Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = crystal plasticity theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 5868 KiB  
Article
A Novel Method to Determine Deformation Strain in a High-Temperature Mushy Zone for a Typical Electrical Strip Under Twin-Roll Strip Casting
by Wenli Hu, Yali Hou, Jianhui Shi, Jinhua Zhao and Lifeng Ma
Crystals 2025, 15(2), 178; https://doi.org/10.3390/cryst15020178 - 13 Feb 2025
Cited by 1 | Viewed by 527
Abstract
An evaluation method was proposed to calculate the deformation strain of a high-temperature mushy zone (HTMZ) related to twin-roll strip casting (TSC) with regard to typical 6.5 wt.% Si electrical steel (6.5 Si steel) on the basis of the crystal—plasticity theory. The viscoplasticity [...] Read more.
An evaluation method was proposed to calculate the deformation strain of a high-temperature mushy zone (HTMZ) related to twin-roll strip casting (TSC) with regard to typical 6.5 wt.% Si electrical steel (6.5 Si steel) on the basis of the crystal—plasticity theory. The viscoplasticity self-consistent (VPSC) model was applied to calculate the evolution discipline of crystallographic orientation (CRO) for the studied 6.5 Si steel processed by different deformation strains under a deformation mode of plane strain, and the deformation strain of HTMZ for the studied 6.5 Si steel related to TSC was further estimated by comparing the CRO feature achieved by theoretical calculation and experimental characterization. Results indicate that the distribution feature of CRO obtained by theoretical calculation becomes increasingly similar to those obtained through experimental characterization with the deformation strains increasing from 0 to 1.5. The ratio between the distribution intensities corresponding to R-Cube texture, the typical rolling texture of α-fiber, and the Cube texture achieved by theoretical calculation is the closest to the value obtained by experimental characterization at deformation strain of 1.4, and the deformation strain of HTMZ for the studied 6.5 Si steel involved in TSC is determined to be ~1.4. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

20 pages, 11772 KiB  
Article
Modeling and Simulation of Fatigue Crack Initiation Process Based on Field Theory of Multiscale Plasticity (FTMP): Part II: Modeling Vacancy Formation and Coupling with Diffusion Analysis
by Xinping You and Tadashi Hasebe
Metals 2024, 14(12), 1406; https://doi.org/10.3390/met14121406 - 9 Dec 2024
Cited by 1 | Viewed by 1245
Abstract
Cyclic straining simulations using incompatibility-incorporated crystal plasticity-FEM, which exhibit PSB ladder structure evolutions as detailed in Part I, are coupled with diffusion analyses of produced vacancies. A new vacancy source model is introduced based on the Field Theory of Multiscale Plasticity (FTMP), interpreting [...] Read more.
Cyclic straining simulations using incompatibility-incorporated crystal plasticity-FEM, which exhibit PSB ladder structure evolutions as detailed in Part I, are coupled with diffusion analyses of produced vacancies. A new vacancy source model is introduced based on the Field Theory of Multiscale Plasticity (FTMP), interpreting the relationship between the incompatibility rate and the flux of dislocation density as edge dipole annihilation processes. Both direct and indirect coupling diffusion analyses, with and without cyclic straining, demonstrate that varying incompatibility rates tend to further promote vacancy diffusion, leading to surface grooving, enhanced extension rates, and eventual transition to cracks. The findings reveal that (i) the evolved PSB ladder structure serves as a site for vacancy formation, (ii) it provides a diffusion path toward the specimen surface, and (iii) it significantly enhances groove extension rates. These factors effectively facilitate the transition from a “groove” to a “crack”, evidenced by the abrupt acceleration of the extension rate, mirroring systematic experimental observations. These achievements validate the FTMP’s capability to simulate complex phenomena and significantly deepen our understanding of slip band–fatigue crack transition mechanisms. Full article
Show Figures

