Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (445)

Search Parameters:
Keywords = crustacean species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4197 KiB  
Review
Conformational Dynamics and Structural Transitions of Arginine Kinase: Implications for Catalysis and Allergen Control
by Sung-Min Kang
Life 2025, 15(8), 1248; https://doi.org/10.3390/life15081248 - 6 Aug 2025
Abstract
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” [...] Read more.
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” and “closed” forms, respectively. These conformational changes are crucial for catalytic activity, enabling precise positioning of active-site residues and loop closure during phosphoryl transfer. Transition-state analog complexes have provided additional insights by mimicking intermediate states of catalysis, supporting the functional relevance of the open/closed structural model. Furthermore, studies across multiple species reveal how monomeric and dimeric forms of arginine kinase contribute to its allosteric regulation and substrate specificity. Beyond its metabolic role, arginine kinase is also recognized as a major allergen in crustaceans. Its structural uniqueness and absence in vertebrates make it a promising candidate for selective drug targeting. By integrating crystallographic data with functional context, this review highlights conserved features and species-specific variations of arginine kinase that may inform the design of inhibitors. Such molecules have the potential to serve both as antiparasitic agents and as novel therapeutics to manage crustacean-related allergic responses in humans. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

22 pages, 598 KiB  
Article
Re-Consider the Lobster: Animal Lives in Protein Supply Chains
by Karl T. Ulrich
Sustainability 2025, 17(15), 7034; https://doi.org/10.3390/su17157034 - 2 Aug 2025
Viewed by 120
Abstract
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive [...] Read more.
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive complexity and accounting for all lives involved in production, including direct harvests, reproductive animals, and feed species, reveals dramatic variations in protein efficiency. The analysis considers two categories of animal life: complex-cognitive lives (e.g., mammals, birds, cephalopods) and pain-capable lives (e.g., fish, crustaceans). Calculating protein yield per life demonstrates efficiency differences spanning more than five orders of magnitude, from 2 g per complex-cognitive life for baby octopus to 390,000 g per life for bovine dairy systems. Key findings expose disparities between terrestrial and marine protein production. Terrestrial systems involving mammals and birds show higher protein yields and exclusively involve complex-cognitive lives, while marine systems rely predominantly on pain-capable lives across complex food chains. Dairy production emerges as the most efficient system. Aquaculture systems reveal complex dynamics, with farmed carnivorous fish requiring hundreds of feed fish lives to produce protein, compared to omnivorous species that demonstrate improved efficiency. Beyond quantitative analysis, this research provides a framework for understanding the ethical and ecological dimensions of protein production, offering insights for potential systemic innovations. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Graphical abstract

20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Viewed by 176
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

16 pages, 1947 KiB  
Article
Benthic Macrofauna in the Loukkos Estuary, Morocco: Patterns and Environmental Drivers
by Feirouz Touhami
Ecologies 2025, 6(3), 53; https://doi.org/10.3390/ecologies6030053 - 1 Aug 2025
Viewed by 173
Abstract
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), [...] Read more.
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), polychaetes (23%), and crustaceans (21%). Species richness varied considerably along the estuarine gradient, ranging from fewer than five species in the upstream sector to up to 30 species downstream. Overall, higher diversity was observed in the downstream areas and during the dry season. Macrofaunal density also exhibited substantial variability, ranging from 95 ind.m−2 to 14,852 ind.m−2, with a mean density of 2535 ± 4058 ind.m−2. Multivariate analyses identified four distinct benthic assemblages structured primarily by spatial factors (ANOSIM R = 0.86, p = 0.002), with negligible seasonal effect (R = −0.03, p = 0.6). Assemblages ranged from marine-influenced communities at the estuary mouth dominated by Cerastoderma edule, through rich and diverse seagrass-associated communities in the lower estuary dominated by Bittium reticulatum, and moderately enriched mid-estuary communities characterized by Scrobicularia plana and Hediste diversicolor, to species-poor upstream communities dominated by the tolerant species H. diversicolor. Canonical analysis showed that salinity and vegetation explain nearly 40% of the variation in benthic assemblages, highlighting the key role of Zostera seagrass beds as structuring habitats. Moreover, upstream anthropogenic pressures alter environmental conditions, reducing benthic diversity and favoring tolerant species. Full article
Show Figures

