Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = curcumin nanospheres

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3469 KiB  
Review
Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review
by Lucas Fornari Laurindo, Gabriel Magno de Carvalho, Bárbara de Oliveira Zanuso, Maria Eduardo Figueira, Rosa Direito, Ricardo de Alvares Goulart, Daiene Santos Buglio and Sandra Maria Barbalho
Pharmaceutics 2023, 15(1), 229; https://doi.org/10.3390/pharmaceutics15010229 - 10 Jan 2023
Cited by 55 | Viewed by 7601
Abstract
Curcumin (CUR) is a polyphenol extracted from the rhizome of Curcuma longa that possesses potent anti-inflammatory and antioxidant potential. Despite CUR’s numerous beneficial effects on human health, it has limitations, such as poor absorption. Nano-based drug delivery systems have recently been applied to [...] Read more.
Curcumin (CUR) is a polyphenol extracted from the rhizome of Curcuma longa that possesses potent anti-inflammatory and antioxidant potential. Despite CUR’s numerous beneficial effects on human health, it has limitations, such as poor absorption. Nano-based drug delivery systems have recently been applied to improve CUR’s solubility and bioavailability and potentialize its health effects. This review investigated the effects of different CUR-based nanomedicines on inflammatory and immunomodulated diseases. PUBMED, EMBASE, COCHRANE, and GOOGLE SCHOLAR databases were searched, and the Scale for Assessment of Narrative Review Articles (SANRA) was used for quality assessment and PRISMA guidelines. Overall, 66 studies were included comprising atherosclerosis, rheumatoid arthritis (RA), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), Huntington’s disease (HD), inflammatory bowel diseases (IBD), psoriasis, liver fibrosis, epilepsy, and COVID-19. The available scientific studies show that there are many known nanoformulations with curcumin. They can be found in nanosuspensions, nanoparticles, nanoemulsions, solid lipid particles, nanocapsules, nanospheres, and liposomes. These formulations can improve CUR bioavailability and can effectively be used as adjuvants in several inflammatory and immune-mediated diseases such as atheroma plaque formation, RA, dementia, AD, PD, MS, IBD, psoriasis, epilepsy, COVID-19, and can be used as potent anti-fibrotic adjuvants in fibrotic liver disease. Full article
Show Figures

Graphical abstract

12 pages, 2272 KiB  
Article
Molecularly Imprinted Polymer-Based Electrochemical Sensor for Rapid and Selective Detection of Hypoxanthine
by Diksha Garg, Neelam Verma and Monika
Biosensors 2022, 12(12), 1157; https://doi.org/10.3390/bios12121157 - 12 Dec 2022
Cited by 7 | Viewed by 3652
Abstract
In this paper, we report on the coupling of an electrochemical transducer with a specifically designed biomimetic and synthetic polymeric layer that serves as a recognition surface that demonstrates the molecular memory necessary to facilitate the stable and selective identification of the meat-freshness [...] Read more.
In this paper, we report on the coupling of an electrochemical transducer with a specifically designed biomimetic and synthetic polymeric layer that serves as a recognition surface that demonstrates the molecular memory necessary to facilitate the stable and selective identification of the meat-freshness indicator hypoxanthine. Consumer preferences and the food safety of meat products are largely influenced by their freshness, so it is crucial to monitor it so as to quickly identify when it deteriorates. The sensor consists of a glassy-carbon electrode, which can be regenerated in situ continuously, functionalized with molecularly imprinted polymers (MIPs) and a nanocomposite of curcumin-coated iron oxide magnetic nanospheres (C-IO-MNSs) and multiwalled carbon nanotubes (MWCNTs) that enhance the surface area as well as the electroactive characteristics. The electrochemical behavior of the fabricated sensor was analyzed by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetric studies revealed the rapid response of the proposed sol-gel-MIP/MWCNT/C-IO-MNS/GCE sensor to hypoxanthine in a concentration range of 2–50 µg/mL with a lower limit of detection at 0.165 μg/mL. Application of the newly fabricated sensor demonstrated acceptable recoveries and satisfactory accuracy when used to measure hypoxanthine in different meat samples. Full article
Show Figures

