Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = crystalline solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1770 KiB  
Article
Influence of Selenium Pressure on Properties of AgInGaSe2 Thin Films and Their Application to Solar Cells
by Xianfeng Zhang, Engang Fu, Yong Lu and Yang Yang
Nanomaterials 2025, 15(15), 1146; https://doi.org/10.3390/nano15151146 - 24 Jul 2025
Viewed by 208
Abstract
A wide-bandgap AgInGaSe2 (AIGS) thin film was fabricated using molecular beam epitaxy (MBE) via a three-stage method. The influence of Selenium (Se) pressure on the properties of AIGS films and solar cells was studied in detail. It was found that Se pressure [...] Read more.
A wide-bandgap AgInGaSe2 (AIGS) thin film was fabricated using molecular beam epitaxy (MBE) via a three-stage method. The influence of Selenium (Se) pressure on the properties of AIGS films and solar cells was studied in detail. It was found that Se pressure played a very important role during the fabrication process, whereby Se pressure was varied from 0.8 × 10−3 Torr to 2.5 × 10−3 Torr in order to specify the effect of Se pressure. A two-stage mechanism during the production of AIGS solar cells was concluded according to the experimental results. With an increase in Se pressure, the grain size significantly increased due to the supply of the Ag–Se phase; the superficial roughness also increased. When Se pressure was increased to 2.1 × 10−3 Torr, the morphology of AIGS changed abruptly and clear grain boundaries were observed with a typical grain size of over 1.5 μm. AIGS films fabricated with a low Se pressure tended to show a higher bandgap due to the formation of anti-site defects such as In and Ga on Ag sites as a result of the insufficient Ag–Se phase. With an increase in Se pressure, the crystallinity of the AIGS film changed from the (220)-orientation to the (112)-orientation. When Se pressure was 2.1 × 10−3 Torr, the AIGS solar cell demonstrated its best performance of about 9.6% (Voc: 810.2 mV; Jsc: 16.7 mA/cm2; FF: 71.1%) with an area of 0.2 cm2. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

15 pages, 2226 KiB  
Article
Perovskite Solar Cells Modified with Conjugated Self-Assembled Monolayers at Buried Interfaces
by Guorong Zhou, Faeze Hashemi, Changzeng Ding, Xin Luo, Lianping Zhang, Esmaeil Sheibani, Qun Luo, Askhat N. Jumabekov, Ronald Österbacka, Bo Xu and Changqi Ma
Nanomaterials 2025, 15(13), 1014; https://doi.org/10.3390/nano15131014 - 1 Jul 2025
Viewed by 610
Abstract
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried [...] Read more.
In recent years, inverted perovskite solar cells (PSCs) have garnered widespread attention due to their high compatibility, excellent stability, and potential for low-temperature manufacturing. However, most of the current research has primarily focused on the surface passivation of perovskite. In contrast, the buried interface significantly influences the crystal growth quality of perovskite, but it is difficult to effectively control, leading to relatively slow research progress. To address the issue of poor interfacial contact between the hole transport-layer nickel oxide (NiOX) and the perovskite, we introduced a conjugated self-assembled monolayer (SAM), 4,4′-[(4-(3,6-dimethoxy-9H-carbazole)triphenylamine)]diphenylacetic acid (XS21), which features triphenylamine dicarboxylate groups. For comparison, we also employed the widely studied phosphonic acid-based SAM, [2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl] phosphonic acid (MeO-2PACz). A systematic investigation was carried out to evaluate the influence of these SAMs on the performance and stability of inverted PSCs. The results show that both XS21 and MeO-2PACz significantly enhanced the crystallinity of the perovskite layer, reduced defect densities, and suppressed non-radiative recombination. These improvements led to more efficient hole extraction and transport at the buried interface. Consequently, inverted PSCs incorporating XS21 and MeO-2PACz achieved impressive power-conversion efficiencies (PCEs) of 21.43% and 22.43%, respectively, along with marked enhancements in operational stability. Full article
Show Figures

