Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = crustal movement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13318 KB  
Article
Evaluation of Tropospheric Delays over China from the High-Resolution Pangu-Weather Model at Multiple Forecast Scales
by Shuangping Li, Bin Zhang, Haohang Bi, Liangke Huang, Bo Shi and Qingsong Ai
Remote Sens. 2025, 17(18), 3164; https://doi.org/10.3390/rs17183164 - 12 Sep 2025
Viewed by 828
Abstract
Tropospheric delay is recognized as one of the main error sources affecting Global Navigation Satellite System (GNSS) positioning accuracy. Previous studies have only employed artificial intelligence-based weather models with low temporal resolution for comprehensive assessments. Therefore, this study proposes an ensemble forecasting approach [...] Read more.
Tropospheric delay is recognized as one of the main error sources affecting Global Navigation Satellite System (GNSS) positioning accuracy. Previous studies have only employed artificial intelligence-based weather models with low temporal resolution for comprehensive assessments. Therefore, this study proposes an ensemble forecasting approach based on multiple initial conditions from the Pangu-Weather model to obtain hourly resolution tropospheric delays. The ZTD data from 250 Crustal Movement Observation Network of China (CMONOC) GNSS stations across China in 2020 are used to validate the accuracy of the Pangu-Weather model. The findings show that the Pangu-Weather model exhibits strong performance under both forecast lead times compared to the traditional Global Forecast System (GFS) product, particularly in southern China. However, the Pangu-Weather model provides slightly inferior forecast accuracy compared to the GFS product in dry, low-humidity regions at stations located between 2 and 4 km in altitude, and for forecast lead times of less than 9 h. Nevertheless, a lower error accumulation trend is exhibited by the Pangu-Weather model, as its RMSE is larger than that of the Global Pressure and Temperature 3 (GPT3) empirical model after 240 h (10 days), demonstrating more stable accuracy over longer forecast periods. In summary, the Pangu-Weather model shows significant advantages in Chinese regions with complex climates and terrains, and it is of great potential in GNSS real-time positioning and meteorological monitoring. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation (Third Edition))
Show Figures

Figure 1

19 pages, 5122 KB  
Review
An Overview of the Holocene High Sea Level Around the South China Sea: Age, Height, and Mechanisms
by Lei Zhang, Tongyan Lü, Lei Xue, Weiming Mo, Chaoqun Wang, Xitao Zhao and Daogong Hu
Atmosphere 2025, 16(8), 993; https://doi.org/10.3390/atmos16080993 - 21 Aug 2025
Viewed by 3360
Abstract
Understanding Holocene high sea levels in the South China Sea (SCS) is critical for understanding climate change and assessing future sea-level rise risks. We provide a comprehensive review of the Holocene highstand in the SCS, focusing on its age, height, and mechanisms. Records [...] Read more.
Understanding Holocene high sea levels in the South China Sea (SCS) is critical for understanding climate change and assessing future sea-level rise risks. We provide a comprehensive review of the Holocene highstand in the SCS, focusing on its age, height, and mechanisms. Records reveal a wide range for this highstand: ages span 3480–7500 cal yr BP, while elevations range from −7.40 to 7.53 m relative to the present. Positive elevations dominate (80.5% of records), with the most frequent range being 2–3 m. Regionally averaged formation times suggest a broadly synchronous mid-Holocene high-sea-level event across the SCS, potentially reflecting a global background. The observed variability is attributed to the interplay of multiple factors: global processes like glacial meltwater input and seawater thermal expansion, particularly during the Holocene warm period, and regional neotectonic movements (uplift/subsidence), which are the primary cause of spatial differences in reconstructed elevations. Significant debate persists regarding precise timing, height, and dominant mechanisms due to limitations in data coverage, dating precision, and challenges in quantifying tectonic influences. Future research priorities include obtaining high-resolution data from stable marine sediments, employing diverse dating techniques and modern crustal deformation monitoring, quantifying tectonic impacts, developing regional sea-level models, and enhancing international collaboration to refine understanding and improve predictions of future sea-level rise impacts. Full article
(This article belongs to the Special Issue The Evolution of Climate and Environment in the Holocene)
Show Figures