Figure 1

18 pages, 4376 KiB  
Article
Amphiphilic Cationic Peptide-Coated PHA Nanosphere as an Efficient Vector for Multiple-Drug Delivery
by Fanghua Zhang, Chao Zhang, Shuangqing Fu, Huandi Liu, Mengnan Han, Xueyu Fan, Honglei Zhang and Wei Li
Nanomaterials 2022, 12(17), 3024; https://doi.org/10.3390/nano12173024 - 31 Aug 2022
Cited by 9 | Viewed by 2640
Abstract
Amphiphilic core–shell (ACS) nanoparticles are gaining increasing research interest for multi-drug delivery in cancer therapy. In this work, a new cationic peptide-coated PHA nanosphere was prepared by self-assembly of a hydrophobic core of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a hydrophilic shell of fusion [...] Read more.
Amphiphilic core–shell (ACS) nanoparticles are gaining increasing research interest for multi-drug delivery in cancer therapy. In this work, a new cationic peptide-coated PHA nanosphere was prepared by self-assembly of a hydrophobic core of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a hydrophilic shell of fusion proteins of PHA granule-associated protein (PhaP) and cationic peptide RALA through a strong hydrophobic effect. The hydrophobic drug curcumin (Cur) was encapsulated in PHBHHx nanoparticles. The chemotherapy drug 5-fluorouracil (5-FU) was administered in the form of its metabolite oligomeric 5-fluorodeoxyuridine (FUdR). Fifteen consecutive FUdR (FUdR15S) were adsorbed on the surface of PHBHHx nanoparticles by electrostatic interaction with RALA to form Cur@PHBX-PR/FUdR15S. Such amphiphilic cationic nanospheres had 88.3% EE of Cur and the drug loading of Cur and FUdR were 7.8% and 12.1%. The dual-drug-loaded nanospheres showed a time-differential release of Cur and FUdR. In addition, Cur@PHBX-PR/FUdR15S exhibited excellent anticancer activity and played a vital role in promoting the synergistic effect of FUdR and Cur in gastric cancer cells. The exploration of antitumor mechanisms demonstrated that Cur improved the activity of apoptosis-related proteins and cancer cells sensitized to FUdR. This amphiphilic core–shell system can serve as a general platform for sequential delivery of multiple drugs to treat several cancer cells. Full article
(This article belongs to the Special Issue Synthesis, Properties and Applications of Polymeric Nanomaterials)
Show Figures

Figure 1

11 pages, 5004 KiB  
Article
Azeotropic Distillation-Induced Self-Assembly of Mesostructured Spherical Nanoparticles as Drug Cargos for Controlled Release of Curcumin
by Long Chen, Xin Fu, Mei Lin and Xingmao Jiang
Pharmaceuticals 2022, 15(3), 275; https://doi.org/10.3390/ph15030275 - 23 Feb 2022
Cited by 1 | Viewed by 2474
Abstract
Methods of large-scale controllable production of uniform monodispersed spherical nanoparticles have been one of the research directions of scientists in recent years. In this paper, we report an azeotropic distillation-induced evaporation self-assembly method as a universal method, and monodispersed hydrophobic ordered mesoporous silica [...] Read more.
Methods of large-scale controllable production of uniform monodispersed spherical nanoparticles have been one of the research directions of scientists in recent years. In this paper, we report an azeotropic distillation-induced evaporation self-assembly method as a universal method, and monodispersed hydrophobic ordered mesoporous silica nanospheres (MHSs) were successfully synthesized by this method, using triethoxymethylsilane (MTES) as the silica precursor and hexadecyl trimethyl ammonium bromide (CTAB) as the template. SEM and TEM images showed good monodispersity, sphericity, and uniform diameter. Meanwhile, SAXS and N2 adsorption–desorption measurements demonstrated a highly ordered lamellar mesostructure with a large pore volume. The model drug, curcumin was successfully encapsulated in MHSs for drug delivery testing, and their adsorption capacity was 3.45 mg g−1, which greatly improved the stability of curcumin. The release time when net release rate of curcumin reached 50% was extended to 6 days. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Nanodrugs)
Show Figures