Figure 1

11 pages, 3115 KiB  
Article
Low Resistivity and High Carrier Concentration in SnO2 Thin Films: The Impact of Nitrogen–Hydrogen Annealing Treatments
by Qi-Zhen Chen, Zhi-Xuan Zhang, Wan-Qiang Fu, Jing-Ru Duan, Yu-Xin Yang, Chao-Nan Chen and Shui-Yang Lien
Nanomaterials 2025, 15(13), 986; https://doi.org/10.3390/nano15130986 - 25 Jun 2025
Viewed by 439
Abstract
The tin dioxide (SnO2) thin films in this work were prepared by using plasma-enhanced atomic layer deposition (PEALD), and a systematic analysis was conducted to evaluate the influence of post-deposition annealing at various temperatures in a nitrogen–hydrogen mixed atmosphere on their [...] Read more.
The tin dioxide (SnO2) thin films in this work were prepared by using plasma-enhanced atomic layer deposition (PEALD), and a systematic analysis was conducted to evaluate the influence of post-deposition annealing at various temperatures in a nitrogen–hydrogen mixed atmosphere on their surface morphology, optical behavior, and electrical performance. The SnO2 films were characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Hall effect measurements. With increasing annealing temperatures, the SnO2 films exhibited enhanced crystallinity, a higher oxygen vacancy (OV) peak area ratio, and improved mobility and carrier concentration. These enhancements make the annealed SnO2 films highly suitable as electron transport layers (ETLs) in perovskite solar cells (PSCs), providing practical guidance for the design of high-performance PSCs. Full article
(This article belongs to the Special Issue Thin Films for Efficient Perovskite Solar Cells)
Show Figures

Graphical abstract

12 pages, 3274 KiB  
Article
From Structure to Efficiency: Unveiling the Role of Calcination Temperature in Nb2O5-Based DSSCs
by Ronald Luiz Castiglioni Davi, Edson Araujo de Almeida, Ana Paula Peron, Everson do Prado Banczek, Osvaldo Valarini Junior and Gideã Taques Tractz
Processes 2025, 13(6), 1857; https://doi.org/10.3390/pr13061857 - 12 Jun 2025
Viewed by 436
Abstract
The development of dye-sensitized solar cells (DSSCs) has gained prominence as an economical alternative for photovoltaic energy conversion. This work investigates the synthesis of niobium pentoxide (Nb2O5) by the Pechini method, followed by calcination at different temperatures (500 °C, [...] Read more.
The development of dye-sensitized solar cells (DSSCs) has gained prominence as an economical alternative for photovoltaic energy conversion. This work investigates the synthesis of niobium pentoxide (Nb2O5) by the Pechini method, followed by calcination at different temperatures (500 °C, 600 °C and 700 °C) to evaluate its structural, morphological, and electrochemical properties as a photoanode material in DSSCs. SEM and XRD analyses revealed that calcination at 600 °C produced a material with optimized particle size (642.17 ± 37 nm) and adequate crystalline structure, favoring dye adsorption and electronic transport. Electrochemical characterization, including open-circuit potential and impedance spectroscopy, indicated that the sample at 600 °C presented superior photovoltaic performance, achieving a power conversion efficiency of 1.39% and electron lifetime equal to 0.159 s. These findings suggest that Nb2O5, under controlled calcination conditions, may act as a promising alternative to TiO2 substitution in DSSC applications. Full article
Show Figures

