Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = crucifers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11533 KiB  
Article
Alpha, Beta and Gamma Taxonomy of Biocontrol Agent Diaeretiella rapae (Hymenoptera, Braconidae)
by Nemanja Popović, Korana Kocić, Željko Tomanović and Andjeljko Petrović
Insects 2025, 16(7), 736; https://doi.org/10.3390/insects16070736 - 18 Jul 2025
Viewed by 462
Abstract
Diaeretiella rapae (McIntosh, 1855) is a cosmopolitan koinobiont endoparasitoid of aphids, occurring mainly on crucifers and cereals. From description, it has changed several genera and has about 20 synonyms. The specimens for this study were collected between 1989 and 2023 from sites across [...] Read more.
Diaeretiella rapae (McIntosh, 1855) is a cosmopolitan koinobiont endoparasitoid of aphids, occurring mainly on crucifers and cereals. From description, it has changed several genera and has about 20 synonyms. The specimens for this study were collected between 1989 and 2023 from sites across Europe and the Middle East. For molecular analysis, the barcode mitochondrial gene COI was used, and morphological analysis was conducted with other Aphidius species. Morphologically, D. rapae falls within the determined variability of the same characters of the genus Aphidius. Dieretiella rapae comprised 23 haplotypes with a mean genetic distance between haplotypes of 0.8%. Phylogenetically, D. rapae is nested within Aphidius species with a genetic distance of 2.1% to 11.3%, which is within the range of other Aphidius species. Our results on morphological and molecular level confirm that D. rapae belongs to the genus Aphidius. Full article
Show Figures

Figure 1

13 pages, 2841 KiB  
Article
An Optimized Bioassay System for the Striped Flea Beetle, Phyllotreta striolata
by Liyan Yao, Xinhua Pu, Yuanlin Wu, Ke Zhang, Alexander Berestetskiy, Qiongbo Hu and Qunfang Weng
Insects 2025, 16(5), 510; https://doi.org/10.3390/insects16050510 - 10 May 2025
Cited by 1 | Viewed by 584
Abstract
The striped flea beetle (SFB), Phyllotreta striolata, is a major pest of Brassicaceae crops, causing substantial yield losses worldwide. Effective biocontrol strategies, particularly the development of mycoinsecticides, require the identification of virulent entomopathogenic fungi (EPF) and the establishment of reliable bioassay systems. [...] Read more.
The striped flea beetle (SFB), Phyllotreta striolata, is a major pest of Brassicaceae crops, causing substantial yield losses worldwide. Effective biocontrol strategies, particularly the development of mycoinsecticides, require the identification of virulent entomopathogenic fungi (EPF) and the establishment of reliable bioassay systems. However, establishing reliable bioassay systems for SFB has been particularly challenging, especially for larval stages due to their recalcitrant rearing requirements. This study aimed to establish a standardized bioassay protocol to evaluate EPF efficacy against SFB. A specialized larval collection apparatus was developed, and the virulence of three EPF strains (Beauveria bassiana BbPs01, Metarhizium robertii MrCb01, and Cordyceps javanica IjH6102) was assessed against both adult and larval stages using a radish slice-based rearing system. Intriguingly, BbPs01 and MrCb01 exhibited significantly higher LT50 values in larvae than in adults, contrary to the typical pattern of greater larval susceptibility observed in most insect systems. We hypothesized that isothiocyanate—specifically sulforaphane, a compound abundant in radish tissues—exerts fungistatic effects that impair fungal growth and virulence. Follow-up experiments confirmed that radish-derived sulforaphane inhibited fungal activity. Through alternative host plant screening, Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis) was identified as an optimal larval diet that minimally interferes with EPF bioactivity, enabling reliable virulence assessments. This study presents critical methodological advancements for SFB biocontrol research, providing a robust framework for standardized larval bioassay and novel insights into plant secondary metabolite interactions with entomopathogens. The optimized system supports the development of targeted mycoinsecticides and contributes to a deeper understanding of tri-trophic interactions in crucifer pest management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

