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Abstract: When serving in extremely high-power laser conditions, KH2PO4 (KDP) surfaces are
susceptible to incur laser damage points (also known as defects). Using micro-ball end milling
cutters to repair and remove the pre-existing damage points on the flawed KDP crystal surface is
the most effective method to control the growth of laser damage points on KDP crystal surfaces
and prolong their service life. However, there are various forms of micro-defects (such as pits,
scratches and brittle fractures) around the laser damage points on KDP crystal surfaces which possess
remarkable effects on the micro-milling repair process and consequently deteriorate the repair quality.
In this work, combined with nano-indentation experiments, elastic–plastic mechanics and fracture
mechanics theory, a constitutive model considering the anisotropic property of KDP crystals and a
three-dimensional (3D) finite element model (FEM) were established to simulate the cutting force and
surface topography involved in the ball-end milling repairing of flawed KDP crystal surfaces. Besides,
the micro-milling experiments were conducted to evaluate the change of cutting force and machined
surface quality in the presence of micro-defects with various feed rates. The results show that
micro-defects would induce the fluctuation of cutting force and a change of the undeformed cutting
thickness (UCT) in the process of repairing the damage points on the crystal surface, which would
lead to the brittle–ductile transition (BDT) and affect the machined surface quality. The machined
surface quality was found to be deteriorated by the pre-existing micro-defects when the UCT was
small (the UCT was less than 375 nm). On the contrary, brittle mode cutting in the local area can be
transformed into ductile mode cutting, resulting in an improvement of repaired surface quality that is
exhibited by the cutting force and microtopography. This work has great theoretical significance and
engineering practical value for the promotion and application of micro-milling repairing technology
in the practical manufacturing and operation of KDP optics applied to high-power laser systems.

Keywords: KDP crystal; micro-milling repair; micro-defects; cutting force; machined surface quality

1. Introduction

With the growth of population and the development of productive social forces, the
consumption of energy has increased dramatically [1,2]. However, due to the decrease
of fossil energy and serious environmental pollution, countries around the world are
engaged in the research and development of clean energy, such as biofuels and nuclear
energy [3,4]. At present, inertial confinement fusion (ICF) is considered to be the ultimate
solution to the human energy crisis because of its safety, controllability, environmental
protection and renewable advantages. Due to its excellent photoelectric characteristics [5,6],
the KDP crystal has become an irreplaceable large-scale frequency doubling element, and
photoelectric switching has been extensively applied to laser-driven ICF facilities. However,
high-power laser irradiation is prone to inducing different types of damage points on the
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crystal surface [7]. These damage points rapidly expand in the subsequent laser-shooting
process, which seriously affect the optical performance and service life of KDP crystal
components [8]. Previous research has shown that repairing the initial damage points on
the crystal surface with micro ball-end milling is the most effective method to control the
growth behavior of pre-existing laser damage points on the flawed surfaces of KDP crystal
components and prolong their service life [9]. However, due to the low hardness, high
brittleness, incidental deliquescence, remarkable anisotropy and high processing accuracy
requirements, the urgent demand for large-scale, high-precision and low-defect-density
KDP crystal components poses an unprecedented challenge in the ultra-precision optical
processing and manufacturing fields [10].

Achieving ductile mode cutting of brittle materials can obtain smooth surfaces [11,12].
Previous studies mainly include the brittle–ductile transition (BDT) mechanism, surface
quality prediction, and chip morphologies in different cutting modes. Research methods
were composed of experimental research methods (nanoindentation and microgroove
experiments) and numerical simulation methods (molecular dynamics and constitutive
model establishment). Yan et al. [13] investigated the micromachining processes of the
BDT of different single crystal germanium surfaces, and obtained the critical cutting depth
for BDT (BDdc) according to the chip morphologies with different cutting thicknesses.
Malekian et al. [14] proposed an analytical model by identifying the critical points of
workpiece material processing. It showed that the minimum UCT is not only a function
of the edge radius and friction coefficient, but also depends on the tool geometry and
workpiece material characteristics. Arif et al. [15] used the mathematical model to determine
the critical conditions for milling on the crack-free surface of brittle materials, and the
experimental results verified the proposed processing model. Liang et al. [16] studied
the BDT mechanism of single-crystal sapphire through micro-groove machining. Zhou
et al. [17] established the energy ratio consumed by the removal of the ductile and brittle
modes as a function of the grinding parameters and the inherent characteristics of the
workpiece materials, and successfully verified the effectiveness of the model. Gu et al. [18]
studied the effects of geometrical parameters of cutting tools on the BDT of sapphire during
the machining process by micro-groove machining. Chen et al. [19] obtained the BDdc of
[110] the crystal orientation of gallium arsenide through micro-groove machining with
variable cutting depth. Liu et al. [20] proposed a theoretical mathematical model to predict
the dc, through which the dc of Si3N4 ceramics was calculated to be 0.38 mm. Besides, the
theoretical model showed that dc decreased exponentially with the increase of material
hardness. Tie et al. [21] studied the BDdc of KDP crystals in different cutting directions
by spiral scratch, and obtained an ultra-smooth machined surface. Gouskou et al. [22]
installed a vacuum suction chip device on a Toshiba ultra-precision machine tool. An
ultra-smooth surface with a roughness of Ra = 1.6 nm was processed, and the maximum
UCT of KDP crystals was 17 nm. Although the abovementioned work is mainly focused on
achieving ductile mode cutting for the defect-free surface of brittle materials, establishing
the UCT models, and exploring the influence of the tool parameters or process parameters
on the BDT, there are few efforts spent on ductile mode cutting on flawed KDP crystal
surfaces. Thus, it is of great significance to explore the effect of micro-defects on the BDT
and machined surface quality in the ball-end milling repairing of KDP crystals.