Figure 1

16 pages, 12472 KB  
Article
Modeling and Accuracy Evaluation of Ionospheric VTEC Across China Utilizing CMONOC GPS/GLONASS Observations
by Fu-Ying Zhu and Chen Zhou
Atmosphere 2025, 16(8), 988; https://doi.org/10.3390/atmos16080988 - 20 Aug 2025
Viewed by 803
Abstract
Accurate estimation of the regional ionospheric model (RIM) is essential for Total electron content and high-precision applications of the Global Navigation Satellite System (GNSS). Utilizing dual-frequency observations from over 250 Crustal Movement Observation Network of China (CMONOC) monitoring stations, which are equipped with [...] Read more.
Accurate estimation of the regional ionospheric model (RIM) is essential for Total electron content and high-precision applications of the Global Navigation Satellite System (GNSS). Utilizing dual-frequency observations from over 250 Crustal Movement Observation Network of China (CMONOC) monitoring stations, which are equipped with both GPS and GLONASS receivers, this study investigates the Vertical Total Electron Content (VTEC) estimation models over the China region and evaluates the estimation accuracy under both GPS-only and GPS+GLONASS configurations. Results indicate that, over the Chinese region, the spherical harmonic reginal ionospheric model (G_SH RIM) and polynomial function reginal ionospheric model (G_Poly RIM) based on single GPS observations demonstrate comparable accuracy with highly consistent spatiotemporal distribution characteristics, showing grid mean deviations of 1.60 TECu and 1.62 TECu, respectively. The combined GPS+GLONASS observation-based RIMs (GR_SH RIM and GR_Poly RIM) significantly improve the TEC modeling accuracy in the Chinese peripheral regions, though the overall average accuracy decreases compared to single-GPS models. Specifically, GR_SH RIM and GR_Poly RIM exhibit mean deviations of 2.15 TECu and 2.32 TECu, respectively. A preliminary analysis reveals that the reduced accuracy is primarily due to the systematic errors introduced by imprecise differential code biases (DCBs) of GLONASS satellites. These findings can provide valuable references for multi-GNSS regional ionospheric estimation. Full article
(This article belongs to the Special Issue Advanced GNSS for Ionospheric Sounding and Disturbances Monitoring)
Show Figures

Figure 1

24 pages, 5586 KB  
Article
Integration of Leveling and GNSS Data to Develop Relative Vertical Movements of the Earth’s Crust Using Hybrid Models
by Bartosz Naumowicz and Kamil Kowalczyk
Appl. Sci. 2025, 15(15), 8224; https://doi.org/10.3390/app15158224 - 24 Jul 2025
Cited by 1 | Viewed by 757
Abstract
This study compared two approaches to integrating leveling and GNSS data to develop relative vertical movements of the Earth’s crust. Novel approaches were tested using transformation and hybrid grid adjustment. The results from double-leveling measurements in Poland were used as test data, and [...] Read more.
This study compared two approaches to integrating leveling and GNSS data to develop relative vertical movements of the Earth’s crust. Novel approaches were tested using transformation and hybrid grid adjustment. The results from double-leveling measurements in Poland were used as test data, and GNSS measurements developed using the PPP technique were used as Supplementary Data. The least squares method was used for the adjustment, and the isometric, conformal and affine methods were used for the transformation, with and without Hausbrandt correction. So-called pseudo-nodal points, i.e., points identified as common in both networks, whose weight was determined according to the assumptions of scale-free network theory, were used as integration points. Both integration methods have similar results and are suitable for integrating leveling and GNSS data to determine the relative vertical movements of the Earth’s crust. The average unit error m0 of the transformation was 0.1 mm/yr and the average error after adjustment of the hybrid network was 0.1 mm/yr. The use of the Hausbrandt correction does not significantly improve the transformation results. A 12-parameter affine transformation is recommended as the transformation method. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 3915 KB  
Article
Investigation of the Application of Measured Meteorological Observations in Real-Time Precise Point Positioning
by Qinglan Zhang, Shirong Ye, Jingchao Xia, Peng Zhang, Dezhong Chen and Peng Jiang
Remote Sens. 2025, 17(10), 1773; https://doi.org/10.3390/rs17101773 - 19 May 2025
Viewed by 581
Abstract
Tropospheric delay is the main error source that affects the further improvement of the accuracy of space geodesy. High-precision zenith tropospheric delay (ZTD) can be used as a prior value for precise point positioning (PPP) in global navigation satellite systems (GNSSs) to enhance [...] Read more.
Tropospheric delay is the main error source that affects the further improvement of the accuracy of space geodesy. High-precision zenith tropospheric delay (ZTD) can be used as a prior value for precise point positioning (PPP) in global navigation satellite systems (GNSSs) to enhance the speed and accuracy of real-time PPP solutions. Using the Saastamoinen ZTD model, we computed ZTDs using different meteorological elements. One ZTD was termed MZTD and was obtained from 80 reference sites in the China Mainland Crustal Movement Observation Network (CMONOC), the other was termed HZTD and was obtained from elements acquired from the improved version of the hourly global pressure and temperature atmospheric model (HGPT2). The results indicate that the accuracy of the MZTD was 12.94% higher than that of the HZTD, with the ZTDs estimated by post-processing GNSS values as the reference values. Additionally, the MZTD and HZTD were both applied as constraints to the PPP solution. The application of the MZTD constraints to the PPP floating-point solution resulted in a 28.9% improvement in accuracy and a 36.4% decrease in convergence time in the U-direction as a maximum, compared with the application of the HZTD constraints. Full article
Show Figures

