risks posed by adversaries and safeguard IoT ecosystems effectively. In this paper, we present the IoT vulnerabilities, their causes, and how to detect them. We focus on SILEX, one of the famous malware that targets IoT, as a case study and present the lessons learned from this malware. Full article
Show Figures

Figure 1

9 pages, 3965 KiB  
Article
Mechanical Comparison between Fenestrated Endograft and Physician-Made Fenestrations
by Jérémie Jayet, Jennifer Canonge, Frédéric Heim, Marc Coggia, Nabil Chakfé and Raphaël Coscas
J. Clin. Med. 2023, 12(15), 4911; https://doi.org/10.3390/jcm12154911 - 26 Jul 2023
Cited by 9 | Viewed by 1989
Abstract
Introduction: A fenestrated endograft (FE) is the first-line endovascular option for juxta and pararenal abdominal aortic aneurysms. A physician-modified stent-graft (PMSG) and laser in situ fenestration (LISF) have emerged to circumvent manufacturing delays, anatomic standards, and the procedure’s cost raised by FE. The [...] Read more.
Introduction: A fenestrated endograft (FE) is the first-line endovascular option for juxta and pararenal abdominal aortic aneurysms. A physician-modified stent-graft (PMSG) and laser in situ fenestration (LISF) have emerged to circumvent manufacturing delays, anatomic standards, and the procedure’s cost raised by FE. The objective was to compare different fenestrations from a mechanical point of view. Methods: In total, five Zenith Cook fenestrations (Cook Medical, Bloomington, IN, USA) and five Anaconda fenestrations (Terumo Company, Inchinnan, Scotland, UK) were included in this study. Laser ISF and PMSG were created on a Cook TX2 polyethylene terephthalate (PET) cover material (Cook Medical, Bloomington, IN, USA). In total, five LISFs and fifty-five PMSG were created. All fenestrations included reached an 8 mm diameter. Radial extension tests were then performed to identify differences in the mechanical behavior between the fenestration designs. The branch pull-out force was measured to test the stability of assembling with a calibrated 8 mm branch. Fatigue tests were performed on the devices to assess the long-term outcomes of the endograft with an oversized 9 mm branch. Results: The results revealed that at over 2 mm of oversizing, the highest average radial strength was 33.4 ± 6.9 N for the Zenith Cook fenestration. The radial strength was higher with the custom-made fenestrations, including both Zenith Cook and Anaconda fenestrations (9.5 ± 4.7 N and 4.49 ± 0.28 N). The comparison between LISF and double loop PMSG highlighted a higher strength value compared with LISF (3.96 N ± 1.86 vs. 2.7 N ± 0.82; p= 0.018). The diameter of the fenestrations varied between 8 and 9 mm. As the pin caliber inserted in the fenestration was 9 mm, one could consider that all fenestrations underwent an “elastic recoil” after cycling. The largest elastic recoil was observed in the non-reinforced/OC fenestrations (40%). A 10% elastic recoil was observed with LISF. Conclusion: In terms of mechanical behavior, the custom-made fenestration produced the highest results in terms of radial and branch pull-out strength. Both PMSG and LISF could be improved with the standardization of the fenestration creation protocol. Full article
(This article belongs to the Special Issue Open and Endovascular Management of Complex Aortic Aneurysms)
Show Figures