In addition, the finite element model (FEM) was gradually applied to simulate the
cutting process. The simulated results of the cutting force and machined surface topography
could effectively predict the machined surface quality and explore the ductile cutting
process parameters. Lee et al. [23] applied a crystal constitutive equation to the FEM of
the microscale chip formation, and predicted that the change of the cutting force was in
good agreement with the experimental results. Cao et al. [24] used a two-dimensional
(2D) orthogonal model to simulate the cutting process of KDP crystals, and found that the
BDdc was about 140 nm. The relative error between the simulated result and the critical
cutting thickness measured by the experiment was less than 10%. Xiao et al. [25] studied the
mechanism of BDT, proposed a mechanical model, and analyzed the relationship between
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the UCT, deformation and stress level in the elastic stage of the periodic chip formation
process. Chen et al. [26] proposed a new method to model and simulate the surface
formation of KDP crystals in the process of fly-cutting at the macroscales, microscales and
nanoscales, in order to establish evaluation criteria of different spatial frequency regions.
In the molecular dynamics simulation of the nano-cutting process, Chen et al. [27] found
that the damage type changed from the line defect to the phase transition with the increase
of cutting speed. Besides, when the number of cracks increased with greater cutting depth,
the deformation mode changed from ductility to a combination of ductility and brittleness.
Chen et al. [28] established a 3D simulation model of the micro-milling repair process
for KDP crystals by analyzing the key issues, such as workpiece separation criteria and
material parameters. The simulated results were consistent with that in the experiment.
Wang et al. [29] transformed the constitutive model that could describe the mechanical
behavior of KDP crystals into the finite element code in the LS-DYNA, which was found
to be accurate to reproduce the phenomenon of the anisotropic cutting force. It could be
summarized that, in terms of simulations of the cutting process for brittle materials, the
micro-milling simulation model is usually simplified to a 2D orthogonal cutting model.
Not only does it not consider the influence of the real shape of the milling cutter, but
also the simulated results cannot be reflected from three dimensions. More importantly, a
constitutive model suitable for describing the material properties of KDP crystals has not
been established, which seriously reduces the authenticity of the micro-milling simulations.

In the engineering applications of KDP optics, there are many kinds of micro-defects,
such as pits and scratches, around the laser damage points on the flawed KDP surfaces.
However, the fluctuation of cutting force and the change of UCT induced by these pre-
existing micro-defects would affect the machined surface quality of the crystal components,
and finally affect the laser damage resistance of the repaired KDP surfaces in the process
of repairing the damaged points on the crystal surface. Therefore, exploring the influence
law of the pre-existing micro-defects around the laser damage points on the mechanical
properties of KDP crystals and revealing the influence mechanism of micro-defects in
the micro-milling repair process have important theoretical significance and engineering
practical value for the promotion and application of micro-milling repairing technology in
the ordinary operation and maintenance of laser-driven ICF facilities.

In this work, as one of the most common micro-defects on the fly-cutting surface of
KDP crystals, the scratch defect could change the UCT in the ball-end milling repairing and
further affect machined surface quality. Therefore, it was taken as an example to explore the
effect of pre-existing micro-defects on the flawed KDP crystal surface on repaired surface
quality. Based on a proposed constitutive model considering the anisotropic property of
KDP crystals, the 3D simulation model of the micro-milling repair process was established
in Section 2. The details of the experimental equipment and process were described in
Section 3. Then, the influence of pre-existing micro-defects on cutting force and machined
surface quality were discussed in Section 4. Finally, the conclusion was drawn in Section 5.