Figure 1

8 pages, 222 KiB  
Perspective
Exploring the Potential of European Brown Shrimp (Crangon crangon) in Integrated Multi-Trophic Aquaculture: Towards Achieving Sustainable and Diversified Coastal Systems
by Ángel Urzúa and Marina Gebert
Oceans 2025, 6(3), 47; https://doi.org/10.3390/oceans6030047 - 31 Jul 2025
Viewed by 114
Abstract
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native [...] Read more.
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native species, such as the European brown shrimp (Crangon crangon), presents an opportunity to develop a sustainable blue bioeconomy in Europe. C. crangon holds significant commercial value, yet overexploitation has led to population declines. Integrated Multi-Trophic Aquaculture (IMTA) offers a viable solution by utilizing fish farm wastewater as a nutrient source, reducing both costs and environmental impact. Research efforts in Germany and other European nations are exploring IMTA’s potential by co-culturing shrimp with species like sea bream, sea bass, and salmon. The physiological adaptability and omnivorous diet of C. crangon further support its viability in aquaculture. However, critical knowledge gaps remain regarding its lipid metabolism, early ontogeny, and reproductive biology—factors essential for optimizing captive breeding. Future interdisciplinary research should refine larval culture techniques and develop sustainable co-culture models. Expanding C. crangon aquaculture aligns with the UN’s Sustainable Development Goals by enhancing food security, ecosystem resilience, and economic stability while reducing Europe’s reliance on seafood imports. Full article
22 pages, 4093 KiB  
Article
Community Structure and Influencing Factors of Macro-Benthos in Bottom-Seeded Marine Pastures: A Case Study of Caofeidian, China
by Xiangping Xue, Long Yun, Zhaohui Sun, Jiangwei Zan, Xinjing Xu, Xia Liu, Song Gao, Guangyu Wang, Mingshuai Liu and Fei Si
Biology 2025, 14(7), 901; https://doi.org/10.3390/biology14070901 - 21 Jul 2025
Viewed by 185
Abstract
To accurately assess the water quality, ecosystem status, distribution of large benthic organisms, and ecological restoration under human intervention, an analysis of benthic organisms on Caofeidian in September and November 2023 and January and May of the following year was conducted in this [...] Read more.
To accurately assess the water quality, ecosystem status, distribution of large benthic organisms, and ecological restoration under human intervention, an analysis of benthic organisms on Caofeidian in September and November 2023 and January and May of the following year was conducted in this work. By performing CCA (canonical correspondence analysis) and cluster and correlation coefficient (Pearson) analyses, the temporal variation characteristics of benthic abundance, dominant species, community structure and biodiversity were analyzed. A total of 79 species of macro-benthic animals were found in four months, including 32 species of polychaetes, cnidarians, 1 species of Nemertean, 19 species of crustaceans, and 24 species of molluscs. The use of conventional grab-type mud collectors revealed that the Musculus senhousei dominated the survey (Y > 0.02). While only a small number of Ruditapes philippinarum were collected from bottom-dwelling species, a certain number of bottom-dwelling species (Ruditapes philippinarum and Scapharca subcrenata) were also collected during the trawl survey. Additionally, a significant population of Rapana venosa was found in the area. It is speculated that the dual effects of predation and competition are likely the primary reasons for the relatively low abundance of bottom-dwelling species. The density and biomass of macro-benthos were consistent over time, which was the highest in May, the second highest in January, and the lowest in September and November. The main environmental factors affecting the large benthic communities in the surveyed sea areas were pH, DO, NO2-N, T, SAL and PO43−-P. Combined with historical data, it was found that although the environmental condition in the Caofeidian sea area has improved, the Musculus senhousei has been dominant. In addition, the abundance of other species is much less than that of the Musculus senhousei, and the diversity of the benthic community is still reduced. Our work provides valuable data support for the management and improvement of bottom Marine pasture and promotes the transformation of Marine resources from resource plunder to a sustainable resource. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