Figure 1

28 pages, 11903 KiB  
Article
Modeling and Simulation of Fatigue Crack Initiation Process Based on Field Theory of Multiscale Plasticity (FTMP): Part I: PSB Ladder Formation and Verification
by Xinping You and Tadashi Hasebe
Metals 2024, 14(12), 1392; https://doi.org/10.3390/met14121392 - 4 Dec 2024
Cited by 1 | Viewed by 1167
Abstract
In this study, we successfully reproduced the persistent slip band (PSB) with laddered patterning, showcasing the predictive capability of the framework of Field Theory of Multiscale Plasticity (FTMP) without relying on ad hoc models, intricate mathematical models, or elaborate finite element discretization. The [...] Read more.
In this study, we successfully reproduced the persistent slip band (PSB) with laddered patterning, showcasing the predictive capability of the framework of Field Theory of Multiscale Plasticity (FTMP) without relying on ad hoc models, intricate mathematical models, or elaborate finite element discretization. The FTMP-incorporated CP-FEM simulation not only reasonably replicates the experimentally observed laddered morphology and PSB but also effectively simulates surface roughening and grooving, independent of vacancy formation and diffusion. These results highlight the significance of laddered morphology and set the stage for further investigations into the effects of vacancy formation, as extended in the subsequent paper. Leveraging incompatibility tensor-based degrees of freedom, the FTMP framework offers exceptional capabilities for natural modeling dislocation substructures typically overlooked in conventional approaches, positioning it as a transformative tool for advancing our understanding of the mechanisms that dictate slip band-fatigue crack transitions. Full article
Show Figures

Graphical abstract

14 pages, 7544 KiB  
Article
Nanoscale Indentation-Induced Crystal Plasticity in CrCoNi Medium-Entropy Alloys Containing Short-Range Order
by Meijing Ren, Fengbo Han, Xu Zhu, Yue Peng, Yanqing Zu, Peitao Liu and Ailing Feng
Materials 2024, 17(23), 5932; https://doi.org/10.3390/ma17235932 - 4 Dec 2024
Cited by 16 | Viewed by 969
Abstract
CrCoNi medium-entropy alloys (MEAs), characterised by their high configurational entropies, have become a research hotspot in materials science. Recent studies have indicated that MEAs exhibit short-range order (SRO), which affects their deformation mechanisms. In this study, the micro-mechanisms of SRO within the framework [...] Read more.
CrCoNi medium-entropy alloys (MEAs), characterised by their high configurational entropies, have become a research hotspot in materials science. Recent studies have indicated that MEAs exhibit short-range order (SRO), which affects their deformation mechanisms. In this study, the micro-mechanisms of SRO within the framework of mesoscale continuum mechanics are mathematically evaluated using an advanced, non-local crystal plasticity constitutive framework. Furthermore, a crystal plasticity model considering the impact of SRO on slip is established. By combining nanoindentation simulations and multi-level grain model tensile simulations, the load–displacement and stress–strain curves demonstrated that the presence of SRO increases the hardness of MEAs. More specifically, considering the distribution of shear strain and geometrically necessary dislocations, the heterogeneity of MEAs increases with an increase in the degree of SRO. This study not only enriches the crystal plasticity theory but also provides references for the microstructure and performance regulation of high-performance multi-level grain structure materials. Full article
Show Figures