Figure 1

18 pages, 9085 KB  
Article
Analysis of Ionospheric Disturbances in China During the December 2023 Geomagnetic Storm Using Multi-Instrument Data
by Jun Tang, Sheng Wang, Jintao Wang, Mingxian Hu and Chaoqian Xu
Remote Sens. 2025, 17(9), 1629; https://doi.org/10.3390/rs17091629 - 4 May 2025
Viewed by 1313
Abstract
This study investigates the ionospheric response over China during the geomagnetic storm that occurred on 1–2 December 2023. The data used include GPS measurements from the Crustal Movement Observation Network of China, BDS-GEO satellite data from IGS MEGX stations, [O]/[N2] ratio [...] Read more.
This study investigates the ionospheric response over China during the geomagnetic storm that occurred on 1–2 December 2023. The data used include GPS measurements from the Crustal Movement Observation Network of China, BDS-GEO satellite data from IGS MEGX stations, [O]/[N2] ratio information obtained by the TIMED/GUVI, and electron density (Ne) observations from Swarm satellites. The Prophet time series forecasting model is employed to detect ionospheric anomalies. VTEC variations reveal significant daytime increases in GNSS stations such as GAMG, URUM, and CMUM after the onset of the geomagnetic storm on 1 December, indicating a dayside positive ionospheric response primarily driven by prompt penetration electric fields (PPEF). In contrast, the stations JFNG and CKSV show negative responses, reflecting regional differences. The [O]/[N2] ratio increased significantly in the southern region between 25°N and 40°N, suggesting that atmospheric gravity waves (AGWs) induced thermospheric compositional changes, which played a crucial role in the ionospheric disturbances. Ne observations from Swarm A and C satellites further confirmed that the intense ionospheric perturbations were consistent with changes in VTEC and [O]/[N2], indicating the medium-scale traveling ionospheric disturbance was driven by atmospheric gravity waves. Precise point positioning (PPP) analysis reveals that ionospheric variations during the geomagnetic storm significantly impact GNSS positioning precision, with various effects across different stations. Station GAMG experienced disturbances in the U direction (vertical positioning error) at the onset of the storm but quickly stabilized; station JFNG showed significant fluctuations in the U direction around 13:00 UT; and station CKSV experienced similar fluctuations during the same period; station CMUM suffered minor disturbances in the U direction; while station URUM maintained relatively stable positioning throughout the storm, corresponding to steady VTEC variations. These findings demonstrate the substantial impact of ionospheric disturbances on GNSS positioning accuracy in southern and central China during the geomagnetic storm. This study reveals the complex and dynamic processes of ionospheric disturbances over China during the 1–2 December 2023 storm, highlighting the importance of ionospheric monitoring and high-precision positioning corrections during geomagnetic storms. The results provide scientific implications for improving GNSS positioning stability in mid- and low-latitude regions. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation: Part II)
Show Figures