20 pages, 2866 KiB  
Article
Morphometrics of the Blue Crab Callinectes sapidus Rathbun, 1896 in a Northern Adriatic Saline Marsh Under Environmental Stress
by Neven Iveša, Paolo Paliaga, Matej Čief, Petra Burić, Valentina Pitacco and Moira Buršić
Appl. Sci. 2025, 15(14), 7990; https://doi.org/10.3390/app15147990 - 17 Jul 2025
Viewed by 738
Abstract
The Atlantic blue crab (Callinectes sapidus) has rapidly expanded across the Mediterranean, raising concerns over its ecological and economic impacts. This study examines the morphometric characteristics and environmental influences on C. sapidus populations in the Palud-Palù swamp (western Istrian coast) from [...] Read more.
The Atlantic blue crab (Callinectes sapidus) has rapidly expanded across the Mediterranean, raising concerns over its ecological and economic impacts. This study examines the morphometric characteristics and environmental influences on C. sapidus populations in the Palud-Palù swamp (western Istrian coast) from 2022 to 2024. A total of 203 specimens were analyzed for carapace width, length, depth, and body mass, alongside monthly measurements of temperature, salinity, oxygen saturation, and pH. Statistical analyses (t-tests, ANOVA, PCA, and RDA) revealed pronounced sexual dimorphism, with males consistently larger than females. Interannual differences in size distribution showed larger individuals in 2022, followed by a decline in 2023 and 2024, likely due to environmental stressors (e.g., salinity, temperature, hypoxia) and increased anthropogenic pressures (e.g., trapping and illegal harvesting). RDA identified temperature, oxygen saturation, and pH as key abiotic drivers of morphometric variation. These findings suggest that while C. sapidus demonstrates physiological plasticity, enabling its persistence in estuarine environments, its growth and invasive potential may be constrained under extreme or suboptimal local conditions. This study highlights the importance of long-term monitoring and integrated management to mitigate ecological disruption in sensitive coastal ecosystems. Full article
(This article belongs to the Special Issue New Insights into Marine Ecology and Fisheries Science)
Show Figures

Figure 1

13 pages, 620 KiB  
Article
Assessing Environmental Risk Posed by Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part B
by Elzbieta Bialkowska-Jelinska, Philip van Beynen and Laurent Calcul
Environments 2025, 12(7), 231; https://doi.org/10.3390/environments12070231 - 8 Jul 2025
Viewed by 829
Abstract
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it [...] Read more.
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it is essential to ascertain whether these contaminants pose any risk to aquatic organisms who live in the water bodies receiving this waste. Risk quotients (RQ) are a commonly used method to do so. For our pilot study, we undertook such analysis for three trophic levels: algae, crustaceans, and fish from two small lakes, one fed by septic tanks and the other not. This research was conducted in 2021 from the end of the dry season and through most of the wet season in west central Florida, USA. Of the 14 PPCPs measured, six had RQs that posed a risk to all three trophic levels. This risk increased during the wet season. Both lakes, regardless of whether they directly received PPCPs from septic tanks or not, had some level of risk. However, the lake without septic tanks had a smaller risk, both in elevated RQs and the occurrence to the various species. Of the PPCPs measured, DEET, caffeine, and theophylline posed the greatest risk. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Graphical abstract