Figure 1

13 pages, 2057 KiB  
Article
NOx-Free Leaching Methods for Efficient Silver and Aluminium Recovery from Crystalline Silicon Solar Cells
by Aistis Rapolas Zubas, Egidijus Griškonis, Gintaras Denafas, Vidas Makarevičius, Rita Kriūkienė and Jolita Kruopienė
Materials 2025, 18(11), 2668; https://doi.org/10.3390/ma18112668 - 5 Jun 2025
Viewed by 576
Abstract
As photovoltaic (PV) installations expand globally, effective recycling of end-of-life crystalline silicon solar cells has become increasingly important, including the recovery of valuable metals such as silver (Ag) and aluminium (Al). Traditional nitric acid-based chemical leaching methods, although effective, present environmental challenges due [...] Read more.
As photovoltaic (PV) installations expand globally, effective recycling of end-of-life crystalline silicon solar cells has become increasingly important, including the recovery of valuable metals such as silver (Ag) and aluminium (Al). Traditional nitric acid-based chemical leaching methods, although effective, present environmental challenges due to the generation of hazardous nitrogen oxide (NOx) emissions. To address these concerns, this study investigated alternative hydrometallurgical leaching strategies. Two selective treatments (NaOH for Al, and NH3 + H2O2 for Ag) and one simultaneous treatment (HNO3 + H2O2) were evaluated for metal recovery efficiency. All methods demonstrated high recovery efficiencies, achieving at least 99% for both metals within 60 min. The investigated methods effectively suppressed NOx emissions without compromising leaching efficiency. These findings confirm that hydrometallurgical leaching techniques incorporating hydrogen peroxide can achieve efficient and environmentally safer recovery of silver and aluminium from solar cells, providing valuable insights into the development of more sustainable recycling practices for photovoltaic waste management. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 9567 KiB  
Article
Characterization of Zno:Al Nanolayers Produced by ALD for Clean Energy Applications
by Marek Szindler, Magdalena Szindler, Krzysztof Matus, Błażej Tomiczek and Barbara Hajduk
Energies 2025, 18(11), 2860; https://doi.org/10.3390/en18112860 - 30 May 2025
Viewed by 462
Abstract
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like [...] Read more.
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like ITO raises concerns over cost and material scarcity, prompting the search for more abundant and scalable alternatives. This study focuses on the fabrication and characterization of aluminum-doped zinc oxide (ZnO:Al, AZO) thin films deposited via Atomic Layer Deposition (ALD), targeting their application as transparent conductive oxides in silicon solar cells. The ZnO:Al thin films were synthesized by alternating supercycles of ZnO and Al2O3 depositions at 225 °C, allowing precise control of composition and thickness. Structural, optical, and electrical properties were assessed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), Raman spectroscopy, spectroscopic ellipsometry, and four-point probe measurements. The results confirmed the formation of uniform, crack-free ZnO:Al thin films with a spinel-type ZnAl2O4 crystalline structure. Optical analyses revealed high transparency (more than 80%) and tunable refractive indices (1.64 ÷ 1.74); the energy band gap was 2.6 ÷ 3.07 eV, while electrical measurements demonstrated low sheet resistance values, reaching 85 Ω/□ for thicker films. This combination of optical and electrical properties underscores the potential of ALD-grown AZO thin films to meet the stringent demands of next-generation photovoltaics. Integration of Zn:Al thin films into silicon solar cells led to an optimized photovoltaic performance, with the best cell achieving a short-circuit current density of 36.0 mA/cm2 and a power conversion efficiency of 15.3%. Overall, this work highlights the technological relevance of ZnO:Al thin films as a sustainable and cost-effective alternative to conventional TCOs, offering pathways toward more accessible and efficient solar energy solutions. Full article
Show Figures

