Metabolomic Profiling Reveals Social Hierarchy-Specific Metabolite Differences in Male Macrobrachium rosenbergii
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Prawn Cultivation and Sample Collection
2.3. Sample Collection
2.4. LC–MS Analysis
2.5. Qualitative and Quantitative Analysis of Metabolites
2.6. Differentially Expressed Metabolites Selection
3. Results
3.1. Significant Morphological Advantages in BC Males
3.2. Metabolic Profiles of the Three Male Morphotypes
3.3. Candidate Significant Differential Metabolites (Sdms) for Caste Differentiation of Male M. rosenbergii
3.4. The Hierarchical Cluster Analysis of SDMs
3.5. The Variable Importance (VIP) Analysis of SDMs
3.6. Metabolic Pathway Enrichment Analysis Reveals Morphotype-Specific Differences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakraborty, B. Macrobrachium rosenbergii (giant freshwater prawn). CABI Digit. Libr. 2024, 96269. [Google Scholar] [CrossRef]
- Fisheries Administration Bureau, Ministry of Agriculture. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2024. [Google Scholar]
- Ferdose, A.; Hossain, M. Nutritional value of wild, cultured and frozen prawn Macrobrachium rosenbergii (De Man, 1879). Int. J. Nat. Sci. 1970, 1, 52–55. [Google Scholar] [CrossRef]
- New, M.B. Farming Freshwater Prawns. A Manual for the Culture of the Giant River Prawn; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Pillai, B.R.; Panda, D. Global status of giant prawn, Macrobrachium rosenbergii farming with special reference to India and measures for enhancing production. J. Aquac. 2024, 33, 1–14. [Google Scholar] [CrossRef]
- Lord, J.P.; Moser, R.M.; Buonocore, E.M.; Sylvester, E.E.; Morales, M.J.; Granitz, A.P.; Disipio, A.; Blakely, E.; O’Sullivan-Evangelista, S.L.; Mateo, T.F.; et al. Dominance hierarchies in marine invertebrates. Biol. Bull. 2021, 240, 2–15. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, H.; Lu, Y.; Wang, F.; Liu, D. The effect of intruder density on territoriality and dominance in male swimming crab (Portunus trituberculatus). Animals 2022, 12, 314. [Google Scholar] [CrossRef]
- Ra’anan, Z.; Sagi, A.; Wax, Y.; Karplus, I.; Hulata, G.; Kuris, A. Growth, size rank, and maturation of the freshwater prawn, Macrobrachium rosenbergii: Analysis of marked prawns in an experimental population. Biol. Bull. 1991, 181, 379–386. [Google Scholar] [CrossRef]
- Ibrahim, S.; Zhong, Z.; Lan, X.; Luo, J.; Tang, Q.; Xia, Z.; Yi, S.; Yang, G. Morphological diversity of different male morphotypes of giant freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Aquac. J. 2023, 3, 133–148. [Google Scholar] [CrossRef]
- Barki’, A.; Karplus, I.; Goren, M. The agonistic behaviour of the three male morphotypes of the freshwater prawn Macrobrachium rosenbergii (Crustacea, Palaemonidae). Behaviour 1991, 116, 252–277. Available online: https://www.jstor.org/stable/4534921 (accessed on 28 October 2015). [CrossRef]
- Barki, A.; Karplus, I.; Goren, M. Effects of size and morphotype on dominance hierarchies and resource competition in the freshwater prawn Macrobrachium rosenbergii. Anim. Behav. 1992, 44, 547–555. [Google Scholar] [CrossRef]
- Gherardi, F. Fighting behavior in hermit crabs: The combined effect of resource-holding potential and resource value in Pagurus longicarpus. Behav. Ecol. Sociobiol. 2006, 59, 500–510. [Google Scholar] [CrossRef]
- Thiel, M.; Dennenmoser, S. Competition for food and mates by dominant and subordinate male rock shrimp, Rhynchocinetes typus. Behaviour 2007, 144, 33–59. [Google Scholar] [CrossRef]