2. Finite Element Modeling and Simulation
2.1. Three-Dimensional Modeling of Micro-Milling Repair Process for KDP Crystals

Figure 1 shows the 3D simulation model of the micro-milling repair process for KDP
crystals, which is composed of the micro-ball end milling cutter and the KDP crystal. The
geometric model of the ball-end milling cutter with a complex shape was established by
computational-aided design (CAD). To greatly reduce the calculation cost, only the cutter
head was meshed because it is actually involved in the micro-milling repairing of KDP
crystals. Meanwhile, since the hardness of the tool material is far greater than that of the
KDP crystals, a discrete rigid body was adopted to model the tool with the tetrahedral-
element mesh. In contrast, a deformable model was applied to the KDP crystal elements
with 500 µm length, 200 µm width and 20 µm height. The scratch defect was located on
the crystal component surface and the length, width and depth were 200 µm, 5 µm and
1 µm, respectively. The mesh of the processed material was set as hexahedral elements
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considering the shape of the scratch defect. In order to save calculation time, the local mesh
subdivision method was adopted to subdivide the part of the KDP crystals participating in
the interaction process with the end of the ball-milling cutter. The total number of meshes
was about 120,000, and the calculation time was roughly 2 days (2 × 24 h). Based on the
actual processing parameters of ball-end milling repairing for KDP crystals, the ball-end
milling cutter was inclined by an angle of 30◦ in the model to avoid the part with zero
linear velocity participating in the micro-milling process. The feed rate was set to 1 mm/s
along the Y direction. The cutting depth in the Z direction was set to 2 µm. The rotation
speed of the spindle was 50,000 r/min, and it rotated around the axis of the tool in a
clockwise direction.
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Figure 1. The schematic of the established 3D simulation model of KDP micro-milling process.

2.2. The Establishment of KDP Crystal Constitutive Model Considering the Anisotropic
Mechanical Property

According to the mechanical properties of KDP crystals, a constitutive model is
proposed to describe anisotropic mechanical properties. In the elastic stage, the elastic
stiffness matrix is used to describe the elastic properties of KDP crystals. In the plastic
stage, the power hardening model is used to describe the stress–strain relationship of KDP
crystals [30], and the yield stress ratio is introduced to characterize the anisotropy of its
material properties. In the fracture stage, the maximum tensile strain failure criterion is
adopted as the fracture criterion.

In this work, the stress–strain curve in the plastic domain of KDP crystal material
was obtained through nanoindentation experiments. It is assumed that the stress–strain
at the ideal yield point satisfies the stress–strain relationship at both the elastic and the
plastic stage:

σ0 = Eε0 (1)

σ0 = Kε0
1
n (2)

where σ0 is the yield stress, E is the elastic modulus, ξ0 is the yield strain, K is the plastic
modulus, and n is the strain hardening index.

The elastic modulus E is calculated as follows:

1
Er

=

(
1 − v2)

E
+

(
1 − vi

2)
Ei

(3)

where Er is the equivalent elastic modulus obtained from the unloading curve in the
indentation experiment, ν is the Poisson’s ratio of KDP crystals, νi is the Poisson’s ratio of
indenter, and Ei is the elastic modulus of indenter.
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The simultaneous solution of Equations (1)–(3) shows that the stress–strain relationship
of KDP crystals in the nanoindentation experiment consists of elastic and plastic stages, as
shown in the following formula:

σ =

{
33200ε (σ ≤ 360MPa)
2375.1ε0.417 (σ ≥ 360MPa)

(4)

where σ is the nominal stress and ξ is the nominal strain.
It is necessary to input the real stress and plastic strain in the cutting simulation model.

The relationship between real stress and nominal stress/strain is as follows:

σtrue = σ(1 + ε) (5)

where σtrue is the true stress.
The nominal strain calculated in the nanoindentation experiment is the total strain

of the material, which includes the plastic strain and elastic strain. The expression of the
relationship is as follows:

εpl = ln(1 + ε)− σtrue

E
(6)

where ξpl is the plastic strain.
Here, the HILL yield criterion is adopted to consider the anisotropy in the yield stage

of KDP crystals, and the formula of equivalent stress is as follows:

σ0 =

√
F(σ22 − σ33)

2 + G(σ33 − σ11)
2 + H(σ11 − σ22)

2 + 2Lσ232 + 2Mσ31
2 + 2Nσ12

2 (7)

where F, G, H, L, M and N are constants obtained by testing the mechanical properties of
KDP crystals in different directions; σ11, σ22 and σ33 are the normal stress; and σ23, σ31 and
σ12 are the shear stress.