21 pages, 813 KiB  
Article
Factors Influencing the Adoption of Agroecological Vegetable Cropping Systems by Smallholder Farmers in Tanzania
by Essy C. Kirui, Michael M. Kidoido, Komivi S. Akutse, Rosina Wanyama, Simon B. Boni, Thomas Dubois, Fekadu F. Dinssa and Daniel M. Mutyambai
Sustainability 2025, 17(3), 1148; https://doi.org/10.3390/su17031148 - 30 Jan 2025
Cited by 3 | Viewed by 1622
Abstract
Vegetable production is vital to smallholder farmers, who often struggle to overcome pests, diseases, and extreme weather. Agroecological cropping systems offer sustainable solutions to these issues but their adoption rates in Tanzania remain low. This study examines the factors influencing smallholder farmers’ adoption [...] Read more.
Vegetable production is vital to smallholder farmers, who often struggle to overcome pests, diseases, and extreme weather. Agroecological cropping systems offer sustainable solutions to these issues but their adoption rates in Tanzania remain low. This study examines the factors influencing smallholder farmers’ adoption of selected agroecological cropping systems for vegetable production in Tanzania, which remains underexplored. Using a multistage sampling technique, cross-sectional data were gathered from 525 crucifer and traditional African vegetable farming households within the Arusha and Kilimanjaro regions. Multivariate probit regression analysis, which accounts for the simultaneous adoption of multiple systems, revealed several significant variables influencing adoption. The number of training sessions attended and access to market information positively influenced adoption (p < 0.01), while gross income from vegetable production also had a positive influence (p < 0.05). Conversely, the age of the household head and the region where the farm was located showed negative effects on adoption (p < 0.05). These findings highlight the need for targeted extension services and training sessions focusing on the benefits, methods, and management techniques of agroecological cropping systems. Gender-sensitive policies and interventions should also be developed to address the factors influencing the adoption of agroecological cropping systems. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

14 pages, 4436 KiB  
Article
The Type III Effector XopLXcc in Xanthomonas campestris pv. campestris Targets the Proton Pump Interactor 1 and Suppresses Innate Immunity in Arabidopsis
by Jing Huang, Yuru Dong, Nana Li, Yongqiang He and Hao Zhou
Int. J. Mol. Sci. 2024, 25(17), 9175; https://doi.org/10.3390/ijms25179175 - 23 Aug 2024
Viewed by 1354
Abstract
Xanthomonas campestris pathovar campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Xcc injects a variety of type III effectors (T3Es) into the host cell to assist infection or propagation. A number of T3Es inhibit plant immunity, but [...] Read more.
Xanthomonas campestris pathovar campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Xcc injects a variety of type III effectors (T3Es) into the host cell to assist infection or propagation. A number of T3Es inhibit plant immunity, but the biochemical basis for a vast majority of them remains unknown. Previous research has revealed that the evolutionarily conserved XopL-family effector XopLXcc inhibits plant immunity, although the underlying mechanisms remain incompletely elucidated. In this study, we identified proton pump interactor (PPI1) as a specific virulence target of XopLXcc in Arabidopsis. Notably, the C-terminus of PPI1 and the Leucine-rich repeat (LRR) domains of XopLXcc are pivotal for facilitating this interaction. Our findings indicate that PPI1 plays a role in the immune response of Arabidopsis to Xcc. These results propose a model in which XopLXcc binds to PPI1, disrupting the early defense responses activated in Arabidopsis during Xcc infection and providing valuable insights into potential strategies for regulating plasma membrane (PM) H+-ATPase activity during infection. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to the development of effective strategies for controlling bacterial diseases. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 6780 KiB  
Article
Clubroot-Induced Changes in the Root and Rhizosphere Microbiome of Susceptible and Resistant Canola
by Jorge Cordero-Elvia, Leonardo Galindo-González, Rudolph Fredua-Agyeman, Sheau-Fang Hwang and Stephen E. Strelkov
Plants 2024, 13(13), 1880; https://doi.org/10.3390/plants13131880 - 8 Jul 2024
Cited by 2 | Viewed by 2007
Abstract
Clubroot is a soilborne disease of canola (Brassica napus) and other crucifers caused by the obligate parasite Plasmodiophora brassicae. In western Canada, clubroot is usually managed by planting-resistant cultivars, but the emergence of resistance-breaking pathotypes of P. brassicae represents a [...] Read more.
Clubroot is a soilborne disease of canola (Brassica napus) and other crucifers caused by the obligate parasite Plasmodiophora brassicae. In western Canada, clubroot is usually managed by planting-resistant cultivars, but the emergence of resistance-breaking pathotypes of P. brassicae represents a major threat to sustainable canola production. The rhizosphere and root contain beneficial microorganisms that can improve plant health. In this study, we evaluated the effect of two P. brassicae isolates (termed A and B) with different levels of virulence on the root and rhizosphere microbiomes of clubroot-resistant and clubroot-susceptible canola. Additionally, potential biocontrol microorganisms were identified based on taxa antagonistic to clubroot. Although both P. brassicae isolates were classified as pathotype 3A, isolate A caused a higher disease severity index in the resistant canola genotype compared with isolate B. Metabarcoding analysis indicated a shift in the bacterial and fungal communities in response to inoculation with either field isolate. Root endophytic bacterial and fungal communities responded to changes in inoculation, isolate type, sampling time, and canola genotype. In contrast, fungal communities associated with the rhizosphere exhibited significant differences between sampling times, while bacterial communities associated with the rhizosphere exhibited low variability. Full article
(This article belongs to the Special Issue Phytomicrobiome Research for Disease and Pathogen Management)
Show Figures