Figure 1

14 pages, 2277 KiB  
Article
Investigation of Annealing Temperature Effect of Tin Oxide on the Efficiency of Planar Structure Perovskite Solar Cells
by Ahmed Hayali and Maan M. Alkaisi
Nanomaterials 2025, 15(11), 807; https://doi.org/10.3390/nano15110807 - 28 May 2025
Viewed by 593
Abstract
Tin oxide (SnO2) is an attractive candidate for the electron transport layer (ETL) in perovskite-based solar cells because of its low temperature process requirement. The ability to form ETL layers at low temperatures opens up opportunities for the use of flexible [...] Read more.
Tin oxide (SnO2) is an attractive candidate for the electron transport layer (ETL) in perovskite-based solar cells because of its low temperature process requirement. The ability to form ETL layers at low temperatures opens up opportunities for the use of flexible and low-cost materials suitable for photovoltaic applications. The ETL is necessary for the extraction of electrons and charge separation from the perovskite active layer. Herein, we present a study of the effect of annealing temperature on SnO2 used as an ETL. The annealing temperature of the SnO2 has a considerable effect on the morphology, crystallinity, grain size, and surface topography of the SnO2 layer. The surface properties of the ETL influence the structural properties of the perovskite films. In this study, the annealing temperature of the SnO2, deposited using spin coating, was changed from 90 °C to 150 °C. The SnO2 films annealed at 120 °C resulted in reduced surface defects, improved electron extraction, and produced a significant increase in the grain size of the perovskite active layers. The increase in grain size led to improved efficiency of the PSCs. Devices annealed at 120 °C yielded PSCs with an average efficiency of 15% for a 0.36 cm2 active area, while devices treated at 90 °C and 150 °C produced an average efficiency of 12%. The PSCs fabricated at low temperatures provide an effective technique for low-cost manufacturing, especially on flexible and polymer-based substrates. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Graphical abstract

8 pages, 693 KiB  
Proceeding Paper
Fabrication and Characterization of Tungsten-Modified TiO2 as a Photo-Anode in a Dye-Sensitized Solar Cell
by Ming-Cheng Kao, Jun-Hong Weng, Chih-Hung Chiang, Kai-Huang Chen, Der-Yuh Lin and Tsung-Kuei Kang
Eng. Proc. 2025, 92(1), 76; https://doi.org/10.3390/engproc2025092076 - 21 May 2025
Viewed by 320
Abstract
The tungsten (W)-modified TiO2 films were fabricated on the fluorine-doped TiO2 substrates using the sol–gel process. The influences of W dopant on the photovoltaic properties of the tungsten-modified TiO2 DSSC were analyzed, too. The crystallization and dye absorption of tungsten-modified [...] Read more.
The tungsten (W)-modified TiO2 films were fabricated on the fluorine-doped TiO2 substrates using the sol–gel process. The influences of W dopant on the photovoltaic properties of the tungsten-modified TiO2 DSSC were analyzed, too. The crystallization and dye absorption of tungsten-modified TiO2 thin films increased more than those of the undoped TiO2 thin films. Furthermore, the optimal performances of the Voc, Jsc, fill factor, and efficiency of the DSSC with tungsten-modified TiO2 thin films were 0.68 V, 16.28 mA/cm2, 65.5%, and 7.03%, respectively. The enhancement was mainly due to the improved crystallinity and increased dye adsorption of the tungsten-modified TiO2 thin films, which contributed to improving the efficiency of the dye-sensitized solar cell. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

22 pages, 2282 KiB  
Article
Enhancement of Photovoltaic Systems Using Plasmonic Technology
by Humam Al-Baidhani, Saif Hasan Abdulnabi and Maher A. R. Sadiq Al-Baghdadi
Processes 2025, 13(5), 1568; https://doi.org/10.3390/pr13051568 - 19 May 2025
Viewed by 472
Abstract
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film [...] Read more.
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film Silver (Ag) technology is introduced. The new design is characterized by enhancing thermal effects, optical power absorption, and output power significantly, thus compensating for the deterioration in the solar cells efficiency when the ambient temperature rises to high levels. The temperature distribution on a PV solar module is determined using a three-dimensional computational fluid dynamics (CFD) model that includes the front glass, crystalline cells, and back sheet. Experimental and analytical results are presented to validate the CFD model. The parameters of temperature distribution, absorbed optical power, and output electrical power are considered to evaluate the device performance during daylight hours in summer. The effects of solar radiation falling on the solar cell, actual temperature of the environment, and wind speed are investigated. The results show that the proposed cells’ temperature is reduced by 1.2 °C thanks to the plasmonic Ag thin-film technology, which leads to enhance 0.48% real value as compared to that in the regular solar cells. Consequently, the absorbed optical power and output electrical power of the new solar cells are improved by 2.344 W and 0.38 W, respectively. Full article
Show Figures