According to the constants F, G, H, L, M and N of HILL potential function, the solution
equation of the yield stress ratio is as follows:

F =
1
2

(
1

R222 +
1

R332 − 1
R11

2

)
(8)

G =
1
2

(
1

R332 +
1

R11
2 − 1

R222

)
(9)

H =
1
2

(
1

R11
2 +

1
R222 − 1

R332

)
(10)

L =
3

2R232 (11)

M =
3

2R13
2 (12)

N =
3

2R12
2 (13)

where R11, R22, R33, R12, R13 and R23 are the yield stress ratios.
F, G, H, L, M and N are obtained through the uniaxial tensile tests along the main axis

of material anisotropy (x, y, z) and the shear tests in plane (yoz, xoz, xoy). The yield stress
ratios can be calculated through Equations (8)–(13), as shown in Table 1.

Table 1. Yield stress ratios of KDP crystals.

R11 R22 R33 R12 R13 R23

1 1.2 1.2 0.63 0.63 0.63
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The maximum fracture strain value is added in the material property settings because
KDP crystals cannot follow the stress–strain relationship in the cutting process as in the
nanoindentation experiment. The crystal would fracture, and the stress value would drop
to zero when the ductile strain value of KDP crystals in the micro-milling process is greater
than this critical value. The commonly used elastic stiffness matrix [c] can be expressed by
the following formula [31]:

[c] =



7036 −4830 13440 0 0 0
−4830 70360 13440 0 0 0
13440 13440 56800 0 0 0

0 0 0 12800 0 0
0 0 0 0 12800 0
0 0 0 0 0 12800

 (14)

The material properties of KDP crystals are shown in Table 2 [32]. The geometric
parameters of the ball-end milling cutter are shown in Table 3. The tool material used was
cubic boron nitride (CBN), and its material properties are shown in Table 4 [33,34].

Table 2. The material parameters in the micro-milling simulation model of KDP crystals [32].

Specific Heat
(m2/s2K)

Density
(kg/m3)

Coefficient of Thermal Expansion (10−5K−1) Thermal Conductivity
(kg·m/s3K)

βx βy βz λx λy λz

730 2.344 × 103 1.6 1.6 2.9 2.0 2.0 3.0

Table 3. Geometric parameters of the micro-milling tool.

Diameter
(mm)

Length of
Cut (mm)

Overall
Length (mm)

Neck Taper
Angle (◦)

Shank
Diameter

(mm)

Effective
Length (mm)

0.5 0.38 50 15 4 1.5

Table 4. The material properties of the CBN ball-end milling cutter [33,34].

Density (g/cm3) Poisson’s Ratio Young’s Modulus (GPa)

3.48 0.11 720

3. Experimental Procedure

The micro-milling repairing experiments for KDP crystals were conducted on the
self-developed five-axis milling CNC machine tool, and the radius of the ball-end milling
cutter was 0.25 mm, as shown in Figure 2. The cutting force signal was collected through
the dynamometer (KISTLER 5197A, Kistler, Winterthur, Switzerland) in the cutting process.
Additionally, the machined surface was observed by an ultra-depth-of-3D-field microscope
(VHX 1000E, Keyence, Osaka, Japan) and the 3D morphological characteristics of the
machined surface were measured by a white light interferometer (ZYGO 8200, Zygo
Corporation, Middlefield, CT, USA). The external dimensions of the machine tool were
1200 mm × 900 mm × 1750 mm. The maximum speed of its air-bearing spindle could
reach 80,000 rpm, and the runout was less than 1 µm. The straightness positional precision
could reach 0.5 µm/50 mm.
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Figure 2. The schematic of the micro-milling device: (a) experimental device for micro-milling KDP
crystals; (b) the geometry of the ball-end milling cutter; (c) the experimental setup for measurement
of cutting force.