15 pages, 2319 KiB  
Article
Visual Characterization of Male and Female Greenshell™ Mussels (Perna canaliculus) from New Zealand Using Image-Based Shape and Color Analysis
by Murat O. Balaban, Graham C. Fletcher and Meng Zhou
Fishes 2025, 10(7), 325; https://doi.org/10.3390/fishes10070325 - 3 Jul 2025
Viewed by 245
Abstract
Machine vision/image analysis is used in the sorting and handling of many aquatic species. Pictures of 474 New Zealand Greenshell™ (Perna canaliculus, Gmelin, 1791) whole unopened mussels (215 females and 259 males) from the top and from the side were analyzed [...] Read more.
Machine vision/image analysis is used in the sorting and handling of many aquatic species. Pictures of 474 New Zealand Greenshell™ (Perna canaliculus, Gmelin, 1791) whole unopened mussels (215 females and 259 males) from the top and from the side were analyzed to evaluate if visual attributes (size, shape, and color) can be used to differentiate gender. Size (length, width, height, and view area), color, and shape (by elliptic Fourier analysis and by ray length-ray angle analysis) were analyzed and differences by gender tested. Application of Artificial Neural Networks (ANN), Principal Component Analysis (PCA), Canonical Discriminant Analysis (CDA), and Random Forest (RF) to the shape parameters failed to reliably predict gender. Comprehensive morphometric and color characterization of males and females, as well as shape parameters, are presented as a reference for future image-based research. The parasitic crustacean pea crab can change the shape of mussel shells, and elliptic Fourier analysis can quantify this difference. Full article
(This article belongs to the Section Aquatic Invertebrates)
Show Figures

Figure 1

19 pages, 5680 KiB  
Article
Metabolomic Profiling Reveals Social Hierarchy-Specific Metabolite Differences in Male Macrobrachium rosenbergii
by Liping Li, Dayan Hu, Jiongying Yu, Xingyu Zheng, Miaoying Cai, Quanxin Gao and Shaokui Yi
Animals 2025, 15(13), 1917; https://doi.org/10.3390/ani15131917 - 29 Jun 2025
Viewed by 362
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii, GFP) is a highly valuable crustacean species in global aquaculture. However, a social hierarchy exists among the distinct male morphotypes, specifically blue-clawed males (BC), orange-clawed males (OC), and small males (SMs). In this study, to [...] Read more.
The giant freshwater prawn (Macrobrachium rosenbergii, GFP) is a highly valuable crustacean species in global aquaculture. However, a social hierarchy exists among the distinct male morphotypes, specifically blue-clawed males (BC), orange-clawed males (OC), and small males (SMs). In this study, to identify the specific metabolites among BC, OC, and SM, hemolymph samples were collected for the untargeted liquid chromatography–mass spectrometry metabolomics (LC–MS). A total of 172, 546, and 578 significantly different metabolites (SDMs) were identified in OC vs. BC, SM vs. BC, and SM vs. OC, respectively. Notably, creatine and glutamate in BC males likely enhance their aggressive behavior through improved energy metabolism. In the SM group, the up-regulation of prostaglandin E3, testosterone, and arachidonic acid may lead to premature gonadal maturation and enhance immunity. Serotonin, Glu-Pro, and pentanoylcarnitine detected in OC males reflect their physiological need for rapid growth and adaptation to social behaviors. In the SM group, the up-regulation of prostaglandin E3, arachidonic acid, and testosterone may promote premature gonadal maturation and enhance immunodominance. These findings will enhance the understanding of the physiological basis of social hierarchy formation in male GFPs from a metabolomics perspective. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 1125 KiB  
Article
Genetic Diversity of Selective Breeding Populations of Giant Freshwater Prawn (Macrobrachium rosenbergii) Based on SSR and Mitochondrial D-Loop Gene
by Salifu Ibrahim, Amin Ruhul, Jingfen Li, Guoliang Yang, Shaokui Yi, Zhenglong Xia, Miaoying Cai, Yuewen Deng and Qiongying Tang
Diversity 2025, 17(7), 437; https://doi.org/10.3390/d17070437 - 20 Jun 2025
Viewed by 334
Abstract
Macrobrachium rosenbergii, commonly known as giant freshwater prawns (GFPs), is an economically and nutritionally important decapod crustacean species in China. Understanding the genetic diversity of selective breeding populations is crucial in breeding plans for selecting genetically diverse broodstocks and maintaining genetic diversity. [...] Read more.
Macrobrachium rosenbergii, commonly known as giant freshwater prawns (GFPs), is an economically and nutritionally important decapod crustacean species in China. Understanding the genetic diversity of selective breeding populations is crucial in breeding plans for selecting genetically diverse broodstocks and maintaining genetic diversity. The genetic structure of six breeding populations (Hefu (HF), Nantaihu No.2 (NTH), Jiaxin (JX), Shufeng (SF), Taiwan (TW), and Guangxi (GX)) of GFP in China was examined using 16 newly developed microsatellite loci and the mitochondrial control region (D-loop). The microsatellite data revealed that all 16 loci have high diversity, with all values of polymorphism information content (PIC) more than 0.5. The average expected heterozygosity (He, 0.89) and the number of alleles (Na, 18.25) of SF were the highest, followed by He (0.89) and Na (14.75) of the JX, and GX has the lowest He (0.83) and Na (11.31). The average PIC value for the six stocks ranged from 0.80 to 0.87. Pairwise comparisons revealed that Fst ranged from 0.03541 to 0.09637 and was significant (p < 0.05) between most populations, indicating from low to moderate genetic differentiation among the six populations. The D-loop analysis identified 114 variable sites and 29 haplotypes, with an average haplotype diversity (Hd) and nucleotide diversity (π) of 0.640 and 0.01247, respectively. Genetic differentiation among the six populations based on the D-loop was from moderate to high, with Fst values of 0.05603–0.80788, and all p < 0.05. This study demonstrates that selective breeding stocks of M. rosenbergii in China show moderate to high genetic diversity and have the potential for further selective breeding, providing a theoretical basis for conserving and utilizing M. rosenbergii genetic resources. Full article
Show Figures