Figure 1

10 pages, 1681 KiB  
Article
Heterodera schachtii (Nematoda: Heteroderidae) Associated with Cabbage-Cultivation Systems in Anatolia Region of Türkiye
by Gülsüm Badel Akyol, Ebubekir Yüksel, Eminur Elçi, Refik Bozbuğa, Abdelfattah Dababat, Mustafa İmren and Halil Toktay
Horticulturae 2024, 10(6), 635; https://doi.org/10.3390/horticulturae10060635 - 13 Jun 2024
Viewed by 2156
Abstract
Heterodera schachtii (Schmidt, 1871) (Nematoda: Heteroderidae) is one of the most widespread plant-parasitic nematodes (PPNs) associated with cabbages, which cause severe yield losses in cruciferous vegetables. This study aimed to improve the current understanding of the prevalence and detection of H. schachtii in [...] Read more.
Heterodera schachtii (Schmidt, 1871) (Nematoda: Heteroderidae) is one of the most widespread plant-parasitic nematodes (PPNs) associated with cabbages, which cause severe yield losses in cruciferous vegetables. This study aimed to improve the current understanding of the prevalence and detection of H. schachtii in the cabbage-growing areas of Niğde Province, Türkiye. Field surveys were conducted between November and December 2021, and 100 soil samples were collected immediately after cabbage harvesting. Heterodera schachtii populations were identified by morphological and morphometric methods along with Internal Transcribed Spacer of the ribosomal region (ITS-rDNA) and Cytochrome Oxidase Subunit (COI-mtDNA) sequencing. The mean body length of H. schachtii was 463 ± 7 μm, while stylet and hyaline length ranged between 20.7–27.8 μm and 20.1–32.1 μm, respectively. Nearly half of the surveyed areas were infested with H. schachtii with a 41% incidence rate. However, the Merkez District had the highest proportion of infested fields with an over 51% incidence rate. The population density was determined in 41 samples with a mean of 79.5 cysts per 250 g of soil. These results will help to determine the control and management strategies of H. schachtii. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
Functional Analysis of Type III Effectors in Xanthomonas campestris pv. campestris Reveals Distinct Roles in Modulating Arabidopsis Innate Immunity
by Jing Huang, Hao Zhou, Min Zhou, Nana Li, Bole Jiang and Yongqiang He
Pathogens 2024, 13(6), 448; https://doi.org/10.3390/pathogens13060448 - 24 May 2024
Cited by 1 | Viewed by 1668
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Its virulence relies heavily on the type III secretion system (T3SS), facilitating effector translocation into plant cells. The type III effectors (T3Es) disrupt cellular processes, promoting [...] Read more.
Xanthomonas campestris pv. campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Its virulence relies heavily on the type III secretion system (T3SS), facilitating effector translocation into plant cells. The type III effectors (T3Es) disrupt cellular processes, promoting pathogen proliferation. However, only a few T3Es from Xcc have been thoroughly characterized. In this study, we further investigated two effectors using the T3Es-deficient mutant and the Arabidopsis protoplast system. XopE2Xcc triggers Arabidopsis immune responses via an unidentified activator of the salicylic acid (SA) signaling pathway, whereas XopLXcc suppresses the expression of genes associated with patterns-triggered immunity (PTI) and the SA signaling pathway. These two effectors exert opposing effects on Arabidopsis immune responses. Additionally, we examined the relationship between the specific domains and functions of these two effector proteins. Our findings demonstrate that the N-myristoylation motif and N-terminal domain are essential for the subcellular localization and virulence of XopE2Xcc and XopLXcc, respectively. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to developing effective strategies for controlling bacterial disease. Full article
Show Figures