Before the micro-milling experiments, a MSB230 ball-end milling cutter (NS TOOL Co.,
Ltd., Shinagawa, Japan) with a radius of 0.15 mm was adopted to prepare a scratch defect
with a depth of 1 µm and width of 35 µm on the KDP crystal surface. A SSBL200 ball-end
milling cutter (NS TOOL Co., Ltd.) with a radius of 0.25 mm was adopted to process the
microgroove, making it pass through the scratch defect, as shown in Figure 3. In this way,
the experimental procedure can be used to explore the effect of pre-existing micro-defects
on cutting force and machined surface quality in the micro-milling repair process of flawed
KDP crystal surfaces. By setting the control group, the results of cutting force and machined
surface quality are compared and analyzed. The adopted cutting parameters are listed in
Table 5. For each group of experiments, a 20 mm long microgroove was processed and the
experiment was repeated three times in the same conditions to guarantee that the error of
the experimental results was as small as possible.

Table 5. Cutting parameters applied in the micro-milling repair process of KDP crystals.

Test No. Spindle Speed
(r/min)

Depth of Cut
(µm)

Feed Rate
(µm/Tooth)

Tool Radius
(mm)

Microgroove

1

50,000 4

0.27

0.25
2 0.46
3 1.37
4 5.46

Scratch
defect 5 1 0.6 0.15
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Figure 3. The schematic of the micro-milling repair process for flawed KDP crystal surfaces.

4. Results and Discussion
4.1. Cutting Force and Machined Surface Quality in the Case of the Defect-Free Surface

In order to contrast and analyze the effect of pre-existing scratch defects on cutting
forces and machined surface quality, firstly, this section briefly describes the change of
the cutting force and machined surface quality of KDP crystals in the micro-milling repair
process for the defect-free surface. The cutting force can directly reflect the interaction
between the tool and the workpiece material in the cutting process. Considering the small
amplitude and irregular fluctuation of feed force in the micro-milling process, only axial
and transverse feed forces are discussed and analyzed in this work. The cutting force has
four peaks and troughs during two turns of tool rotation in theory because the milling
cutter has two cutting edges. The cutting force signal of the defect-free machined surface is
shown in Figure 4 under different feed rates. It can be seen from Figure 4a that the cutting
force has serious relaxation and oscillation under a feed rate of 0.27 µm/z, which is no
longer approximate to the sinusoidal function, indicating that the ploughing effect is very
serious [35]. In Figure 4b, there are four peaks and troughs of the thrust force within two
entire cutting circles of 720◦ under a feed rate of 0.46 µm/z, but the cross feed force is still
irregular, indicating that the ploughing effect has been greatly reduced and the machined
surface quality is improved (Figure 4c). When the feed rate increases to 1.37 µm/z (the UCT
is 375 nm), the cutting force signal curve has become relatively smooth, approximating
a sine function, which proves that there is almost no ploughing effect in the machining
process. However, Figure 4d shows the cutting force fluctuates in a zigzag shape when
the feed rate increases to 5.46 µm/z, indicating that the brittle mode cutting has occurred.
According to the above results of the cutting force, it can be seen that there are three cutting
modes in the micro-milling process of KDP crystals due to the variation of UCT.
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Figure 4. (Defect-free surface) Experimental results of cutting force with cutting edge rotation angle
under f t/re: (a) f t = 0.27 µm/z, f t/re = 0.15; (b) f t = 0.46 µm/z, f t/re = 0.25; (c) f t = 1.37 µm/z, f t/re

= 0.75; (d) f t = 5.46 µm/z, f t/re = 3.0.

In addition to studying the change of cutting force under different feed rates, further
exploring the change of the surface topography can fully reveal the effect of process
parameters on the machined surface quality. It can be seen from Figure 5a that there
were micro brittle pits on the surface of the microgroove under a feed rate of 0.27 µm/z.
Besides, the material accumulated on the cutting side was mainly chips that were broken
and adhered to the crystal surface. This phenomenon confirms that the ploughing effect
shown in Figure 4a is very serious [9]. Figure 5b shows that there are slight brittle pits at
the bottom of the microgroove and chips adhered to its surface when the feed rate increases
to 0.46 µm/z. The reason is that the size effect leads to the ploughing phenomenon in the
cutting process. The cutting zone would be subject to excessive extrusion and ploughing
when the UCT is much less than the radius of the cutting edge. Therefore, the crystal
material is removed in the form of the brittle mode due to excessive tensile stress [36].
Meanwhile, the generated chips are easily embedded into the crystal surface with the
rotation of the cutting edge to form material accumulation. Figure 5c shows that the
machined surface quality of the microgroove is significantly improved under feed rate of
1.37 µm/z, leaving only clear tool marks at the bottom, without chip accumulation and
brittle fracture points, indicating the characteristics of the ductile mode. It agrees well with
the results in Figure 4c. A large number of brittle fracture points appear on the cut side
of the microgroove, and the tool marks are more serious when the feed rate increases to
5.46 µm/z (Figure 5d). This indicates that the brittle mode cutting has occurred because
the current UCT is larger than the BDdc, confirming that this phenomenon occurs under
this feed rate as described in Figure 4d. From the results and discussion above, with the
increase of feed rate, the UCT increases and the ploughing effect is weakened until the
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ductile mode occurs. However, when the UCT is larger than the BDdc, the brittle mode
occurs in the ball-end milling repairing of defect-free surfaces [11].
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Figure 5. (Defect-free surface) Machined surface topographies of microgrooves with different feed
rates per tooth: (a) f t = 0.27 µm/z, f t/re = 0.15; (b) f t = 0.46 µm/z, f t/re = 0.25; (c) f t = 1.37 µm/z,
f t/re = 0.75; (d) f t = 5.46 µm/z, f t/re = 3.0.