Graphical abstract

27 pages, 2408 KiB  
Article
Study of the Thermomechanical Behavior of Single-Crystal and Polycrystal Copper
by Sudip Kunda, Noah J. Schmelzer, Akhilesh Pedgaonkar, Jack E. Rees, Samuel D. Dunham, Charles K. C. Lieou, Justin C. M. Langbaum and Curt A. Bronkhorst
Metals 2024, 14(9), 1086; https://doi.org/10.3390/met14091086 - 22 Sep 2024
Cited by 5 | Viewed by 1697
Abstract
This research paper presents an experimental, theoretical, and numerical study of the thermomechanical behavior of single-crystal and polycrystal copper under uniaxial stress compression loading at varying rates of deformation. The thermomechanical theory is based on a thermodynamically consistent framework for single-crystal face-centered cubic [...] Read more.
This research paper presents an experimental, theoretical, and numerical study of the thermomechanical behavior of single-crystal and polycrystal copper under uniaxial stress compression loading at varying rates of deformation. The thermomechanical theory is based on a thermodynamically consistent framework for single-crystal face-centered cubic metals, and assumes that all plastic power is partitioned between stored energy due to dislocation structure evolution (configurational) and thermal (kinetic vibrational) energy. An expression for the Taylor–Quinney factor is proposed, which is a simple function of effective temperature and is allowed by second-law restrictions. This single-crystal model is used for the study of single- and polycrystal copper. New polycrystal thermomechanical experimental results are presented at varying strain rates. The temperature evolution on the surface of the polycrystal samples is measured using mounted thermocouples. Thermomechanical numerical single- and polycrystal simulations were performed for all experimental conditions ranging between 103 and 5 × 103 s1. A Taylor homogenization model is used to represent polycrystal behavior. The numerical simulations of all conditions compare reasonable well with experimental results for both stress and temperature evolution. Given our lack of understanding of the mechanisms responsible for the coupling of dislocation glide and atomic vibration, this implies that the proposed theory is a reasonably accurate approximation of the single-crystal thermomechanics. Full article
Show Figures

Figure 1

13 pages, 3851 KiB  
Article
Fracture Model of Al–Cu Alloys with Gradient Crystals Based on Crystal Plasticity
by Mao Xiao, Ji Yao and Chunyang Huang
Metals 2024, 14(6), 694; https://doi.org/10.3390/met14060694 - 12 Jun 2024
Cited by 2 | Viewed by 1432
Abstract
Gradient grain structure materials with superior mechanical properties of high strength and high toughness have attracted widespread attention. Gradient materials can effectively improve toughness by constructing a microstructure from fine to coarse crystals inside the material, which has gradually become a hotspot of [...] Read more.
Gradient grain structure materials with superior mechanical properties of high strength and high toughness have attracted widespread attention. Gradient materials can effectively improve toughness by constructing a microstructure from fine to coarse crystals inside the material, which has gradually become a hotspot of attention in the academic and engineering communities. In this paper, based on the crystal plasticity intrinsic theory, dislocation density is introduced as a characterization quantity, and cohesive units are added at grain boundaries to simulate damage fractures. The results of this study reveal the fracture damage mechanism of gradient crystal structure materials, providing new ideas and methods for the design of gradient materials. Full article
Show Figures

Figure 1

15 pages, 3130 KiB  
Article
Elastic Properties of Alloyed Cementite M3X (M = Fe, Cr; X = C, B) Phases from First-Principle Calculations and CALPHAD Model
by Yongxing Huang, Yang Lin, Guangchi Wang, Yehua Jiang and Xiaoyu Chong
Molecules 2024, 29(5), 1022; https://doi.org/10.3390/molecules29051022 - 27 Feb 2024
Cited by 2 | Viewed by 1557
Abstract
Fe-Cr-C-B wear-resistant steels are widely used as wear-resistant alloys in harsh environments. The M3X (M = Fe, Cr; X = C, B) cementite-type material is a commonly used strengthening phase in these alloys. This study investigated the mechanical properties of cementite [...] Read more.
Fe-Cr-C-B wear-resistant steels are widely used as wear-resistant alloys in harsh environments. The M3X (M = Fe, Cr; X = C, B) cementite-type material is a commonly used strengthening phase in these alloys. This study investigated the mechanical properties of cementite (Fe, Cr)3(C, B) using the first-principle density functional theory. We constructed crystal structures of (Fe, Cr)3(C, B) with different concentrations of Cr and B. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and hardness of the material were calculated, and a comprehensive mechanical property database based on CALPHAD modeling of the full composition was established. The optimal concentrations of the (Fe, Cr)3(C, B) phase were systematically evaluated across its entire composition range. The material exhibited the highest hardness, shear modulus, and Young’s modulus at Cr and B concentrations in the range of 70–95 at% and 40 at%, respectively, rendering it difficult to compress and relatively poor in machinability. When the B content exceeded 90 at%, and the Cr content was zero, the shear modulus and hardness were low, resulting in poor resistance to deformation, reduced stiffness, and ease of plastic processing. This study provides an effective alloying strategy for balancing the brittleness and toughness of (Fe, Cr)3(C, B) phases. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