Figure 1

20 pages, 22788 KB  
Article
Structural Deformation Style and Seismic Potential of the Maoyaba Fault, Southeastern Margin of the Tibet Plateau
by Xianbing Zhang, Ning Zhong, Xiao Yu, Guifang Yang and Haibing Li
Remote Sens. 2025, 17(7), 1288; https://doi.org/10.3390/rs17071288 - 4 Apr 2025
Viewed by 758
Abstract
The southeastern margin of the Tibet Plateau represents one of the most seismically active zones in China and serves as a natural laboratory for investigating the uplift dynamics and lateral expansion mechanisms of the plateau. The Litang fault zone (LTFZ) lies within the [...] Read more.
The southeastern margin of the Tibet Plateau represents one of the most seismically active zones in China and serves as a natural laboratory for investigating the uplift dynamics and lateral expansion mechanisms of the plateau. The Litang fault zone (LTFZ) lies within the northwest Sichuan sub-block on the southeastern margin of the Tibet Plateau, running almost parallel to the Xianshuihe fault zone and forming a V-shaped conjugate structure system with the Batang fault zone (BTFZ). The Maoyaba fault (MYBF) is a significant component of the northwestern part of the LTFZ, exhibiting activity in the late Quaternary. It triggered the ancient Luanshibao landslide and caused the Litang earthquake in 1729 AD, demonstrating intense seismic activity. Employing high-resolution remote sensing interpretation, field surveys, UAV photogrammetry, and UAV LiDAR, this study further examines the geometric distribution and kinematic properties of the MYBF, as well as paleoearthquake events recorded by the fault scarps. Combined with the geometric distribution and kinematic properties of the Hagala fault (HGLF) and Zimeihu fault (ZMHF), this study discusses the late Quaternary structural deformation style and seismic potential of the MYBF. The MYBF could produce earthquakes of approximately Mw 6.7 ± 0.3, with an average co-seismic slip of about 0.68 m and an average recurrence interval of strong earthquakes since the late Quaternary ranging from 0.9 to 1.1 ky. The likelihood of surface rupture earthquakes occurring in the near future is low; however, the expansion of the HGLF could induce moderate to strong earthquakes in the MYB area. The variation in the local tectonic stress field, which is influenced by the Litang–Batang V-shaped structure system and lithological differences, results in the formation of an extensional horsetail structure in the northwestern segment of the LTFZ. Both the HGLF and ZMHF remain active faults. Under the influence of nearly north–south tensile stress, these faults and the Litang–Batang V-shaped structure system collectively regulate the movement of regional crustal material. Full article
Show Figures

Figure 1

24 pages, 25220 KB  
Article
Comparison of Crustal Stress and Strain Fields in the Himalaya–Tibet Region: Geodynamic Implications
by Federico Pietrolungo, Giusy Lavecchia, Asier Madarieta-Txurruka, Federica Sparacino, Eshaan Srivastava, Daniele Cirillo, Rita de Nardis, Carlo Andrenacci, Simone Bello, Nicolò Parrino, Attilio Sulli and Mimmo Palano
Remote Sens. 2024, 16(24), 4765; https://doi.org/10.3390/rs16244765 - 20 Dec 2024
Cited by 8 | Viewed by 2704
Abstract
The Himalaya–Tibet region represents a complex region of active deformation related to the ongoing India–Eurasia convergence process. To provide additional constraints on the active processes shaping this region, we used a comprehensive dataset of GNSS and focal mechanisms data and derived crustal strain [...] Read more.
The Himalaya–Tibet region represents a complex region of active deformation related to the ongoing India–Eurasia convergence process. To provide additional constraints on the active processes shaping this region, we used a comprehensive dataset of GNSS and focal mechanisms data and derived crustal strain and stress fields. The results allow the detection of features such as the arc-parallel extension along the Himalayan Arc and the coexistence of strike-slip and normal faulting across Tibet. We discuss our findings concerning the relevant geodynamic models proposed in the literature. While earlier studies largely emphasized the role of either compressional or extensional processes, our findings suggest a more complex interaction between them. In general, our study highlights the critical role of both surface and deep processes in shaping the geodynamic processes. The alignment between tectonic stress and strain rate patterns indicates that the crust is highly elastic and influenced by present-day tectonics. Stress and strain orientations show a clockwise rotation at 31°N, reflecting deep control by the underthrusted Indian Plate. South of this boundary, compression is driven by basal drag from the underthrusting Indian Plate, while northward, escape tectonics dominate, resulting in eastward movement of the Tibetan Plateau. Localized stretching along the Himalaya is likely driven by the oblique convergence resulting from the India–Eurasia collision generating a transtensional regime over the Main Himalayan Thrust. In Tibet, stress variations appear mainly related to changes in the vertical axis, driven by topographically induced stresses linked to the uniform elevation of the plateau. From a broader perspective, these findings improve the understanding of driving crustal forces in the Himalaya–Tibet region and provide insights into how large-scale geodynamics drives surface deformation. Additionally, they contribute to the ongoing debate regarding the applicability of the stress–strain comparison and offer a more comprehensive framework for future research in similar tectonic settings worldwide. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