- Karplus, I.; Barki, A. Male morphotypes and alternative mating tactics in freshwater prawns of the genus Macrobrachium: A review. Rev. Aquacult. 2019, 11, 925–940. [Google Scholar] [CrossRef]
- Howard, M.R.; Ramsaroop, M.G.; Hoadley, A.P.; Jackson, L.R.; Lopez, M.S.; Saenz, L.A.; Alward, B. Female cichlids mate with novel androgen receptor mutant males that lack coloration. Horm. Behav. 2024, 163, 105564. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Tan, S.; He, K.; Chen, Y.; Cui, L.; Zhu, B.; Qiu, X.; Qi, Y.; Yang, W. Pterin-based red coloration predicts the outcome of male–male competition in Guinan toad-headed lizard. Animals 2024, 14, 2923. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, F.P.; Arruda, M.F.; Ribeiro, K.; Pessoa, D.M.A. The importance of color and body size for reproductive decision making by males and females of the giant river prawn, Macrobrachium rosenbergii (de Man, 1879) (Decapoda, Caridea, Palaemonidae). Behav. Process 2025, 225, 105137. [Google Scholar] [CrossRef]
- Su, L.; Lu, L.; Si, M.; Ding, J.; Li, C. Effect of population density on personality of crayfish (Procambarus clarkii). Animals 2024, 14, 1486. [Google Scholar] [CrossRef]
- Coto, Z.N.; Traniello, J.F.A. Social brain energetics: Ergonomic efficiency, neurometabolic scaling, and metabolic polyphenism in ants. Integr. Comp. Biol. 2022, 62, 1471–1478. [Google Scholar] [CrossRef]
- Negroni, M.A.; LeBoeuf, A.C. Metabolic division of labor in social insects. Curr. Opin. Insect Sci. 2023, 59, 101085. [Google Scholar] [CrossRef]
- Morin, A.; Culbert, B.M.; Mehdi, H.; Balshine, S.; Turko, A.J. Status-dependent metabolic effects of social interactions in a group-living fish. Biol. Lett. 2024, 20, 20240056. [Google Scholar] [CrossRef]
- Porfiri, M.; De Lellis, P.; Aung, E.; Meneses, S.; Abaid, N.; Waters, J.S.; Garnier, S. Reverse social contagion as a mechanism for regulating mass behaviors in highly integrated social systems. PNAS Nexus 2024, 3, 246. [Google Scholar] [CrossRef]
- Walton, A.; Toth, A.L. Nutritional inequalities structure worker division of labor in social insects. Curr. Opin. Insect Sci. 2023, 58, 101059. [Google Scholar] [CrossRef] [PubMed]
- Zarfsaz, F.; Heysieattalab, S.; Jaafari Suha, A.; Farkhondeh Tale Navi, F.; Basiryan, H. Social subordination is associated with better cognitive performance and higher theta coherence of the mPFC-vHPC circuit in male rats. PLoS ONE 2025, 20, e0320952. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xiao, W.; Zou, Z.; Zhu, J.; Li, D.; Yu, J.; Yang, H. Comparing transcriptomes reveals key metabolic mechanisms in superior growth performance Nile tilapia (Oreochromis niloticus). Front. Genet. 2022, 13, 879570. [Google Scholar] [CrossRef]
- Zi, X.; Li, Y.; Li, G.; Jia, B.; Jeppesen, E.; Zeng, Q.; Gu, X. A molting chemical cue (N-acetylglucosamine-6-phosphate) contributes to cannibalism of Chinese mitten crab Eriocheir sinensis. Aquat. Toxicol. 2023, 263, 106666. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, P.D.; Fialkowski, R.J.; Bush, B.; Wong, R.Y.; Moore, T.I.; Harvey, A.R. Oxidative stress in the brain is regulated by social status in a highly social cichlid fish. Front. Behav. Neurosci. 2024, 18, 1477984. [Google Scholar] [CrossRef]
- Su, X.; Zhu, B.; Ren, Z.; Wang, F. Differences in agonistic behavior and energy metabolism between male and female swimming crab Portunus trituberculatus based on the analysis of boldness. Animals 2022, 12, 2363. [Google Scholar] [CrossRef]