17 pages, 4260 KiB  
Article
Numerical Simulation of the Residual Stress at the Interface between Thermal Barrier Coating and Nickel-Based Single-Crystal Superalloy Based on Crystal Plasticity Theory
by Shuainan Liu, Weize Wang, Ting Yang, Yangguang Liu, Chen Liu, Xixi Yang and Xiaoqin Zhang
Coatings 2024, 14(1), 22; https://doi.org/10.3390/coatings14010022 - 24 Dec 2023
Cited by 1 | Viewed by 1809
Abstract
Residual stress plays an important role in the formation and growth of cracks in thermal barrier coatings and single-crystal superalloy substrates. In this study, a finite element model for a planar double-layer thermal barrier coating and a crystal plasticity finite element model based [...] Read more.
Residual stress plays an important role in the formation and growth of cracks in thermal barrier coatings and single-crystal superalloy substrates. In this study, a finite element model for a planar double-layer thermal barrier coating and a crystal plasticity finite element model based on dislocation slip-induced plastic deformation of single-crystal materials were established to analyze the residual stress in the coatings and the substrate, considering the creep and crystal plasticity of the substrate materials. The simulation results show that the thermal barrier coatings bear most of the stress generated by high temperatures, and the residual stress of the substrate is small. By comparing the two material properties to calculate the interface stress when the amplitude of the interface between the substrate and the coating is 30 μm and the thickness of the thermal grown oxide layer is 5 µm, the interfacial stress of the substrate at the macro scale was found to be similar to the interfacial stress at the micro slip system scale. Based on the cumulative shear strain, it was determined that the [001]-, [011]-, and [111]-oriented alloys activated the 12, 8, and 4 groups, respectively, under the combined action of thermal stress and centrifugal force of the coating. Comparing the activation of different initial orientation slip systems and the magnitude of the yield stress provides a theoretical foundation to study the structural integrity of single-crystal alloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 3655 KiB  
Review
Research Progress on the Damping Mechanism of Magnesium Alloys
by Jinxing Wang, Zhicheng Wan, Cong Dang, Yi Zou, Jingfeng Wang and Fusheng Pan
Materials 2023, 16(23), 7318; https://doi.org/10.3390/ma16237318 - 24 Nov 2023
Cited by 5 | Viewed by 2623
Abstract
Magnesium alloys with high damping, high specific strength and low density have attracted great attention in recent years. However, the application of magnesium alloys is limited by the balance between their mechanical and damping properties. The strength and plasticity of magnesium alloys with [...] Read more.
Magnesium alloys with high damping, high specific strength and low density have attracted great attention in recent years. However, the application of magnesium alloys is limited by the balance between their mechanical and damping properties. The strength and plasticity of magnesium alloys with high damping performance often cannot meet the industrial requirements. Understanding the damping mechanism of magnesium alloys is significant for developing new materials with high damping and mechanical properties. In this paper, the damping mechanisms and internal factors of the damping properties of magnesium alloys are comprehensively reviewed. Some damping mechanisms have been studied by many scholars, and it has been found that they can be used to explain damping performance. Among existing damping mechanisms, the G-L dislocation theory, twin damping mechanism and interface damping mechanism are considered common. In addition, some specific long-period stacking ordered (LPSO) phases’ crystal structures are conducive to dislocation movement, which is good for improving damping performance. Usually, the damping properties of magnesium alloys are affected by some internal factors directly, such as dislocation density, solute atoms, grain texture and boundaries, etc. These internal factors affect damping performance by influencing the dissipation of energy within the crystal. Scholars are working to find novel damping mechanisms and suitable solute atoms that can improve damping performance. It is important to understand the main damping mechanisms and the internal factors for guiding the development of novel high-damping magnesium alloys. Full article
(This article belongs to the Special Issue Review and Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