Figure 1

23 pages, 4572 KiB  
Article
Mechanisms of Zooplankton Community Assembly and Their Associations with Environmental Drivers in Arid-Region Reservoirs of Northwest China
by Xuelian Qiu, Fangze Zi, Long Yun, Qiang Huo, Liting Yang, Yong Song and Shengao Chen
Biology 2025, 14(6), 732; https://doi.org/10.3390/biology14060732 - 19 Jun 2025
Viewed by 448
Abstract
This study investigates the mechanisms of zooplankton community assembly and their relationship to environmental factors in high-latitude arid regions. We conducted seasonal sampling at four reservoirs in the upper Tarim River Basin from 2023 to 2024: Shangyou Reservoir (SY), Shengli Reservoir (SL), Duolang [...] Read more.
This study investigates the mechanisms of zooplankton community assembly and their relationship to environmental factors in high-latitude arid regions. We conducted seasonal sampling at four reservoirs in the upper Tarim River Basin from 2023 to 2024: Shangyou Reservoir (SY), Shengli Reservoir (SL), Duolang Reservoir (DL) and Xinjingzi Reservoir (XJZ). The zooplankton community was categorized into five functional groups based on the predominant species, with small crustacean filter feeders (SCF) in all reservoirs except XJZ, where a seasonal shift between rotifer collectors (RC) in the wet season and SCF in the dry season was observed. Pearson correlation and canonical correspondence analysis (CCA) revealed that interspecific competition, pH, conductivity (COND), and salinity (SALIN) were the main determinants of zooplankton community composition. Significant correlations (p < 0.05) were detected among functional groups RC (rotifers carnivora), RF (rotifers filter feeders), SCF (small copepods and claocera filter feeders), and MCC (middle copepods and claocera carnivora). Environmental factors showed significant spatial heterogeneity, while zooplankton biomass was positively correlated with pH and COND. Cluster similarity analyses indicated complex interactions between 29 zooplankton species, with RF identified as an important positive predictor for larger groups. The network of co-occurrences showed predominantly positive relationships, emphasizing the mutual facilitation between the species. Our results suggest that interspecific interactions have stronger effects on community structuring than environmental factors, with mutual facilitation emerging as an important survival strategy. This study provides important insights into the dynamics of zooplankton communities in dry reservoirs and establishes a framework for understanding ecological patterns and assembly mechanisms under drought conditions. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