In order to verify the variation of cutting force and surface topography under different
feed rates, the white light interferometer was applied to measure the 3D morphology of
the machined surface. It can be seen from Figure 6a,b that the machined surface has a
large number of chips adhered to the microgroove surface under a feed rate of 0.27 µm/z,
and the overall surface roughness is slightly higher than the machined surface under
feed rate of 0.46 µm/z. It was confirmed that the ploughing effect under a feed rate of
0.27 µm/z is more serious than that under a feed rate of 0.46 µm/z. Compared with
the machined surface quality under a feed rate of 1.37 µm/z (Figure 6c), there are deep
brittle fracture points on the microgroove surface, and the surface roughness is as high
as 109.4 nm, which shows that the machined surface quality is worse when the feed rate
increases to 5.46 µm/z. The change of cutting force and machined surface quality under
different feed speeds were studied and the crystal surface used in the experiment had no
micro-defects in the above work. For comparison with the case of the defect-free surface,
the following experiment explored the effect of the pre-existing micro-defect on the cutting
force and machined surface quality of the scratched surface by the micro-milling simulation
and experimental methods.
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Figure 6. (Defect-free surface) Three-dimensional morphological characteristics of experimen-
tally processed microgrooves with different feed rates per tooth: (a) f t = 0.27 µm/z, f t/re = 0.15;
(b) f t = 0.46 µm/z, f t/re = 0.25; (c) f t = 1.37 µm/z, f t/re = 0.75; (d) f t = 5.46 µm/z, f t/re = 3.0.

4.2. Effect of the Scratch Defect on the Cutting Force

The simulations of the cutting force on the scratched surface are shown in Figure 7.
It can be seen that the cutting force curve appears with four peaks and valleys when the
ball-end milling cutter with two edges rotates twice, which is in good agreement with the
experimental results (Figure 4c). The cutting force gradually increases with the increase of
the feed rate. Additionally, in the presence of a micro scratch defect, the cutting force of
the material removal area becomes smaller because the UCT decreases due to the scratch
defect. Compared with the simulated results in Figure 7b, the cutting force curve has more
relaxation and oscillation in Figure 7a. The reason is that the UCT under a feed rate of
0.27 µm/z is not only smaller than that under a feed rate of 0.46 µm/z, but also is far less
than the radius of the cutting edge. Therefore, a more serious ploughing effect is generated.
When the feed rate increases to 1.37 µm/z, there is a slight relaxation and oscillation of the
cutting force, as shown in Figure 7c. Figure 7d shows the cutting force appears to show
a slight zigzag fluctuation when the feed rate increases to 5.46 µm/z, because the ductile
mode cutting occurs in this process due to the UCT in the local area being less than the
BDdc. The above simulations of cutting force show that the fluctuations of cutting force in
the local area are induced by the micro scratch defect, indicating that the cutting mode is
transformed simultaneously.
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Figure 7. (Scratched surface) Simulated results of cutting force with cutting edge rotation angle under
f t/re: (a) f t = 0.27 µm/z, f t/re = 0.15; (b) f t = 0.46 µm/z, f t/re = 0.25; (c) f t = 1.37 µm/z, f t/re = 0.75;
(d) f t = 5.46 µm/z, f t/re = 3.0.