- Mennigen, J.A.; Magnan, J.; Touma, K.; Best, C.; Culbert, B.M.; Bernier, N.J.; Gilmour, K.M. Social status-dependent regulation and function of the somatotropic axis in juvenile rainbow trout. Mol. Cell. Endocrinol. 2022, 554, 111709. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Wu, Y.; Lv, Z.; Zhou, N.; Bian, C.; Sun, S. Hypoxia induces ferroptotic cell death mediated by activation of the inner mitochondrial membrane fission protein MTP18/Drp1 in invertebrates. J. Biol. Chem. 2025, 301, 108326. [Google Scholar] [CrossRef]
- Dziechciarz, P.; Strachecka, A.; Borsuk, G.; Olszewski, K. Effect of rearing in small-cell combs on activities of catalase and superoxide dismutase and total antioxidant capacity in the hemolymph of Apis mellifera workers. Antioxidants 2023, 12, 709. [Google Scholar] [CrossRef]
- Scofield, S.; Amdam, G.V. Fat body lipogenic capacity in honey bee workers is affected by age, social role, and dietary protein. J. Exp. Biol. 2024, 227, 247777. [Google Scholar] [CrossRef]
- Brejcha, M.; Prušáková, D.; Sábová, M.; Peska, V.; Černý, J.; Kodrík, D.; Konopová, B.; Čapková Frydrychová, R. Seasonal changes in ultrastructure and gene expression in the fat body of worker honey bees. J. Insect Physiol. 2023, 146, 104504. [Google Scholar] [CrossRef]
- Kocher, S.; Kingwell, C. The Molecular Substrates of Insect Eusociality. Annu. Rev. Genet. 2024, 58, 273–295. [Google Scholar] [CrossRef] [PubMed]
- Mbiydzenyuy, N.E.; Joanna Hemmings, S.M.; Shabangu, T.W.; Qulu-Appiah, L. Exploring the influence of stress on aggressive behavior and sexual function: Role of neuromodulator pathways and epigenetics. Heliyon 2024, 10, e27501. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhu, B.; Liu, D.; Lu, Y.; Zhang, H.; Wang, F. Serotonin and dopamine regulate the aggressiveness of swimming crabs (Portunus trituberculatus) in different ways. Physiol. Behav. 2023, 263, 114135. [Google Scholar] [CrossRef] [PubMed]
- Bremer, J. Carnitine--metabolism and functions. Physiol. Rev. 1983, 63, 1420–1480. [Google Scholar] [CrossRef]
- Hay, M.E. Crustaceans as powerful models in aquatic chemical ecology. In Chemical Communication in Crustaceans; Breithaupt, T., Thiel, M., Eds.; Springer: New York, NY, USA, 2011; pp. 41–62. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, Z.; Guo, D.; Wang, Y.; Wu, Q.; Gao, Y. Creatine in giant grouper (Epinephelus lanceolatus): Insights into biosynthesis and transporter genes molecular characterization, regulation and impact on muscle metabolism. Aquaculture 2025, 595, 741468. [Google Scholar] [CrossRef]
- Wang, T.; He, K.; Blaney, L.; Chung, J.S. Testosterone and steroidogenic genes in the male blue crab Callinectes sapidus and their relationship with insulin-like androgenic gland factor (IAG) and crustacean female sex hormone (CFSH). Aquaculture 2023, 568, 739297. [Google Scholar] [CrossRef]
- Jing, X.; Lyu, L.; Gong, Y.; Wen, H.; Li, Y.; Wang, X.; Li, J.; Yao, Y.; Zuo, C.; Xie, S.; et al. Olfactory receptor OR52N2 for PGE2 in mediation of guppy courtship behaviors. Int. J. Biol. Macromol. 2023, 241, 124518. [Google Scholar] [CrossRef]
- Dantagnan, P.; Gonzalez, K.; Hevia, M.; Betancor, M.B.; Hernández, A.J.; Borquez, A.; Montero, D. Effect of the arachidonic acid/vitamin E interaction on the immune response of juvenile Atlantic salmon (Salmo salar) challenged against Piscirickettsia salmonis. Aquacult. Nutr. 2017, 23, 710–720. [Google Scholar] [CrossRef]