23 pages, 14518 KiB  
Article
Self-Lubricating and Shape-Stable Phase-Change Materials Based on Epoxy Resin and Vegetable Oils
by Svetlana O. Ilyina, Irina Y. Gorbunova, Veronika V. Makarova, Michael L. Kerber and Sergey O. Ilyin
Polymers 2023, 15(19), 4026; https://doi.org/10.3390/polym15194026 - 9 Oct 2023
Cited by 4 | Viewed by 2056
Abstract
Palm or coconut oil is capable of dissolving in a mixture of bisphenol A-based epoxy resin and a high-temperature hardener (4,4′-diaminodiphenyl sulfone) when heated and then forms a dispersed phase as a result of cross-linking and molecular weight growth of the epoxy medium. [...] Read more.
Palm or coconut oil is capable of dissolving in a mixture of bisphenol A-based epoxy resin and a high-temperature hardener (4,4′-diaminodiphenyl sulfone) when heated and then forms a dispersed phase as a result of cross-linking and molecular weight growth of the epoxy medium. Achieving the temporary miscibility between the curing epoxy matrix and the vegetable oil allows a uniform distribution of vegetable oil droplets in the epoxy medium. This novel approach to creating a dispersed phase-change material made a cured epoxy polymer containing up to 20% oil. The miscibility of epoxy resin and oil was studied by laser interferometry, and phase state diagrams of binary mixtures were calculated according to theory and experiments. A weak effect of oil on the viscosity and kinetics of the epoxy resin curing was demonstrated by rotational rheometry. According to differential scanning calorimetry and dynamic mechanical analysis, the oil plasticizes the epoxy matrix slightly, expanding its glass transition region towards low temperatures and reducing its elastic modulus. In the cured epoxy matrix, oil droplets have a diameter of 3–14 µm and are incapable of complete crystallization due to their multi-component chemical composition and non-disappeared limited miscibility. The obtained phase-change materials have relatively low specific energy capacity but can be used alternatively as self-lubricating low-noise materials due to dispersed oil, high stiffness, and reduced friction coefficient. Palm oil crystallizes more readily, better matching the creation of phase-change materials, whereas coconut oil crystallization is more suppressed, making it better for reducing the friction coefficient of the oil-containing material. Full article
(This article belongs to the Special Issue Polymeric Phase Change Materials)
Show Figures

Graphical abstract

20 pages, 3476 KiB  
Review
Modelling Irradiation Effects in Metallic Materials Using the Crystal Plasticity Theory—A Review
by Karol Frydrych
Crystals 2023, 13(5), 771; https://doi.org/10.3390/cryst13050771 - 5 May 2023
Cited by 3 | Viewed by 3281
Abstract
The review starts by highlighting the significance of nuclear power plants in the contemporary world, especially its indispensable role in the global efforts to reduce CO2 emissions. Then, it describes the impact of irradiation on the microstructure and mechanical properties of reactor [...] Read more.
The review starts by highlighting the significance of nuclear power plants in the contemporary world, especially its indispensable role in the global efforts to reduce CO2 emissions. Then, it describes the impact of irradiation on the microstructure and mechanical properties of reactor structural materials. The main part provides the reader with a thorough overview of crystal plasticity models developed to address the irradiation effects so far. All three groups of the most important materials are included. Namely, the Zr alloys used for fuel cladding, austenitic stainless steels used for reactor internals, and ferritic steels used for reactor pressure vessels. Other materials, especially those considered for construction of future fission and fusion nuclear power plants, are also mentioned. The review also pays special attention to ion implantation and instrumented nanoindentation which are common ways to substitute costly and time-consuming neutron irradiation campaigns. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