20 pages, 7525 KiB  
Article
Heterologous Expression and Antimicrobial Mechanism of a Cysteine-Rich Peptide from Barnacle Pollicipes pollicipes
by Zhicheng He, Zixun Fei, Huishao Shi, Meichuan Huang, Liumi Wei, Junjian Wang, Peng He and Wei Zhang
Microorganisms 2025, 13(6), 1381; https://doi.org/10.3390/microorganisms13061381 - 13 Jun 2025
Viewed by 489
Abstract
The escalating crisis of antimicrobial resistance in aquaculture, driven by the indiscriminate use of antibiotics, underscores the urgent need to develop novel anti-infective agents. This study addresses this requirement by investigating cysteine-rich antimicrobial peptides (AMPs) in understudied crustacean species. A cysteine-rich AMP, designated [...] Read more.
The escalating crisis of antimicrobial resistance in aquaculture, driven by the indiscriminate use of antibiotics, underscores the urgent need to develop novel anti-infective agents. This study addresses this requirement by investigating cysteine-rich antimicrobial peptides (AMPs) in understudied crustacean species. A cysteine-rich AMP, designated PpRcys1, was identified and characterized from the genome of Pollicipes pollicipes. PpRcys1 comprises 104 amino acids, with 85 residues forming the mature peptide region, and exhibits random coils, a CSαβ-fold, and one β-sheet. Our findings demonstrated that recombinant PpRcys1 (rPpRcys1) possesses broad-spectrum antimicrobial activity against three Gram-positive bacteria (Staphylococcus aureus, Bacillus sp. T2, and Streptococcus agalactiae) and four Gram-negative bacteria (Aeromonas hydrophila, Escherichia coli, Vibrio alginolyticus, and Acinetobacter sp. L3), with minimum inhibitory concentrations ranging from 8 to 32 μM. It exerts antimicrobial effects by inducing membrane disruption without impacting bacterial protease activity, DNA migration, or respiratory chain reductase activity. Further investigation is warranted to determine whether it can target and interfere with intracellular bacterial processes. Our discovery and characterization of this novel AMP provide a promising foundation for its development as an alternative to antibiotics. Full article
(This article belongs to the Special Issue Therapeutic Potential of Antimicrobial Peptides)
Show Figures