17 pages, 7645 KB  
Article
Strain and Deformation Analysis Using 3D Geological Finite Element Modeling with Comparison to Extensometer and Tiltmeter Observations
by Meng Li, Hexiong Lu, Ahmed El-Mowafy, Tieding Lu and Aiping Zhao
Remote Sens. 2024, 16(21), 3967; https://doi.org/10.3390/rs16213967 - 25 Oct 2024
Viewed by 1934
Abstract
This study verifies the practicality of using finite element analysis for strain and deformation analysis in regions with sparse GNSS stations. A digital 3D terrain model is constructed using DEM data, and regional rock mass properties are integrated to simulate geological structures, resulting [...] Read more.
This study verifies the practicality of using finite element analysis for strain and deformation analysis in regions with sparse GNSS stations. A digital 3D terrain model is constructed using DEM data, and regional rock mass properties are integrated to simulate geological structures, resulting in the development of a 3D geological finite element model (FEM) using the ANSYS Workbench module. Gravity load and thermal constraints are applied to derive directional strain and deformation solutions, and the model results are compared to actual strain and tilt measurements from the Jiujiang Seismic Station (JSS). The results show that temperature variations significantly affect strain and deformation, particularly due to the elevation difference between the mountain base and summit. Higher temperatures increase thermal strain, causing tensile effects, while lower temperatures reduce thermal strain, leading to compressive effects. Strain and deformation patterns are strongly influenced by geological structures, gravity, and topography, with valleys experiencing tensile strain and ridges undergoing compression. The deformation trend indicates a southwestward movement across the study area. A comparison of FEM results with ten years of strain and tiltmeter data from JSS reveals a strong correlation between the model predictions and actual measurements, with correlation coefficients of 0.6 and 0.75 for strain in the NS and EW directions, and 0.8 and 0.9 for deformation in the NS and EW directions, respectively. These findings confirm that the 3D geological FEM is applicable for regional strain and deformation analysis, providing a feasible alternative in areas with limited GNSS monitoring. This method provides valuable insights into crustal deformation in regions with sparse strain and deformation measurement data. Full article
(This article belongs to the Special Issue Remote Sensing in Engineering Geology (Third Edition))
Show Figures

Figure 1

18 pages, 4210 KB  
Article
Quantifying Creep on the Laohushan Fault Using Dense Continuous GNSS
by Wenquan Zhuang, Yuhang Li, Ming Hao, Shangwu Song, Baiyun Liu and Lihong Fan
Remote Sens. 2024, 16(19), 3746; https://doi.org/10.3390/rs16193746 - 9 Oct 2024
Cited by 1 | Viewed by 1415
Abstract
The interseismic behavior of faults (whether they are locked or creeping) and their quantitative kinematic constraints are critical for assessing the seismic hazards of faults and their surrounding areas. Currently, the creep of the eastern segment of the Laohushan Fault in the Haiyuan [...] Read more.
The interseismic behavior of faults (whether they are locked or creeping) and their quantitative kinematic constraints are critical for assessing the seismic hazards of faults and their surrounding areas. Currently, the creep of the eastern segment of the Laohushan Fault in the Haiyuan Fault Zone at the northeastern margin of the Tibetan Plateau, as revealed by InSAR observations, lacks confirmation from other observational methods, particularly high-precision GNSS studies. In this study, we utilized nearly seven years of observation data from a dense GNSS continuous monitoring profile (with a minimum station spacing of 2 km) that crosses the eastern segment of the Laohushan Fault. This dataset was integrated with GNSS data from regional continuous stations, such as those from the Crustal Movement Observation Network of China, and multiple campaign measurements to calculate GNSS baseline change time series across the Laohushan Fault and to obtain a high spatial resolution horizontal crustal velocity field for the region. A comprehensive analysis of this primary dataset indicates that the Laohushan Fault is currently experiencing left-lateral creep, characterized by a partially locked shallow segment and a deeper locked segment. The fault creep is predominantly concentrated in the shallow crustal region, within a depth range of 0–5.7 ± 3.4 km, exhibiting a creep rate of 1.5 ± 0.7 mm/yr. Conversely, at depths of 5.7 ± 3.4 km to 16.8 ± 4.2 km, the fault remains locked, with a loading rate of 3.9 ± 1.1 mm/yr. The shallow creep is primarily confined within 3 km on either side of the fault. Over the nearly seven-year observation period, the creep movement within approximately 5 km of the fault’s near field has shown no significant time-dependent variation, instead demonstrating a steady-state behavior. This steady-state creep appears unaffected by postseismic effects from historical large earthquakes in the adjacent region, although the deeper (far-field) tectonic deformation of the Laohushan Fault may have been influenced by the postseismic effects of the 1920 Haiyuan M8.5 earthquake. Full article
(This article belongs to the Special Issue Advances in Multi-GNSS Technology and Applications)
Show Figures