- Ermis, E.; Nargis, T.; Webster, K.; Tersey, S.A.; Anderson, R.M.; Mirmira, R.G. Leukotriene B4 receptor 2 governs macrophage migration during tissue inflammation. J. Biol. Chem. 2024, 300, 105561. [Google Scholar] [CrossRef]
- Su, X.; Gao, Y.; Yang, R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. Cells 2022, 11, 2296. [Google Scholar] [CrossRef] [PubMed]
- Issa, F.A.; Adamson, D.J.; Edwards, D.H. Dominance hierarchy formation in juvenile crayfish Procambarus clarkii. J. Exp. Biol. 1999, 202, 3497–3506. [Google Scholar] [CrossRef]
- Liufu, B.; Su, Q.; Hong, K.; Wei, J.; Wang, Y.; Han, Z.; Yu, L. 17α-methyltestosterone affected growth, gonadal development, and intestinal microbial analysis in the giant freshwater prawn (Macrobrachium rosenbergii). Animals 2025, 15, 870. [Google Scholar] [CrossRef] [PubMed]
- Giudetti, A.; Stanca, E.; Siculella, L.; Gnoni, G.; Damiano, F. Nutritional and hormonal regulation of citrate and carnitine/acylcarnitine transporters: Two mitochondrial carriers involved in fatty acid metabolism. Int. J. Mol. Sci. 2016, 17, 817. [Google Scholar] [CrossRef]
- Pravalika, K.; Sarmah, D.; Kaur, H.; Vats, K.; Saraf, J.; Wanve, M.; Kalia, K.; Borah, A.; Yavagal, D.R.; Dave, K.R.; et al. Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life Sci. 2019, 216, 49–58. [Google Scholar] [CrossRef]
- Roney, S.H.; Cepeda, M.R.; Belgrad, B.A.; Moore, S.G.; Smee, D.L.; Kubanek, J.; Weissburg, M.J. Common fear molecules induce defensive responses in marine prey across trophic levels. Oecologia 2023, 202, 655–667. [Google Scholar] [CrossRef]
- Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011, 40, 1271–1296. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Sun, Q.; Wang, R.; Wang, Y.; Wang, R. Impacts of glutamate, an exercise-responsive metabolite on insulin signaling. Life Sci. 2024, 341, 122471. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Baldisserotto, B. Creatine kinase activity as an indicator of energetic impairment and tissue damage in fish: A review. Fishes 2023, 8, 59. [Google Scholar] [CrossRef]
- Cheng, X.; Li, M.; Leng, X.; Wen, H.; Wu, F.; Yu, L.; Jiang, M.; Lu, X.; Gao, W.; Zhang, W.; et al. Creatine improves the flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater. Food Chem. 2021, 354, 129498. [Google Scholar] [CrossRef]
- Liu, W.; Han, L.; Yuan, F.; Liu, Q.; Cheng, H.; Jin, X.; Sun, Y. Mechanism of blocking the glutamate pathway to exacerbate oxidative stress, ammonia toxicity and metabolic disorders in crucian carp (Carassius auratus) under saline-alkaline exposure. Comp. Biochem. Phys. C 2025, 291, 110146. [Google Scholar] [CrossRef]
- Nordman, J.C. Anger management: Mechanisms of glutamate receptor-mediated synaptic plasticity underlying animal aggression. Int. J. Biochem. Cell Biol. 2022, 142, 106120. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Y.; Horng, J.-L.; Cheng, C.-A.; Chang, C.-Y.; Cherng, B.-W.; Liu, S.-T.; Chou, M.-Y. Sublethal ammonia induces alterations of emotions, cognition, and social behaviors in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2022, 244, 114058. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Li, L.; Luo, X.; Huang, M.; Ke, C.W.; Li, W. Prostaglandin E2 involvement in the reproduction of small abalone, Haliotis diversicolor. Aquac. Fish. 2024, 9, 804–811. [Google Scholar] [CrossRef]