Figure 1

18 pages, 1580 KiB  
Article
Evaluation of Dietary Curcumin Nanospheres in a Weaned Piglet Model
by Mohammad Moniruzzaman, Hunhwan Kim, Haewon Shin, Hyunsoo Kim, Nayoung Kim, Sungyeon Chin, Adhimoolam Karthikeyan, Hyojick Choi, Gonsup Kim and Taesun Min
Antibiotics 2021, 10(11), 1280; https://doi.org/10.3390/antibiotics10111280 - 20 Oct 2021
Cited by 11 | Viewed by 3054
Abstract
Curcumin is a polyphenolic compound present in turmeric with extensive uses in cooking foods and biomedical applications. However, due to its hydrophobic nature, it is poorly soluble in water and its bioavailability is very low on oral administration in organisms. In this study, [...] Read more.
Curcumin is a polyphenolic compound present in turmeric with extensive uses in cooking foods and biomedical applications. However, due to its hydrophobic nature, it is poorly soluble in water and its bioavailability is very low on oral administration in organisms. In this study, we investigated the dietary curcumin nanospheres in a weaned piglet model based on the growth, serum biochemistry, proteomics, fecal coliform bacteria, and malodors in the feces of piglets. A total of 135 weaned piglets (Duroc × [Yorkshire × Landrace]) with an average initial body weight of 7.0 ± 1.0 kg (28 ± 1 days of age) were randomly distributed in 9 pens (15 pigs in each pen) fed the dietary curcumin nanospheres (CN) at 0 (control), 0.5 (T1), and 1.0 mL (T2) CN/kg of diet in triplicates for 21 days. At the end of the feeding trial, the results showed piglets fed 1.0 mL CN/kg diet had significantly higher growth performance and feed utilization than control diet (without CN). However, there were no significant differences in growth and feed utilization between piglets fed T1 and T2 diets. Serum glucose, gamma-glutamyl transferase, total bilirubin, amylase, and lipase contents were unaffected in piglets fed the experimental diets. Interestingly, piglets fed T1 and T2 diets showed significantly lower total cholesterol levels than control diet. In serum proteomics, a total of 103 differentially expressed proteins (DEPs) were identified in the piglets fed control, T1, and T2 diets, of which 14 DEPs were upregulated and 4 DEPs were downregulated. Fecal coliform bacteria and ammonia gas were significantly reduced in piglets fed T1 and T2 diets. Overall, the results indicated dietary supplementation of CN could enhance the growth, feed utilization, and immunity—and reduce fecal pathogenic bacteria as well as ammonia gas emissions—in weaned piglets. Full article
Show Figures

Figure 1

19 pages, 4669 KiB  
Article
Nanospheres Loaded with Curcumin Improve the Bioactivity of Umbilical Cord Blood-Mesenchymal Stem Cells via c-Src Activation during the Skin Wound Healing Process
by Do-Wan Kim, Chang-Hyung Choi, Jong Pil Park and Sei-Jung Lee
Cells 2020, 9(6), 1467; https://doi.org/10.3390/cells9061467 - 15 Jun 2020
Cited by 23 | Viewed by 5324
Abstract
Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases, but the clinical application of curcumin is restricted by its poor aqueous solubility and its low permeability and bioavailability [...] Read more.
Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases, but the clinical application of curcumin is restricted by its poor aqueous solubility and its low permeability and bioavailability levels. In the present study, we investigate the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human mesenchymal stem cells (MSCs) during the skin wound healing process. CN significantly increased the motility of umbilical cord blood (UCB)-MSCs and showed 10,000-fold greater migration efficacy than curcumin. CN stimulated the phosphorylation of c-Src and protein kinase C which are responsible for the distinctive activation of the MAPKs. Interestingly, CN significantly induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhanced wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

23 pages, 1040 KiB  
Review
Curcumin, Curcumin Nanoparticles and Curcumin Nanospheres: A Review on Their Pharmacodynamics Based on Monogastric Farm Animal, Poultry and Fish Nutrition
by Mohammad Moniruzzaman and Taesun Min
Pharmaceutics 2020, 12(5), 447; https://doi.org/10.3390/pharmaceutics12050447 - 11 May 2020
Cited by 85 | Viewed by 8864
Abstract
Nanotechnology is an emerging field of science that is widely used in medical sciences. However, it has limited uses in monogastric farm animal as well as fish and poultry nutrition. There are some works that have been done on curcumin and curcumin nanoparticles [...] Read more.
Nanotechnology is an emerging field of science that is widely used in medical sciences. However, it has limited uses in monogastric farm animal as well as fish and poultry nutrition. There are some works that have been done on curcumin and curcumin nanoparticles as pharmaceutics in animal nutrition. However, studies have shown that ingestion of curcumin or curcumin nanoparticles does not benefit the animal health much due to their lower bioavailability, which may result because of low absorption, quick metabolism and speedy elimination of curcumin from the animal body. For these reasons, advanced formulations of curcumin are needed. Curcumin nanospheres is a newly evolved field of nanobiotechnology which may have beneficial effects in terms of growth increment, anti-microbial, anti-inflammatory and neuroprotective effects on animal and fish health by means of nanosphere forms that are biodegradable and biocompatible. Thus, this review aims to highlight the potential application of curcumin, curcumin nanoparticles and curcumin nanospheres in the field of monogastric farm animal, poultry and fish nutrition. We do believe that the review provides the perceptual vision for the future development of curcumin, curcumin nanoparticles and curcumin nanospheres and their applications in monogastric farm animal, poultry and fish nutrition. Full article
(This article belongs to the Special Issue Advanced Nanoscience of Biomaterials for Biomedical Applications)
Show Figures