17 pages, 1764 KiB  
Review
A Critical Review of von Mises Criterion for Compatible Deformation of Polycrystalline Materials
by Yan Huang and Jun Jiang
Crystals 2023, 13(2), 244; https://doi.org/10.3390/cryst13020244 - 31 Jan 2023
Cited by 17 | Viewed by 5932
Abstract
A von Mises criterion for compatible deformation states that five independent slip systems must operate for polycrystals to deform uniformly and without failure at the grain boundaries, which is supported by the Taylor–Bishop–Hill theory or simply the Taylor model, defining the laws of [...] Read more.
A von Mises criterion for compatible deformation states that five independent slip systems must operate for polycrystals to deform uniformly and without failure at the grain boundaries, which is supported by the Taylor–Bishop–Hill theory or simply the Taylor model, defining the laws of plastic deformation of polycrystalline aggregates and being one of the key cornerstones of crystal plasticity theory. However, the criterion has fundamental flaws as it is based on an unfounded correlation between phenomenological material flow behaviour in continuum mechanics and crystal structure dependent dislocation slip, and there has been no experimental evidence to show simultaneous operation of five independent slip systems. In this paper, the Von Mises criterion and the Taylor model are revisited and examined critically, and the fundamental issues related to the requirement of independent slip systems for compatible deformation and the selection of the active slip systems are addressed. Detailed analysis is performed of the stress state that eliminates the possibility of the simultaneous operation of five independent slip systems, and of the relative displacement vector due to the dislocation slip which defines the quantity of the strain that can be expressed by a strain tensor, instead of individual strain components. Discussions are made to demonstrate that although three linearly independent slip systems are essentially sufficient for compatible deformation, one slip system, being selected according to Schmidt law, dominates at a time in a characteristic domain as deformation accommodation occurs between grains or characteristic domains rather than at each point. Full article
(This article belongs to the Special Issue Crystal Plasticity (Volume III))
Show Figures

Figure 1

17 pages, 5032 KiB  
Article
Diffusion and Velocity Correlations of the Phase Transitions in a System of Macroscopic Rolling Spheres
by Francisco Vega Reyes, Álvaro Rodríguez-Rivas, Juan F. González-Saavedra and Miguel A. López-Castaño
Entropy 2022, 24(11), 1684; https://doi.org/10.3390/e24111684 - 18 Nov 2022
Viewed by 2473
Abstract
We study an air-fluidized granular monolayer composed of plastic spheres which roll on a metallic grid. The air current is adjusted so that the spheres never lose contact with the grid and so that the dynamics may be regarded as pseudo two dimensional [...] Read more.
We study an air-fluidized granular monolayer composed of plastic spheres which roll on a metallic grid. The air current is adjusted so that the spheres never lose contact with the grid and so that the dynamics may be regarded as pseudo two dimensional (or two dimensional, if the effects of the sphere rolling are not taken into account). We find two surprising continuous transitions, both of them displaying two coexisting phases. Moreover, in all the cases, we found the coexisting phases display a strong energy non-equipartition. In the first transition, at a weak fluidization, a glass phase coexists with a disordered fluid-like phase. In the second transition, a hexagonal crystal coexists with the fluid phase. We analyze, for these two-phase systems, the specific diffusive properties of each phase, as well as the velocity correlations. Surprisingly, we find a glass phase at a very low packing fraction and for a wide range of granular temperatures. Both phases are also characterized by strong anticorrelated velocities upon a collision. Thus, the dynamics observed for this quasi two-dimensional system unveil phase transitions with peculiar properties, very different from the predicted behavior in well-know theories for their equilibrium counterparts. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