Figure 1

34 pages, 3259 KiB  
Review
Recent Progress in the Recovery and Recycling of Polymers from End-of-Life Silicon PV Modules
by Pradeep Padhamnath
Sustainability 2025, 17(10), 4583; https://doi.org/10.3390/su17104583 - 16 May 2025
Viewed by 867
Abstract
Solar photovoltaic (PV) technology has emerged as the most preferred source of clean energy generation and has been deployed at a large scale. However, end-of-life management of the PV modules is a critical issue that has garnered the recent attention of lawmakers and [...] Read more.
Solar photovoltaic (PV) technology has emerged as the most preferred source of clean energy generation and has been deployed at a large scale. However, end-of-life management of the PV modules is a critical issue that has garnered the recent attention of lawmakers and researchers alike. Consequently, several researchers are actively developing technology to recycle the end-of-life PV modules. Since silicon PV modules account for more than 90% of the modules deployed globally, most of these efforts are focused on recycling crystalline silicon PV modules. Researchers have primarily focused on recovering pure silver from the contacts and pure Si from the solar cells. However, to ensure complete recyclability of such panels, the different polymers used in these modules must also be recycled. This review addresses the issue of recycling the polymers from end-of-life c-Si modules. Scopus and Google Scholar were used to search for the relevant literature. This review presents the current state-of-the-art technology related to polymer recycling found in the PV modules, the challenges encountered in their recycling, and the outlook. While research on the recycling of polymers has progressed in the last few decades, the instances of their applications in the recycling of polymers from PV panels are rarely reported in the literature. In this work, certain technical pathways, which can be employed to recycled polymers obtained from end-of-life PV panels, are presented. Recycling the polymers from the end-of-life silicon PV modules is crucial for improving the sustainability of solar PV technology. Full article
Show Figures

Graphical abstract

15 pages, 4135 KiB  
Article
High-Performance Perovskite Solar Cells Enabled by Reduced MACl Additives in NMP-Based Solvents
by Junhyuk Gong, Simon MoonGeun Jung and Gyu Min Kim
Energies 2025, 18(10), 2542; https://doi.org/10.3390/en18102542 - 14 May 2025
Viewed by 747
Abstract
Methylammonium chloride (MACl) in perovskite solar cells (PSCs) is a key additive known to enhance film quality in dimethyl sulfoxide (DMSO)-based systems, where an optimal concentration of 50 mol% is typically required. However, alternative solvent systems, such as N-methyl-2-pyrrolidone (NMP), have shown potential [...] Read more.
Methylammonium chloride (MACl) in perovskite solar cells (PSCs) is a key additive known to enhance film quality in dimethyl sulfoxide (DMSO)-based systems, where an optimal concentration of 50 mol% is typically required. However, alternative solvent systems, such as N-methyl-2-pyrrolidone (NMP), have shown potential to reduce additive concentrations while maintaining high performance. This study explored the NMP/DMF (1:9) solvent system and its impact on MACl optimization. The optimal concentration of MACl in NMP-based systems was reduced to 20–30 mol%, representing a substantial decrease from the 50 mol% typically required in DMSO-based formulations. Films produced under these conditions exhibited superior crystallinity, as evidenced by narrower full-width at half maximum (FWHM) values in X-ray diffraction (XRD), and reduced defect densities. These structural improvements translated into enhanced optoelectronic properties, with devices achieving efficiency exceeding 23%, compared with ~20% for DMSO-based counterparts. Furthermore, the NMP-based system demonstrated improved long-term stability under continuous illumination. Full article
Show Figures