Figure 1

30 pages, 2856 KiB  
Article
Comprehensive Risk Assessment of Metals and Minerals in Seafood Using Bioaccessibility Correction
by Ștefania-Adelina Milea, Ira-Adeline Simionov, Nina-Nicoleta Lazăr, Cătălina Iticescu, Mihaela Timofti, Puiu-Lucian Georgescu and Caterina Faggio
J. Xenobiot. 2025, 15(3), 92; https://doi.org/10.3390/jox15030092 - 12 Jun 2025
Viewed by 1855
Abstract
Evaluating the bioaccessibility and health risks of seafood is extremely important because, although it is a significant source of vital minerals, it may also contain potentially toxic elements. This study aimed to determine the content of metals and minerals in different seafood species [...] Read more.
Evaluating the bioaccessibility and health risks of seafood is extremely important because, although it is a significant source of vital minerals, it may also contain potentially toxic elements. This study aimed to determine the content of metals and minerals in different seafood species before and after thermal processing. Also, given the risk of overestimating the actual final concentration available in the body, a study was carried out to determine the bioaccessibility of these elements by simulating the digestion process in the gastrointestinal tract. Assessment of the potential toxic effects on consumer health in terms of exposure to heavy metals was carried out through risk analysis by Estimated Daily Intake, Hazard Index, and Cancer Risk parameters. Three bivalve mollusks, one gastropod mollusk, four cephalopod mollusks, and one crustacean species were analyzed in terms of minerals (P, S, K, Ca, and Se) and heavy metals (Cd, Pb, Ni, Cr, Fe, Zn, Co, Mn, and As) content. The lead (Pb) concentration recorded the strongest bioaccessibility increase, even reaching 100% in P. vannamei. Generally, the bioaccessibility of all metalloids dropped below 100%, which suggests that only a part of the amount of metal in the initially ingested sample can be absorbed by the human organism. Potassium and sulfur registered the greatest value, up to 23% for minerals’ bioaccessibility in the same samples. The highest intake rate of metals occurred after the consumption of M. gigas, which registered the highest Estimated Daily Intake for Cr (chromium) (0.321 mg kg−1 d−1), Cu (copper) (10.15 mg kg−1 d−1), and Zn (zinc) (12.67 mg kg−1 d−1). The Hazard Index values indicated no significant risk of poisoning. All calculated Cancer Risk scores remained below the acceptable threshold. Moreover, the Pearson coefficient revealed a positive correlation between the Hazard Index and the most abundant elements in the samples, Cr, Zn, and Cu. This study could provide a framework for evaluating both the nutritional benefits and toxicological concerns of seafood intake in public health applications. Full article
Show Figures

Graphical abstract

18 pages, 4093 KiB  
Article
Blue Crab (Callinectes sapidus) Haemolymph as a Potential Reservoir of Mesophilic Shewanella Species
by Giuseppe Esposito, Fabio Bondavalli, Matteo Riccardo Di Nicola, Paolo Pastorino, Sonia Scala, Martina Gini, Giulia Milanese, Edoardo Turolla, Alessandra Maganza, Simona Sciuto, Domenico Meloni, Rita Melillo, Pierluigi Acutis, Elena Bozzetta, Sebastiano Virgilio, Caterina Faggio, Silvia Colussi and Marino Prearo
Animals 2025, 15(12), 1731; https://doi.org/10.3390/ani15121731 - 11 Jun 2025
Viewed by 1397
Abstract
The blue crab (Callinectes sapidus) is an invasive alien species in the Mediterranean Sea, posing threats to biodiversity, fisheries, and aquaculture. Climate change has worsened these challenges, influencing the distribution of bacterial species, including Shewanella species, which are sensitive to changes [...] Read more.
The blue crab (Callinectes sapidus) is an invasive alien species in the Mediterranean Sea, posing threats to biodiversity, fisheries, and aquaculture. Climate change has worsened these challenges, influencing the distribution of bacterial species, including Shewanella species, which are sensitive to changes in temperature and salinity. In this study, 300 blue crabs were sampled between June and October 2024 from the Sacca di Goro (Northern Adriatic Sea, Italy) to investigate the prevalence of Shewanella species in their haemolymph. The prevalence was found to be 7% (21/300), with species such as S. mesophila, S. algae, S. cowelliana, and S. baltica identified, particularly in the months of September and October. Molecular techniques, including MALDI-TOF MS and rpoB gene amplification, were used to identify isolates. Antibiotic susceptibility testing (AST) revealed a trend of resistance to beta-lactam antibiotics. A network analysis was also conducted to examine the global trends of Shewanella research in relation to humans, animals, and the marine environment. While proper cooking eliminates the risk to consumers, handling without personal protective equipment can increase exposure, particularly for vulnerable individuals such as those who are elderly or immunocompromised. Mild symptoms are observed in children. Further studies, particularly with a One Health approach, are crucial to better understand the transmission dynamics and evolving antibiotic resistance of Shewanella species. Full article
Show Figures

Graphical abstract

Back to TopTop