Figure 1

14 pages, 3682 KiB  
Article
Integrated Analysis of Transcriptome and Metabolome Reveals Differential Responses to Alternaria brassicicola Infection in Cabbage (Brassica oleracea var. capitata)
by Jinzhou Lei, Wei Zhang, Fangwei Yu, Meng Ni, Zhigang Liu, Cheng Wang, Jianbin Li, Jianghua Song and Shenyun Wang
Genes 2024, 15(5), 545; https://doi.org/10.3390/genes15050545 - 25 Apr 2024
Viewed by 1796
Abstract
Black spot, caused by Alternaria brassicicola (Ab), poses a serious threat to crucifer production, and knowledge of how plants respond to Ab infection is essential for black spot management. In the current study, combined transcriptomic and metabolic analysis was employed to [...] Read more.
Black spot, caused by Alternaria brassicicola (Ab), poses a serious threat to crucifer production, and knowledge of how plants respond to Ab infection is essential for black spot management. In the current study, combined transcriptomic and metabolic analysis was employed to investigate the response to Ab infection in two cabbage (Brassica oleracea var. capitata) genotypes, Bo257 (resistant to Ab) and Bo190 (susceptible to Ab). A total of 1100 and 7490 differentially expressed genes were identified in Bo257 (R_mock vs. R_Ab) and Bo190 (S_mock vs. S_Ab), respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that “metabolic pathways”, “biosynthesis of secondary metabolites”, and “glucosinolate biosynthesis” were the top three enriched KEGG pathways in Bo257, while “metabolic pathways”, “biosynthesis of secondary metabolites”, and “carbon metabolism” were the top three enriched KEGG pathways in Bo190. Further analysis showed that genes involved in extracellular reactive oxygen species (ROS) production, jasmonic acid signaling pathway, and indolic glucosinolate biosynthesis pathway were differentially expressed in response to Ab infection. Notably, when infected with Ab, genes involved in extracellular ROS production were largely unchanged in Bo257, whereas most of these genes were upregulated in Bo190. Metabolic profiling revealed 24 and 56 differentially accumulated metabolites in Bo257 and Bo190, respectively, with the majority being primary metabolites. Further analysis revealed that dramatic accumulation of succinate was observed in Bo257 and Bo190, which may provide energy for resistance responses against Ab infection via the tricarboxylic acid cycle pathway. Collectively, this study provides comprehensive insights into the Ab–cabbage interactions and helps uncover targets for breeding Ab-resistant varieties in cabbage. Full article
(This article belongs to the Special Issue Vegetable Genetic Breeding)
Show Figures