Hence, to verify the simulations of cutting force above, the cutting force of flawed
KDP crystal surfaces under different feed rates was measured by the dynamometer in
the micro-milling repairing experiment, as shown in Figure 8. Compared with the results
in Figure 4a,b, it can be seen from Figure 8a,b that the cutting force not only reduces,
but also that there is more relaxation and oscillation, indicating that the micro scratch
defect leads to more serious ploughing effects. When the feed rate increases to 1.37 µm/z
(Figure 8c), compared with the results in Figure 4c, the cutting force shows a little relaxation
and oscillation, which is no longer approximate to the sine function. It indicates that the
ploughing effect occurs in the micro-milling repair process of KDP crystals. However,
compared with the results in Figure 4d, although the cutting force reduces, the signal
curve has become smoother with only a little serration when the feed rate increases to
5.46 µm/z (Figure 8d). From the results and discussion above, compared with the case of
the defect-free surface at the same feed rate, the amplitude and fluctuation of the cutting
force can be altered by the micro scratch defect in the micro-milling repair process of flawed
KDP crystal surfaces.
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Figure 8. (Scratched surface) Experimental results of cutting force with cutting edge rotation angle
under f t/re: (a) f t = 0.27 µm/z, f t/re = 0.15; (b) f t = 0.46 µm/z, f t/re = 0.25; (c) f t = 1.37 µm/z,
f t/re = 0.75; (d) f t = 5.46 µm/z, f t/re = 3.0.

4.3. Effect of the Scratch Defect on the Machined Surface Quality

In order to comprehensively evaluate the effect of micro-defects on the machined
surface quality, besides the cutting force, the effect of the micro scratch defect on the surface
topography in the micro-milling repairing of flawed KDP crystals surfaces was further
studied by the micro-milling simulation and experimental methods. Combined with the
simulations in Figure 9b, the maximum tensile stress areas are densely distributed on the
cut-out side at the scratch defect and it can be found from Figure 9a that the tensile stress
on the scratched surface is higher. On the one hand, the size effect is more serious when the
UCT under a feed rate of 0.27 µm/z is smaller than that under a feed rate of 0.46 µm/z. On
the other hand, the scratch defect on the crystal surface results in a sudden change of the
cross-section area. Therefore, there is a more serious stress concentration phenomenon near
the defect edge [37]. It is confirmed that the scratch defect could result in a more serious
ploughing effect as shown in Figure 8a,b. Although the tensile stress of the scratched
surface reduces, the maximum tensile stress area appears at the scratch defect in the middle
of the cutting area when the feed rate increases to 1.37 µm/z, as shown in Figure 9c. This
indicates that the UCT reduces due to the scratch defect, so the ploughing effect occurs
at the cutting area. It agrees well with the results in Figure 8c. However, although the
tensile stress of the scratched surface is extremely high, the tensile stress in the middle of
the cutting area is smaller when the feed rate increases to 5.46 µm/z (Figure 9d) because
the scratch defect induces the UCT of this area to be smaller than the BDdc. Therefore, the
machined surface quality of this area is interestingly found to be improved, and only a few
maximum-tensile-stress concentration areas appear on the cut-out side. This phenomenon
confirms that there is ductile mode cutting in the local area. Compared with the case of
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the scratch-free surface, the simulations of the machined surface topography show that the
micro scratch defect can result in the transformation of the cutting mode in the local area
and change the microtopography.
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Figure 9. (Scratched surface) Simulated results of microgroove surface with different feed rates per
tooth: (a) f t = 0.27 µm/z, f t/re = 0.15; (b) f t = 0.46 µm/z, f t/re = 0.25; (c) f t = 1.37 µm/z, f t/re = 0.75;
(d) f t = 5.46 µm/z, f t/re = 3.0.
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To verify the simulated results of the surface topography, the machined surface to-
pography of flawed KDP crystal surfaces under different feed rates was measured by the
ultra-depth-of-3D-field microscope in the micro-milling repairing experiment, as shown
in Figure 10. Compared with the results of Figure 5, it can be seen from Figure 10a that
the number of micro pits on the surface of the microgroove and chips accumulated in the
cutting side area both increase under a feed rate of 0.27 µm/z. In Figure 10b, it can be
observed that micro pits of a large size are distributed on the cut-in and cut-out sides of
the microgroove under a feed rate of 0.46 µm/z. Meanwhile, the chips adhered to the
microgroove surface are denser. The reason is that the UCT reduces due to the scratch
defect, which is much smaller than the radius of the cutting edge. Therefore, the stronger
size effect results in a more serious ploughing, and leads to the deterioration of the ma-
chined surface quality. It is in good agreement with the simulated results in Figure 9a,b.
Due to the scratch defect, the reduction of UCT results in a more serious ploughing effect.
When the feed rate increases to 1.37 µm/z, Figure 10c shows that there are not only serious
chip accumulations on the cut-in side, but also brittle fracture points on the cut-out side.
This indicates that the ploughing effect occurs in the micro-milling repair process of KDP
crystals, agreeing well with the simulated results in Figure 9c. However, owing to the
scratch defect, the UCT in some areas is smaller than the BDdc when the feed rate increases
to 5.46 µm/z (Figure 10d). Therefore, the machined surface quality of the microgroove is
improved, and only a small number of brittle fracture points appear on the surface. It is the
same as the simulated results in Figure 9d, where ductile mode cutting occurs in the local
area. Through the above results and discussion, it can be seen that the simulated results are
in good agreement with the experimental results, and it is confirmed that the micro scratch
defect could change the cutting mode by reducing the UCT.
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Figure 10. (Scratched surface) Machined surface topographies of microgroove with different feed
rates per tooth: (a) f t = 0.27 µm/z, f t/re = 0.15; (b) f t = 0.46 µm/z, f t/re = 0.25; (c) f t = 1.37 µm/z,
f t/re = 0.75; (d) f t = 5.46 µm/z, f t/re = 3.0.
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To further demonstrate the effect of the micro scratch defect on cutting force and
surface topography, the white light interferometer was applied to measure the 3D mor-
phology of the machined surface, as shown in Figure 11. Compared with the results in
Figure 6a,b, it can be seen from Figure 11a,b that the roughness of the machined surface is
higher with the same process parameters, which further proves that the scratch defect will
enhance the size effect in the plough cutting mode. It induces a more serious ploughing
phenomenon, which is in good agreement with the results in Figure 10a,b. Compared with
the results in Figure 6c, the surface roughness increases as shown in Figure 11c under a
feed rate of 1.37 µm/z, up to 27 nm. Because the UCT reduces due to the scratch defect, the
ploughing effect occurs in the local area of the surface. However, compared with the results
in Figure 6d, the machined surface quality of the microgroove is improved and the surface
roughness is reduced by 50.8 nm when the feed rate increases to 5.46 µm/z (Figure 11d). It
indicates that the UCT in this area is smaller than the BDdc due to the scratch defect. From
the analysis above, it can be concluded that the machined surface quality is deteriorated by
the micro-defects when the UCT is smaller. On the contrary, the brittle mode in the local
area can be transformed into the ductile mode, resulting in the improved surface quality.
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Figure 11. (Scratched surface) Three-dimensional morphological characteristics of experimen-
tally processed microgroove with different feed rates per tooth: (a) f t = 0.27 µm/z, f t/re = 0.15;
(b) f t = 0.46 µm/z, f t/re = 0.25; (c) f t = 1.37 µm/z, f t/re = 0.75; (d) f t = 5.46 µm/z, f t/re = 3.0.