Figure 1

13 pages, 4094 KB  
Article
Analysis of the Spatial Distribution and Common Mode Error Correlation in a Small-Scale GNSS Network
by Aiguo Li, Yifan Wang and Min Guo
Sensors 2024, 24(17), 5731; https://doi.org/10.3390/s24175731 - 3 Sep 2024
Cited by 1 | Viewed by 1600
Abstract
When analyzing GPS time series, common mode errors (CME) often obscure the actual crustal movement signals, leading to deviations in the velocity estimates of station coordinates. Therefore, mitigating the impact of CME on station positioning accuracy is crucial to ensuring the precision and [...] Read more.
When analyzing GPS time series, common mode errors (CME) often obscure the actual crustal movement signals, leading to deviations in the velocity estimates of station coordinates. Therefore, mitigating the impact of CME on station positioning accuracy is crucial to ensuring the precision and reliability of GNSS time series. The current approach to separating CME mainly uses signal filtering methods to decompose the residuals of the observation network into multiple signals, from which the signals corresponding to CME are identified and separated. However, this method overlooks the spatial correlation of the stations. In this paper, we improved the Independent Component Analysis (ICA) method by introducing correlation coefficients as weighting factors, allowing for more accurate emphasis or attenuation of the contributions of the GNSS network’s spatial distribution during the ICA process. The results show that the improved Weighted Independent Component Analysis (WICA) method can reduce the root mean square (RMS) of the coordinate time series by an average of 27.96%, 15.23%, and 28.33% in the E, N, and U components, respectively. Compared to the ICA method, considering the spatial distribution correlation of stations, the improved WICA method shows enhancements of 12.53%, 3.70%, and 8.97% in the E, N, and U directions, respectively. This demonstrates the effectiveness of the WICA method in separating CMEs and provides a new algorithmic approach for CME separation methods. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 30435 KB  
Article
Improvement of the Estimation of the Vertical Crustal Motion Rate at GNSS Campaign Stations Based on the Information of GNSS Reference Stations
by Jiazheng Jiang, Kaihua Ding and Guanghong Lan
Remote Sens. 2024, 16(17), 3144; https://doi.org/10.3390/rs16173144 - 26 Aug 2024
Viewed by 1373
Abstract
With the enrichment of GNSS data and the improvement in data processing accuracy, GNSS technology has been widely applied in fields such as crustal deformation. The Crustal Movement Observation Network of China (CMONOC) has provided decades of Global Navigation Satellite System (GNSS) data [...] Read more.
With the enrichment of GNSS data and the improvement in data processing accuracy, GNSS technology has been widely applied in fields such as crustal deformation. The Crustal Movement Observation Network of China (CMONOC) has provided decades of Global Navigation Satellite System (GNSS) data and related data products for crustal deformation research on the Chinese mainland. The coordinate time series of continuously observed reference stations contain abundant information on crustal movements. In contrast, the coordinate time series of periodically observed campaign stations have limited data, making it difficult to separate or remove instantaneous non-tectonic movements from the time series, as performed with reference stations, to obtain a stable and reliable crustal movement velocity field. To address this issue, this paper proposes a method to improve the estimation of crustal movement velocity at campaign stations using the information of neighboring reference stations. This method constructs a Delaunay triangulation of reference stations and fits the periodic movement of each campaign station using an inverse distance weighted interpolation algorithm based on the reference station information. The crustal movement velocity of the campaign stations is then estimated after removing the periodic movement. This method was verified by its application to the estimation of the vertical motion rate at some reference and campaign stations in Yunnan Province. The results show that the accuracy of vertical motion rate estimation for virtual and real campaign stations improved by an average of 24.4% and 9.6%, respectively, demonstrating the effectiveness of the improved method, which can be applied to estimate crustal movement velocity at campaign stations in other areas. Full article
Show Figures