Figure 1

16 pages, 4008 KiB  
Article
Nanosphere Loaded With Curcumin Inhibits the Gastrointestinal Cell Death Signaling Pathway Induced by the Foodborne Pathogen Vibrio vulnificus
by Ji-Yun Kim, Young-Min Lee, Do-Wan Kim, Taesun Min and Sei-Jung Lee
Cells 2020, 9(3), 631; https://doi.org/10.3390/cells9030631 - 5 Mar 2020
Cited by 20 | Viewed by 4791
Abstract
Curcumin, a hydrophobic polyphenol of turmeric, has a variety of biological functions as a herbal supplement, but its poor gastric absorption rate is one of the major factors limiting its oral bioavailability. In the present study, we have investigated the functional role of [...] Read more.
Curcumin, a hydrophobic polyphenol of turmeric, has a variety of biological functions as a herbal supplement, but its poor gastric absorption rate is one of the major factors limiting its oral bioavailability. In the present study, we have investigated the functional role of a nanosphere loaded with curcumin (CN) during host cell death elicited by the Gram-negative bacterium V. vulnificus in human gastrointestinal epithelial HT-29 cells and an ileal-ligated mouse model. The recombinant protein (r) VvhA produced by V. vulnificus significantly reduced the viability of HT-29 cells. The cytotoxic effect of rVvhA was restored upon a treatment with CN (100 ng/mL), which had shown 1000-fold higher anti-apoptotic efficacy than curcumin. CN inhibited the phosphorylation of c-Src and PKC mediated by intracellular ROS responsible for the distinctive activation of the MAPKs in rVvhA-treated HT-29 cells. Interestingly, CN significantly restored the expression of Bax, Bcl-2, and cleaved caspase-3 as regulated by the phosphorylation of NF-κB. In mouse models of V. vulnificus infection, treatment with CN had a blocking effect that elevated the levels of TUNEL-positive DNA fragmentation and apoptosis-related proteins. These results indicate that CN is a functional agent that manipulates the V. vulnificus VvhA signaling pathway responsible for gastrointestinal cell death. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

13 pages, 3811 KiB  
Article
Dextran-Curcumin Nanoparticles as a Methotrexate Delivery Vehicle: A Step Forward in Breast Cancer Combination Therapy
by Manuela Curcio, Giuseppe Cirillo, Paola Tucci, Annafranca Farfalla, Emilia Bevacqua, Orazio Vittorio, Francesca Iemma and Fiore Pasquale Nicoletta
Pharmaceuticals 2020, 13(1), 2; https://doi.org/10.3390/ph13010002 - 25 Dec 2019
Cited by 41 | Viewed by 5152
Abstract
With the aim to effectively deliver methotrexate (MTX) to breast cancer cells, we designed a nanocarrier system (DC) derived from the self-assembly of a dextran-curcumin conjugate prepared via enzyme chemistry with immobilized laccase acting as a solid biocatalyst. Nanoparticles consisted of homogeneously dispersed [...] Read more.
With the aim to effectively deliver methotrexate (MTX) to breast cancer cells, we designed a nanocarrier system (DC) derived from the self-assembly of a dextran-curcumin conjugate prepared via enzyme chemistry with immobilized laccase acting as a solid biocatalyst. Nanoparticles consisted of homogeneously dispersed nanospheres with a mean diameter of 290 nm, as characterized by combined transmission electron microscopy and dynamic light scattering investigations. DC was able to control the MTX release overtime (t1/2 value of 310 min), with cell internalization studies proving its presence inside MCF-7 cytoplasm. Finally, improved MTX efficacy was obtained in viability assays, and attributed to the synergy of curcumin moieties and loaded MTX as underlined by a combination index (CI) < 1. Full article
Show Figures