The above studies are related to the effect of specific scratch defects on cutting force
and machined surface quality involved in the ball-end milling repairing of flawed KDP
crystal surfaces. Future research may make efforts to study the effect of micro-defects with
different types and sizes on the micro-milling repair processes. It is a challenge and future
development direction to promote the recycling of optical components and reveal the effect
of micro-defects on the resistance to laser damage after the crystal components are repaired.
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5. Conclusions

In this work, a 3D simulation model of the micro-milling process for KDP crystals
is established based on the proposed constitutive model considering the anisotropic me-
chanical property. The FEM and micro-milling experiments were conducted to explore
the effect of pre-existing micro-defects on the cutting force and machined surface quality
involved in the ball-end milling repairing of flawed KDP crystal surfaces. Combined with
the simulations and experimental results, the conclusions are obtained as follows:

1. A 3D simulation model of the micro-milling process for KDP crystals considering
the anisotropic mechanical property was established, which can be used to study
and explain the change of the cutting force and machined surface quality in the
micro-milling repair process of KDP crystals.

2. The pre-existing micro-defects can not only affect the amplitude and fluctuation
tendency of cutting force in the micro-milling repair process of KDP crystals, but also
affect the machined surface topography.

3. The pre-existing micro-defects are capable of reducing the UCT, resulting in more se-
rious relaxation and oscillation of the cutting force when the UCT is smaller, while the
cutting force curve becomes smoother and approximates an ideal sinusoidal function.

4. When the UCT is small (less than 375 nm), the pre-existing micro-defects will deterio-
rate the machined surface quality by reducing the UCT, resulting in more ploughing
effects and chips adhered to the crystal surfaces. On the contrary, brittle mode cutting
in the local area could be transformed into ductile mode cutting. The machined
surface quality could be correspondingly improved.

This work can provide the theoretical basis and technology guidance for determining
the processing parameters for the effective repairing and improvement of anti-laser damage
ability of KDP functional crystals applied in high-power laser systems.
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