16 pages, 2802 KiB  
Article
Isomorph Invariance in the Liquid and Plastic-Crystal Phases of Asymmetric-Dumbbell Models
by Eman Attia, Jeppe C. Dyre and Ulf R. Pedersen
Liquids 2022, 2(4), 388-403; https://doi.org/10.3390/liquids2040022 - 9 Nov 2022
Cited by 1 | Viewed by 1851
Abstract
We present a numerical study of the asymmetric dumbbell model consisting of “molecules” constructed as two different-sized Lennard-Jones spheres connected by a rigid bond. In terms of the largest (A) particle radius, we report data for the structure and dynamics of the liquid [...] Read more.
We present a numerical study of the asymmetric dumbbell model consisting of “molecules” constructed as two different-sized Lennard-Jones spheres connected by a rigid bond. In terms of the largest (A) particle radius, we report data for the structure and dynamics of the liquid phase for the bond lengths 0.05, 0.1, 0.2, and 0.5, and analogous data for the plastic-crystal phase for the bond lengths 0.05, 0.1, 0.2, and 0.3. Structure is probed by means of the AA, AB, and BB radial distribution functions. Dynamics is probed via the A and B particle mean-square displacement as functions of time and via the rotational time-autocorrelation function. Consistent with the systems’ strong virial potential-energy correlations, the structure and dynamics are found to be isomorph invariant to a good approximation in reduced units, while they generally vary considerably along isotherms of the same (20%) density variation. Even the rotational time-autocorrelation function, which due to the constant bond length is not predicted to be isomorph invariant, varies more along isotherms than along isomorphs. Our findings provide the first validation of isomorph-theory predictions for plastic crystals for which isomorph invariance, in fact, is found to apply better than in the liquid phase of asymmetric-dumbbell models. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

19 pages, 5922 KiB  
Article
Effect of Pre-Existing Micro-Defects on Cutting Force and Machined Surface Quality Involved in the Ball-End Milling Repairing of Flawed KDP Crystal Surfaces
by Hongqin Lei, Jian Cheng, Dinghuai Yang, Linjie Zhao, Mingjun Chen, Jinghe Wang, Qi Liu, Wenyu Ding and Guang Chen
Materials 2022, 15(21), 7407; https://doi.org/10.3390/ma15217407 - 22 Oct 2022
Cited by 9 | Viewed by 2230
Abstract
When serving in extremely high-power laser conditions, KH2PO4 (KDP) surfaces are susceptible to incur laser damage points (also known as defects). Using micro-ball end milling cutters to repair and remove the pre-existing damage points on the flawed KDP crystal surface [...] Read more.
When serving in extremely high-power laser conditions, KH2PO4 (KDP) surfaces are susceptible to incur laser damage points (also known as defects). Using micro-ball end milling cutters to repair and remove the pre-existing damage points on the flawed KDP crystal surface is the most effective method to control the growth of laser damage points on KDP crystal surfaces and prolong their service life. However, there are various forms of micro-defects (such as pits, scratches and brittle fractures) around the laser damage points on KDP crystal surfaces which possess remarkable effects on the micro-milling repair process and consequently deteriorate the repair quality. In this work, combined with nano-indentation experiments, elastic–plastic mechanics and fracture mechanics theory, a constitutive model considering the anisotropic property of KDP crystals and a three-dimensional (3D) finite element model (FEM) were established to simulate the cutting force and surface topography involved in the ball-end milling repairing of flawed KDP crystal surfaces. Besides, the micro-milling experiments were conducted to evaluate the change of cutting force and machined surface quality in the presence of micro-defects with various feed rates. The results show that micro-defects would induce the fluctuation of cutting force and a change of the undeformed cutting thickness (UCT) in the process of repairing the damage points on the crystal surface, which would lead to the brittle–ductile transition (BDT) and affect the machined surface quality. The machined surface quality was found to be deteriorated by the pre-existing micro-defects when the UCT was small (the UCT was less than 375 nm). On the contrary, brittle mode cutting in the local area can be transformed into ductile mode cutting, resulting in an improvement of repaired surface quality that is exhibited by the cutting force and microtopography. This work has great theoretical significance and engineering practical value for the promotion and application of micro-milling repairing technology in the practical manufacturing and operation of KDP optics applied to high-power laser systems. Full article
Show Figures

Figure 1

Back to TopTop