Graphical abstract

25 pages, 36124 KB  
Article
Study of Earthquake Landslide Hazard by Defining Potential Landslide Thickness Using Excess Topography: A Case Study of the 2014 Ludian Earthquake Area, China
by Pengfei Zhang, Chong Xu, Xiaoli Chen, Qing Zhou, Haibo Xiao and Zhiyuan Li
Remote Sens. 2024, 16(16), 2951; https://doi.org/10.3390/rs16162951 - 12 Aug 2024
Cited by 1 | Viewed by 1970
Abstract
Influenced by the combined effects of crustal uplift and river downcutting, rivers with significant potential energy are often found in high mountain and canyon areas. Due to the active tectonic movements that these areas have experienced or are currently experiencing, geological hazards frequently [...] Read more.
Influenced by the combined effects of crustal uplift and river downcutting, rivers with significant potential energy are often found in high mountain and canyon areas. Due to the active tectonic movements that these areas have experienced or are currently experiencing, geological hazards frequently occur on the mountains flanking the rivers. Therefore, evaluating the susceptibility and risk of earthquake landslides in river segments of these high mountain and canyon areas is of great importance for disaster prevention and mitigation, as well as for the safe construction and operation of hydropower stations. Currently, a major challenge in the study of landslide susceptibility and hazard is determining the thickness of potential landslide bodies. The presence of excess topography reflects the instability of the disrupted slopes, which is also a fundamental cause of landslides. This study takes the example of the Ludian earthquake in 2014, focusing on the IX and VIII intensity zones, to extract the excess topography in the study area and analyze its correlation with seismic landslides. The correlation between the critical acceleration value and the excess topography was validated using the Spearman’s rank correlation coefficient, resulting in a correlation coefficient of −0.771. This indicates a strong negative correlation between the excess topography and critical acceleration, with significant relevance. The landslide susceptibility distribution obtained by setting the potential landslide thickness based on the excess topography and proportion coefficient showed an ROC curve analysis AUC value of 0.829. This is higher than the AUC value of 0.755 for the landslide susceptibility result using a uniform potential landslide thickness of 3 m, indicating the higher model evaluation accuracy of this approach. Earthquake landslide hazard predictions for rapid post-earthquake assessments and earthquake landslide hazard zoning for pre-earthquake planning were made using actual seismic ground motion and a 2% exceedance probability in 50 years, respectively. Comparing these with the 10,559 coseismic landslides triggered by the Ludian earthquake and evaluating the seismic landslide development rate, the results were found to be consistent with reality. The improved model better reflects the control of excess topography and rock mechanics properties on the development of earthquake landslide hazards on high steep slopes. Identifying high-risk seismic landslide areas through this method and taking corresponding preventive and protective measures can help plan and construct safer hydropower and other infrastructure, thereby enhancing their disaster resistance. Full article
Show Figures