- Lyu, L.; Yao, Y.; Xie, S.; Wang, X.; Wen, H.; Li, Y.; Li, J.; Zuo, C.; Yan, S.; Dong, J.; et al. Mating behaviors in ovoviviparous black rockfish (Sebastes schlegelii): Molecular function of prostaglandin E2 as both a hormone and pheromone. Mar. Life Sci. Technol. 2024, 6, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Fu, X.; Chen, Q.; Patra, J.K.; Wang, D.; Wang, Z.; Gai, Z. Arachidonic acid metabolism and kidney inflammation. Int. J. Mol. Sci. 2019, 20, 3683. [Google Scholar] [CrossRef]
- Lyu, L.; Tao, Y.; Wu, S.; Abaakil, K.; Zhong, G.; Gu, Y.; Hu, Y.; Zhang, Y. Tissue-specific accumulation of DEHP and involvement of endogenous arachidonic acid in DEHP-induced spleen information and injury. Sci. Total Environ. 2023, 904, 166841. [Google Scholar] [CrossRef]
- Cardona, E.; Segret, E.; Heraud, C.; Roy, J.; Vigor, C.; Gros, V.; Reversat, G.; Sancho-Zubeldia, B.; Oger, C.; Durbec, A.; et al. Adverse effects of excessive dietary arachidonic acid on survival, PUFA-derived enzymatic and non-enzymatic oxylipins, stress response in rainbow trout fry. Sci. Rep. 2024, 14, 12376. [Google Scholar] [CrossRef]
- Thongbuakaew, T.; Suwansa-ard, S.; Chaiyamoon, A.; Cummins, S.F.; Sobhon, P. Sex steroids and steroidogenesis-related genes in the sea cucumber, Holothuria scabra and their potential role in gonad maturation. Sci. Rep. 2021, 11, 2194. [Google Scholar] [CrossRef]
- Zheng, B.; An, L.; Chang, H.; Liu, Y.; Jiang, Z. Evidence for the presence of sex steroid hormones in Zhikong scallop, Chlamys farreri. J. Steroid Biochem. Mol. Biol. 2014, 143, 199–206. [Google Scholar] [CrossRef]
- Huber, R.; Smith, K.; Delago, A.; Isaksson, K.; Kravitz, E.A. Serotonin and aggressive motivation in crustaceans: Altering the decision to retreat. Proc. Natl. Acad. Sci. USA 1997, 94, 5939–5942. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, Y.-X.; Dong, M.; Zhang, Y.-Y.; Huang, X.-H.; Qin, L. Flavor enhancement during the drying of scallop (Patinopecten yessoensis) as revealed by integrated metabolomic and lipidomic analysis. Food Chem. 2024, 432, 137218. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, L.; Sun, X.; Sun, B.; Zhang, Y. Analyzing the effect of dried shrimp on the flavor of sheep bone soup through sensory evaluation combined with untargeted approaches. Foods 2025, 14, 1425. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Chen, X.; Wang, S.; Zhang, J.; Wang, Q.; Guo, S.; Shen, Q. Transcriptomics integrated with metabolomics reveals the ameliorating effect of mussel-derived plasmalogens on high-fat diet-induced hyperlipidemia in zebrafish. Food Funct. 2023, 14, 3641–3658. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Huang, H.; Liu, P.; Zhao, X.; Tang, Q.; Xia, Z.; Cai, M.; Wang, R.; Huang, G.; Yi, S. Integration of gut microbiota with transcriptomic and metabolomic profiling reveals growth differences in male giant river prawns (Macrobrachium rosenbergii). Animals 2024, 14, 2539. [Google Scholar] [CrossRef]
- Stancil, C.; Smith, N.; Fletcher, L.S.; Anderson, L.; Griffen, B.D. Metabolic rates of different demographics in the sand fiddler crab Leptuca pugilator. PLoS ONE 2024, 19, e0308617. [Google Scholar] [CrossRef]
Ion Mode | All Peaks 3 | Identified Metabolites | Metabolites in Library | Metabolites in KEGG |
---|---|---|---|---|
Positive ion mode (POS) 1 | 6077 | 1103 | 752 | 345 |
Negative ion mode (NEG) 2 | 6223 | 762 | 595 | 286 |
Mode | Comparison Group | Total Differential Metabolites 1 | Significantly Differential Metabolites | |
---|---|---|---|---|
Up-Regulated | Down-Regulated | |||
POS | OC vs. BC | 687 | 45 | 64 |
SM vs. BC | 1433 | 130 | 166 | |
SM vs. OC | 1548 | 128 | 175 | |
NEG | OC vs. BC | 658 | 14 | 49 |
SM vs. BC | 1646 | 49 | 201 | |