Figure 1

20 pages, 8233 KiB  
Article
Transformation of TiN to TiNO Films via In-Situ Temperature-Dependent Oxygen Diffusion Process and Their Electrochemical Behavior
by Sheilah Cherono, Ikenna Chris-Okoro, Mengxin Liu, R. Soyoung Kim, Swapnil Nalawade, Wisdom Akande, Mihai Maria-Diana, Johannes Mahl, Christopher Hale, Junko Yano, Shyam Aravamudhan, Ethan Crumlin, Valentin Craciun and Dhananjay Kumar
Metals 2025, 15(5), 497; https://doi.org/10.3390/met15050497 - 29 Apr 2025
Viewed by 893
Abstract
Titanium oxynitride (TiNO) thin films represent a multifaceted material system applicable in diverse fields, including energy storage, solar cells, sensors, protective coatings, and electrocatalysis. This study reports the synthesis of TiNO thin films grown at different substrate temperatures using pulsed laser deposition. A [...] Read more.
Titanium oxynitride (TiNO) thin films represent a multifaceted material system applicable in diverse fields, including energy storage, solar cells, sensors, protective coatings, and electrocatalysis. This study reports the synthesis of TiNO thin films grown at different substrate temperatures using pulsed laser deposition. A comprehensive structural investigation was conducted by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Non-Rutherford backscattering spectrometry (N-RBS), and X-ray absorption spectroscopy (XAS), which facilitated a detailed analysis that determined the phase, composition, and crystallinity of the films. Structural control was achieved via temperature-dependent oxygen in-diffusion, nitrogen out-diffusion, and the nucleation growth process related to adatom mobility. The XPS analysis indicates that the TiNO films consist of heterogeneous mixtures of TiN, TiNO, and TiO2 phases with temperature-dependent relative abundances. The correlation between the structure and electrochemical behavior of the thin films was examined. The TiNO films with relatively higher N/O ratio, meaning less oxidized, were more electrochemically active than the films with lower N/O ratio, i.e., more oxidized films. Films with higher oxidation levels demonstrated enhanced crystallinity and greater stability under electrochemical polarization. These findings demonstrate the importance of substrate temperature control in tailoring the properties of TiNO film, which is a fundamental part of designing and optimizing an efficient electrode material. Full article
Show Figures

Figure 1

22 pages, 10318 KiB  
Article
Enhanced Efficiency of Polycrystalline Silicon Solar Cells Using ZnO-Based Nanostructured Layers
by Mihai Oproescu, Adriana-Gabriela Schiopu, Valentin-Marian Calinescu and Janusz D. Fidelus
Crystals 2025, 15(5), 398; https://doi.org/10.3390/cryst15050398 - 24 Apr 2025
Viewed by 589
Abstract
In the context of the global energy transition, enhancing the efficiency of polycrystalline silicon-based solar cells remains a critical research priority. This study investigates the integration of ZnO-based nanostructured layers. ZnO and Al-doped ZnO nanoparticles, synthesized via hydrothermal methods and concentrated solar power [...] Read more.
In the context of the global energy transition, enhancing the efficiency of polycrystalline silicon-based solar cells remains a critical research priority. This study investigates the integration of ZnO-based nanostructured layers. ZnO and Al-doped ZnO nanoparticles, synthesized via hydrothermal methods and concentrated solar power (CSP) vapor condensation, exhibiting diverse morphologies—nanorods, spheres, and whisker structures—were deposited onto commercial solar cells using the spin coating technique. Structural, morphological, and spectroscopic analyses confirmed the formation of crystalline layers with high active surface areas and controlled morphology. Photovoltaic performance was assessed using a dedicated hardware–software system under real sunlight conditions. The results demonstrate a significant increase in energy efficiency, reaching up to 10.97%, compared with 1.51% for polycrystalline silicon cells without any supplementary layers. This improvement is attributed to enhanced light absorption, reduced carrier recombination, and more efficient charge transport, driven by nanoscale design and doping. This study underscores the importance of sustainable synthesis and morphological control in the development of high-performance and cost-effective solar technologies. Full article
Show Figures