Figure 1

30 pages, 12823 KiB  
Article
An Integrative Computational Design Workflow and Validation Methodology for 3D-Printed Personalized Orthopedic Devices: Case Study of a Wrist–Hand Orthosis (WHO)
by Vaia Tsiokou, Alexandra Papatheodorou, Despoina Ntenekou, Panagiotis Zouboulis and Anna Karatza
Processes 2023, 11(7), 2204; https://doi.org/10.3390/pr11072204 - 22 Jul 2023
Cited by 8 | Viewed by 3338
Abstract
Additive manufacturing (AM) technologies enable the production of customized and personalized medical devices that facilitate users’ comfort and rehabilitation requirements according to their individual conditions. The concept of a tailor-made orthopedic device addresses the accelerated recovery and comfort of the patient through the [...] Read more.
Additive manufacturing (AM) technologies enable the production of customized and personalized medical devices that facilitate users’ comfort and rehabilitation requirements according to their individual conditions. The concept of a tailor-made orthopedic device addresses the accelerated recovery and comfort of the patient through the utilization of personalized rehabilitation equipment. Direct modeling, with an increasing number of approaches and prototypes, has provided many successful results until now. The modeling procedure for 3D-printed orthoses has emerged as the execution of steady and continuous tasks with several design selection criteria, such as cutting, thickening the surface, and engraving the shell of the orthosis. This publication takes into consideration the aforementioned criteria and proposes the creation of a holistic methodology and automated computational design process for the customization of orthotic assistive devices, considering aspects such as material properties, manufacturing limitations, recycling, and patients’ requirements. This proposal leads to the designing and manufacturing of a wrist orthopedic device based on reverse engineering, Design for AM (DfAM), and Design for Recycling (DfR) principles. The proposed methodology can be adjusted for different limbs. A dual-material approach was attained utilizing rigid, mechanically enhanced feedstock material and soft elastic material with reduced skin irritation risks to achieve both mechanical requirements and adequate cushioning for user comfort during rehabilitation. Recyclable thermoplastic matrices were selected, which also allow for the option to create washable devices for product life extension. Then, 3D scanning procedures were implemented to acquire the initial anatomic measurements for the design of the WHO and ensure and assess the dimensional accuracy of the final product. Physical mechanical testing was implemented to evaluate the WHO’s mechanical behavior and verify its functionality during basic wrist movements. The extracted dimensional data for the two main orthosis components that indicated approximately 50% and 25% of the tolerance values, respectively, were within the range (−0.1 mm, 0.1 mm). Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

25 pages, 6882 KiB  
Article
Finite Element Analysis of Upper Limb Splint Designs and Materials for 3D Printing
by Syed Hammad Mian, Usama Umer, Khaja Moiduddin and Hisham Alkhalefah
Polymers 2023, 15(14), 2993; https://doi.org/10.3390/polym15142993 - 10 Jul 2023
Cited by 11 | Viewed by 3704
Abstract
Three-dimensional (3D) printed splints must be lightweight and adequately ventilated to maximize the patient’s convenience while maintaining requisite strength. The ensuing loss of strength has a substantial impact on the transformation of a solid splint model into a perforated or porous model. Thus, [...] Read more.
Three-dimensional (3D) printed splints must be lightweight and adequately ventilated to maximize the patient’s convenience while maintaining requisite strength. The ensuing loss of strength has a substantial impact on the transformation of a solid splint model into a perforated or porous model. Thus, two methods for making perforations—standard approach and topological optimization—are investigated in this study. The objective of this research is to ascertain the impact of different perforation shapes and their distribution as well as topology optimization on the customized splint model. The solid splint models made of various materials have been transformed into porous designs to evaluate their strength by utilizing Finite Element (FE) simulation. This study will have a substantial effect on the designing concept for medical devices as well as other industries such as automobiles and aerospace. The novelty of the research refers to creating the perforations as well as applying topology optimization and 3D printing in practice. According to the comparison of the various materials, PLA had the least amount of deformation and the highest safety factor for all loading directions. Additionally, it was shown that all perforation shapes behave similarly, implying that the perforation shape’s effect is not notably pronounced. However, square perforations seemed to perform the best out of all the perforation shape types. It was also obvious that the topology-optimized hand splint outperformed that with square perforations. The topology-optimized hand splint weighs 26% less than the solid splint, whereas the square-perforated hand splint weighs roughly 12% less. Nevertheless, the user must choose which strategy (standard perforations or topology optimization) to employ based on the available tools and prerequisites. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

Back to TopTop