Figure 1

16 pages, 5435 KiB  
Article
Potential Albumin-Based Antioxidant Nanoformulations for Ocular Protection against Oxidative Stress
by Daseul Kim, Pooja Maharjan, Minki Jin, Taehoon Park, Anjila Maharjan, Reeju Amatya, JaeWook Yang, Kyoung Ah Min and Meong Cheol Shin
Pharmaceutics 2019, 11(7), 297; https://doi.org/10.3390/pharmaceutics11070297 - 26 Jun 2019
Cited by 51 | Viewed by 4402
Abstract
Amongst various drug administration methods, ophthalmic drug delivery has been a useful way for the treatment of eye-related diseases. However, therapeutic efficacy of ocular therapy for anterior or posterior eye segments through topical administration is considerably challenged by the number of anatomical and [...] Read more.
Amongst various drug administration methods, ophthalmic drug delivery has been a useful way for the treatment of eye-related diseases. However, therapeutic efficacy of ocular therapy for anterior or posterior eye segments through topical administration is considerably challenged by the number of anatomical and physiological barriers in the eyes affecting ocular bioavailability. In this respect, advanced biocompatible nanoformulations make it possible to improve drug delivery to the target sites and enhance ocular bioavailability of ophthalmic medicines. Various ocular diseases have been reported to be related to oxidative stresses in tissues, and polyphenolic compounds have been known for their antioxidant activities in various tissues, including the eyes. Despite drug efficacy, poor water solubility and intrinsic color of the compounds limit the drug’s inclusion into the development of ocular medicine. In the present study, we investigated the antioxidant protectant efficacy of rosmarinic or ursolic acid in the retinal epithelial cells, as compared to those of curcumin, by forming nanospheres with bovine serum albumin. Our results demonstrate that antioxidant-containing nanoformulations provide a significantly higher drug solubility and decreased ROS (reactive oxygen species) production in the retinal epithelial cells. Finally, we also found that albumin-based nanoformulations could improve bioavailability and increase antioxidant activity of rosmarinic or ursolic acid in the retina to be applied as efficient ocular protectant. Full article
(This article belongs to the Special Issue Advanced Formulation Approaches for Targeted Drug Delivery)
Show Figures

Graphical abstract

14 pages, 1667 KiB  
Article
Encapsulation of Gold Nanostructures and Oil-in-Water Nanocarriers in Microgels with Biomedical Potential
by Mariela Inostroza-Riquelme, Andrea Vivanco, Pablo Lara, Simón Guerrero, Edison Salas-Huenuleo, Alejandro Chamorro, Lisette Leyton, Karen Bolaños, Eyleen Araya, Andrew F. G. Quest, Marcelo J. Kogan and Felipe Oyarzun-Ampuero
Molecules 2018, 23(5), 1208; https://doi.org/10.3390/molecules23051208 - 18 May 2018
Cited by 18 | Viewed by 5733
Abstract
Here we report the incorporation of gold nanostructures (nanospheres or nanorods, functionalized with carboxylate-end PEG) and curcumin oil-in-water (O/W) nanoemulsions (CurNem) into alginate microgels using the dripping technique. While gold nanostructures are promising nanomaterials for photothermal therapy applications, CurNem possess important pharmacological activities [...] Read more.
Here we report the incorporation of gold nanostructures (nanospheres or nanorods, functionalized with carboxylate-end PEG) and curcumin oil-in-water (O/W) nanoemulsions (CurNem) into alginate microgels using the dripping technique. While gold nanostructures are promising nanomaterials for photothermal therapy applications, CurNem possess important pharmacological activities as reported here. In this sense, we evaluated the effect of CurNem on cell viability of both cancerous and non-cancerous cell lines (AGS and HEK293T, respectively), demonstrating preferential toxicity in cancer cells and safety for the non-cancerous cells. After incorporating gold nanostructures and CurNem together into the microgels, microstructures with diameters of 220 and 540 µm were obtained. When stimulating microgels with a laser, the plasmon effect promoted a significant rise in the temperature of the medium; the temperature increase was higher for those containing gold nanorods (11–12 °C) than nanospheres (1–2 °C). Interestingly, the incorporation of both nanosystems in the microgels maintains the photothermal properties of the gold nanostructures unmodified and retains with high efficiency the curcumin nanocarriers. We conclude that these results will be of interest to design hydrogel formulations with therapeutic applications. Full article
(This article belongs to the Collection Nanomedicine)
Show Figures

Graphical abstract

Back to TopTop