Figure 1

13 pages, 284 KiB  
Review
Pathotyping Systems and Pathotypes of Plasmodiophora brassicae—Navigating toward the Optimal Classification
by Nazanin Zamani-Noor and Małgorzata Jędryczka
Pathogens 2024, 13(4), 313; https://doi.org/10.3390/pathogens13040313 - 11 Apr 2024
Cited by 2 | Viewed by 2331
Abstract
Plasmodiophora brassicae Woronin, an obligate biotrophic soil-borne pathogen, poses a significant threat to cruciferous crops worldwide by causing the devastating disease known as clubroot. Pathogenic variability in P. brassicae populations has been recognized since the 1930s based on its interactions with Brassica species. [...] Read more.
Plasmodiophora brassicae Woronin, an obligate biotrophic soil-borne pathogen, poses a significant threat to cruciferous crops worldwide by causing the devastating disease known as clubroot. Pathogenic variability in P. brassicae populations has been recognized since the 1930s based on its interactions with Brassica species. Over time, numerous sets of differential hosts have been developed and used worldwide to explore the pathogenic variability within P. brassicae populations. These sets encompass a range of systems, including the Williams system, the European Clubroot Differential set (ECD), the Brassica napus set, the Japanese Clubroot Differential Set, the Canadian Clubroot Differential Set (CCS), the Korean Clubroot Differential Set, and the Chinese Sinitic Clubroot Differential set (SCD). However, all existing systems possess both advantages as well as limitations regarding the detection of pathotypes from various Brassica species and their corresponding virulence pattern on Brassica genotypes. This comprehensive review aims to compare the main differential systems utilized in classifying P. brassicae pathotypes worldwide. Their strengths, limitations, and implications are evaluated, thereby enhancing our understanding of pathogenic variability. Full article
(This article belongs to the Section Fungal Pathogens)
16 pages, 15475 KiB  
Article
Resistance Mechanism of Plutella xylostella (L.) Associated with Amino Acid Substitutions in Acetylcholinesterase-1: Insights from Homology Modeling, Docking and Molecular Dynamic Simulation
by Maryam Zolfaghari, Yong Xiao, Fardous Mohammad Safiul Azam, Fei Yin, Zheng-Ke Peng and Zhen-Yu Li
Insects 2024, 15(3), 144; https://doi.org/10.3390/insects15030144 - 21 Feb 2024
Cited by 5 | Viewed by 2336
Abstract
Plutella xylostella, a destructive crucifer pest, can rapidly develop resistance to most classes of pesticides. This study investigated the molecular resistance mechanisms to chlorpyrifos, an organophosphate pesticide. Two P. xylostella genes, ace1 and ace2, were described. The nucleotide sequence results revealed no [...] Read more.
Plutella xylostella, a destructive crucifer pest, can rapidly develop resistance to most classes of pesticides. This study investigated the molecular resistance mechanisms to chlorpyrifos, an organophosphate pesticide. Two P. xylostella genes, ace1 and ace2, were described. The nucleotide sequence results revealed no variation in ace2, while the resistant strain (Kar-R) had four amino acid alterations in ace1, two of which (A298S and G324A) were previously shown to confer organophosphate resistance in P. xylostella. In the present study, the 3D model structures of both the wild-type (Gu-S) and mutant (Kar-R) of P. xylostella ace1 strains were studied through molecular dynamics (MDs) simulations and molecular docking. Molecular dynamics simulations of RMSD revealed less structural deviation in the ace1 mutant than in its wild-type counterpart. Higher flexibility in the 425–440 amino acid region in the mutant active site (Glu422 and Acyl pocket) increased the active site’s entropy, reducing the enzyme’s affinity for the inhibitors. Gene expression analysis revealed that the relative transcription levels of ace1 were significantly different in the Kar-R strain compared with the Gu-S strain. This study enhances the understanding of the mechanisms governing ace1′s resistance to insecticide and provides essential insights for new insecticides as well as valuable insights into environmentally conscious pest management techniques. Full article
Show Figures