SM vs. OC | 1896 | 64 | 211 |
ID | Metabolites | Metab ID | ID | Metabolites | Metab ID |
---|---|---|---|---|---|
pos_973 | Proline betaine | metab_930 | pos_2297 | 3,4-methylenedioxymethamphetamine | metab_2191 |
pos_983 | Aniline | metab_940 | pos_2405 | Hexanoyl-L-carnitine | metab_2298 |
pos_1080 | Arsenobetaine | metab_1029 | pos_3359 | 17α-methyltestosterone | metab_3191 |
pos_1344 | Trigonelline | metab_1263 | pos_6956 | Acrylamide | metab_6582 |
pos_1358 | 5,6-methylenedioxy-2-aminoindane | metab_1277 | pos_7337 | Ethyl 2-{2-[4-(trifluoromethyl)phenyl]hydrazono}propanoate | metab_6935 |
pos_1414 | Glutaconylcarnitine | metab_1332 | pos_7489 | Creatine | metab_7072 |
pos_1468 | N-nitrosomethylethylamine | metab_1384 | neg_3545 | 20-hydroxy leukotriene B4 | metab_11225 |
Behaviors | Ref. | Comparison Group | Metabolites | KEGG Compound Second Category |
---|---|---|---|---|
Aggressive behavior | [35,36] | OC vs. BC | Glutamic acid | Amino acids; Neurotransmitters |
SM vs. OC | Serotonin | Amines; Neurotransmitters | ||
OC vs. BC | Norepinephrine | Other hormones; Neurotransmitters | ||
Rapid growth | [37,38,39] | SM vs. OC | Glutaconylcarnitine | |
OC vs. BC | Creatine | |||
OC vs. BC | 3-hydroxyocta-3,6-dienoylcarnitine | |||
OC vs. BC | Glu-Glu | |||
OC vs. BC | Ile-Val | |||
SM vs. BC | L-tyrosine | Amino acids | ||
SM vs. BC | Nicotinamide adenine dinucleotide | Cofactors | ||
SM vs. OC | D-sorbitol | Monosaccharides | ||
OC vs. BC | Glutamic acid | Amino acids; Neurotransmitters | ||
Reproductive development (Sexual behavior) | [40,41] | SM vs. BC | Testosterone | 19-Carbon atoms; steroid hormones |
SM vs. BC | Prostaglandin E3 | Eicosanoids | ||
Immune response | [42,43,44] | SM vs. BC | Arachidonic acid | Fatty acids |
SM vs. OC | Leukotriene B4 | Eicosanoids | ||
SM vs. OC | 5-hydroxyindoleacetylglycine | |||
OC vs. BC | Indole-3-acetylglycine |
Comparison Group | Metabolites | Mode | p_Value | VIP_PLS-DA | Regulate |
---|---|---|---|---|---|
OC vs. BC | Creatine | POS | 0.0202 | 1.6171 | down |
OC vs. BC | Glutamic acid | NEG | 0.0343 | 1.1398 | down |
SM vs. BC | Prostaglandin E3 | POS | 9.62 × 10−6 | 2.7722 | up |
SM vs. BC | Arachidonic acid | NEG | 0.0005 | 2.1582 | up |
SM vs. BC | Testosterone | POS | 0.0080 | 1.8249 | up |
SM vs. OC | Glutaconylcarnitine | POS | 0.0003 | 2.1287 | down |
SM vs. OC | Serotonin | POS | 0.0314 | 1.3003 | down |
SM vs. OC | Glu-Pro | NEG | 0.0109 | 1.1259 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Hu, D.; Yu, J.; Zheng, X.; Cai, M.; Gao, Q.; Yi, S. Metabolomic Profiling Reveals Social Hierarchy-Specific Metabolite Differences in Male Macrobrachium rosenbergii. Animals 2025, 15, 1917. https://doi.org/10.3390/ani15131917
Li L, Hu D, Yu J, Zheng X, Cai M, Gao Q, Yi S. Metabolomic Profiling Reveals Social Hierarchy-Specific Metabolite Differences in Male Macrobrachium rosenbergii. Animals. 2025; 15(13):1917. https://doi.org/10.3390/ani15131917
Chicago/Turabian StyleLi, Liping, Dayan Hu, Jiongying Yu, Xingyu Zheng, Miaoying Cai, Quanxin Gao, and Shaokui Yi. 2025. "Metabolomic Profiling Reveals Social Hierarchy-Specific Metabolite Differences in Male Macrobrachium rosenbergii" Animals 15, no. 13: 1917. https://doi.org/10.3390/ani15131917
APA StyleLi, L., Hu, D., Yu, J., Zheng, X., Cai, M., Gao, Q., & Yi, S. (2025). Metabolomic Profiling Reveals Social Hierarchy-Specific Metabolite Differences in Male Macrobrachium rosenbergii. Animals, 15(13), 1917. https://doi.org/10.3390/ani15131917