Figure 1

15 pages, 72980 KB  
Article
Exploring Fault Geometry and Holocene Deformation of the Littoral Fault Zone within the Seismic Gap South of Greater Bay Area, China
by Xiangming Dai, Zhigang Li, Litian Hu, Peizhen Zhang, Xiaoqiang Yang, Rafael Almeida and Guanhua Li
J. Mar. Sci. Eng. 2024, 12(8), 1350; https://doi.org/10.3390/jmse12081350 - 8 Aug 2024
Viewed by 3787
Abstract
Over the past 424 years, the Littoral Fault Zone (LFZ), located offshore of the South China coast, has experienced four destructive earthquakes (M ≥ 7). These events have resulted in an approximately 700 km seismic gap centered on the Greater Bay Area of [...] Read more.
Over the past 424 years, the Littoral Fault Zone (LFZ), located offshore of the South China coast, has experienced four destructive earthquakes (M ≥ 7). These events have resulted in an approximately 700 km seismic gap centered on the Greater Bay Area of China, home to over 70 million people. Despite previous studies on deeper crustal structures and geodynamic processes, the shallow structural architecture and recent tectonic activity of the LFZ within the seismic gap remain poorly understood due to limited offshore geophysical investigations. Here, we present new offshore geophysical data to explore the shallow crustal architecture and Holocene activity of the LFZ within this seismic gap. Multichannel seismic data reveal that the LFZ comprises a high-angle listric main normal fault along with several secondary normal faults. The main fault trends northeast and dips southeast in the shallow crustal architecture, serving as the basin-controlling fault in the north of the Pearl River Mouth Basin, with accumulated displacements ranging from 1.5 to 1.8 km. Furthermore, analysis of single-channel seismic data, and 14C dating results from the borehole, indicate that the most recent movement of the main fault occurred within the last ~10,000 years, with minimum vertical offsets of 1.2 m. Based on these findings, we emphasize the LFZ’s potential to generate a significant earthquake, estimated at Mw 7.0–7.5, within the inferred seismic gap. Our study highlights the potential earthquake hazard posed by the LFZ to the Greater Bay Area of China, while also providing valuable insights for the assessment of active submarine faults worldwide. Full article
Show Figures

Figure 1

18 pages, 8263 KB  
Article
Inversion Method for Monitoring Daily Variations in Terrestrial Water Storage Changes in the Yellow River Basin Based on GNSS
by Wenqing Zhang and Xiaoping Lu
Water 2024, 16(13), 1919; https://doi.org/10.3390/w16131919 - 5 Jul 2024
Cited by 2 | Viewed by 1665
Abstract
The uneven distribution of global navigation satellite system (GNSS) continuous stations in the Yellow River Basin, combined with the sparse distribution of GNSS continuous stations in some regions and the weak far-field load signals, poses challenges in using GNSS vertical displacement data to [...] Read more.
The uneven distribution of global navigation satellite system (GNSS) continuous stations in the Yellow River Basin, combined with the sparse distribution of GNSS continuous stations in some regions and the weak far-field load signals, poses challenges in using GNSS vertical displacement data to invert terrestrial water storage changes (TWSCs). To achieve the inversion of water reserves in the Yellow River Basin using unevenly distributed GNSS continuous station data, in this study, we employed the Tikhonov regularization method to invert the terrestrial water storage (TWS) in the Yellow River Basin using vertical displacement data from network engineering and the Crustal Movement Observation Network of China (CMONOC) GNSS continuous stations from 2011 to 2022. In addition, we applied an inverse distance weighting smoothing factor, which was designed to account for the GNSS station distribution density, to smooth the inversion results. Consequently, a gridded product of the TWS in the Yellow River Basin with a spatial resolution of 0.5 degrees on a daily scale was obtained. To validate the effectiveness of the proposed method, a correlation analysis was conducted between the inversion results and the daily TWS from the Global Land Data Assimilation System (GLDAS), yielding a correlation coefficient of 0.68, indicating a strong correlation, which verifies the effectiveness of the method proposed in this paper. Based on the inversion results, we analyzed the spatial–temporal distribution trends and patterns in the Yellow River Basin and found that the average TWS decreased at a rate of 0.027 mm/d from 2011 to 2017, and then increased at a rate of 0.010 mm/d from 2017 to 2022. The TWS decreased from the lower-middle to lower reaches, while it increased from the upper-middle to upper reaches. Furthermore, an attribution analysis of the terrestrial water storage changes in the Yellow River Basin was conducted, and the correlation coefficients between the monthly average water storage changes inverted from the results and the monthly average precipitation, evapotranspiration, and surface temperature (AvgSurfT) from the GLDAS were 0.63, −0.65, and −0.69, respectively. This indicates that precipitation, evapotranspiration, and surface temperature were significant factors affecting the TWSCs in the Yellow River Basin. Full article
Show Figures

Figure 1

Back to TopTop