Figure 1

10 pages, 4064 KiB  
Article
Enhancement of Optoelectronic Properties of Multicrystalline Silicon Using Al-NPs and SiNx Layer
by Mohamed Ben Rabha, Ameny El Haj, Achref Mannai, Karim Choubani, Mohammed A. Almeshaal and Wissem Dimassi
Crystals 2025, 15(4), 381; https://doi.org/10.3390/cryst15040381 - 21 Apr 2025
Viewed by 420
Abstract
In this study, we investigated and compared the influence of alumina nanoparticles (Al-NPs) and silicon nitride (SiNx) layers individually deposited on multi-crystalline silicon (mc-Si) on mc-Si’s structural, optical, and optoelectronic characteristics to improve surface quality. Alumina nanoparticle-covered multi-crystalline silicon, immersion in [...] Read more.
In this study, we investigated and compared the influence of alumina nanoparticles (Al-NPs) and silicon nitride (SiNx) layers individually deposited on multi-crystalline silicon (mc-Si) on mc-Si’s structural, optical, and optoelectronic characteristics to improve surface quality. Alumina nanoparticle-covered multi-crystalline silicon, immersion in HF/H2O2/HNO3, and porous silicon (PS) covered with a silicon nitride structure are key components in achieving high electronic quality in multi-crystalline silicon. Surface reflectivity decreased from 27% to a minimum value of 2% for alumina nanoparticles/PS and a minimum value of 5% for silicon nitride/PS at a wavelength of 930 nm. Meanwhile, the minority carrier diffusion length increased from 2 µm to 300 µm for porous silicon combined with silicon nitride and to 100 µm for alumina nanoparticles/porous silicon. Two-dimensional current mapping further demonstrated a considerable enhancement in the generated current, rising from 2.8 nA for untreated mc-Si to 34 nA for Al-NPs/PS and 66 nA for PS/SiNx. These results confirm that the surface passivation of mc-Si using Al-NPs or PS combined with SiNx is a promising and efficient method to improve the electrical quality of mc-Si wafers, contributing to the development of high-performance mc-Si-based solar cells. Full article
Show Figures

Figure 1

12 pages, 2381 KiB  
Article
FACl as a Bifunctional Additive to Enhance the Performance of Lead-Free Antimony-Based Perovskite Solar Cells
by Xinyu Gao, Zihao Gao, Zhen Sun, Ping Song, Xiyuan Feng and Zhixin Jin
Micromachines 2025, 16(4), 379; https://doi.org/10.3390/mi16040379 - 27 Mar 2025
Viewed by 520
Abstract
Lead halide perovskite solar cells (PSCs) have shown tremendous progress in the last few years. However, highly toxic Pb and its instability have restricted their further development. On the other hand, antimony-based perovskites such as cesium antimony iodide (Cs3Sb2I [...] Read more.
Lead halide perovskite solar cells (PSCs) have shown tremendous progress in the last few years. However, highly toxic Pb and its instability have restricted their further development. On the other hand, antimony-based perovskites such as cesium antimony iodide (Cs3Sb2I9) have shown high stability but low power conversion efficiency (PCE) due to the limited transfer of photocarriers and the poor quality of films. Here, we present a novel method to improve the performance of Cs3Sb2I9 PSCs through a FACl-modified buried interface. FACl acts as a bi-functional additive, and FA incorporation enhances the crystallinity and light absorption of films. Furthermore, treatment with FACl optimizes the level position of Cs3Sb2I9. In addition, transient photovoltage and transient photocurrent were employed to confirm the reduction of charge recombination and superior carrier transportation. By using a planar device structure, we found the PCE of a FACl–Cs3Sb2I9-based device to be 1.66%. The device, stored for 2 months under N2 conditions, showed a negligible loss in PCE. Overall, this study provides a new strategy to further enhance the performance of Sb-based PSCs. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

Back to TopTop