Figure 1

16 pages, 1228 KiB  
Article
Farmers’ Knowledge, Attitude, and Practices Regarding the Use of Agroecological-Based Pest Management Practices in Crucifers and Traditional African Vegetable (TAV) Production in Kenya and Tanzania
by Essy C. Kirui, Michael M. Kidoido, Daniel M. Mutyambai, Dickson O. Okello and Komivi S. Akutse
Sustainability 2023, 15(23), 16491; https://doi.org/10.3390/su152316491 - 1 Dec 2023
Cited by 6 | Viewed by 3635
Abstract
Crucifers and traditional African vegetables (TAVs) are important to smallholders in Kenya and Tanzania, but yield remains below potential due to pests and diseases. Agroecological production methods present a nature-based solution to pest and disease management in crucifer and TAV production. We explore [...] Read more.
Crucifers and traditional African vegetables (TAVs) are important to smallholders in Kenya and Tanzania, but yield remains below potential due to pests and diseases. Agroecological production methods present a nature-based solution to pest and disease management in crucifer and TAV production. We explore the status of farmers’ knowledge, attitudes, and practices regarding agroecological-based production pest management practices. Structured and pretested questionnaires were used to collect data from 1071 vegetable farming households in Kenya and Tanzania. Using descriptive statistics, parametric, and non-parametric analysis, our study revealed that less than 20% of farmers had received training on agroecological-based practices and less than 25% were aware of most of these practices. Among those who were aware of the practices and could confirm their effectiveness less than 12% had adopted them, except for crop rotation and handpicking of pests. This study attributes the low adoption to farmers’ negative attitudes towards the practices. Nonetheless, the study further revealed that training significantly and positively influences the adoption of the practices. Therefore, we recommend that governments and other stakeholders promote targeted awareness campaigns and increase access to training on vegetable production using sustainable pest and disease management practices. Full article
(This article belongs to the Special Issue Sustainable Integrated Pest Management: Achievements and Challenges)
Show Figures

Figure 1

14 pages, 3541 KiB  
Article
Seed Pelleting with Gum Arabic-Encapsulated Biocontrol Bacteria for Effective Control of Clubroot Disease in Pak Choi
by Rizwangul Abdukerim, Sheng Xiang, Yanxia Shi, Xuewen Xie, Lei Li, Ali Chai, Baoju Li and Tengfei Fan
Plants 2023, 12(21), 3702; https://doi.org/10.3390/plants12213702 - 27 Oct 2023
Cited by 7 | Viewed by 2441
Abstract
Clubroot is one of the most serious soil-borne diseases on crucifer crops worldwide. Seed treatment with biocontrol agents is an effective and eco-friendly way to control clubroot disease. However, there is a big challenge to inoculating the seed with bacterial cells through seed [...] Read more.
Clubroot is one of the most serious soil-borne diseases on crucifer crops worldwide. Seed treatment with biocontrol agents is an effective and eco-friendly way to control clubroot disease. However, there is a big challenge to inoculating the seed with bacterial cells through seed pelleting due to the harsh environment on the seed surface or in the rhizosphere. In this study, a method for microbial seed pelleting was developed to protect pak choi seedlings against clubroot disease. Typically, a biocontrol bacterium, Paenibacillus polymyxa ZF129, was encapsulated by the spray-drying method with gum arabic as wall material, and then pak choi seeds were pelleted with the microencapsulated Paenibacillus polymyxa ZF129 (ZF129m). The morphology, storage stability, and release behavior of ZF129 microcapsules were evaluated. Compared with the naked Paenibacillus polymyxa ZF129 cells, encapsulated ZF129 cells showed higher viability during ambient storage on pak choi seeds. Moreover, ZF129m-pelleted seeds showed higher control efficacy (71.23%) against clubroot disease than that of nonencapsulated ZF129-pelleted seeds (61.64%) in pak choi. Seed pelleting with microencapsulated biocontrol Paenibacillus polymyxa ZF129 proved to be an effective and eco-friendly strategy for the control of clubroot disease in pak choi. Full article
Show Figures

Figure 1

24 pages, 3367 KiB  
Hypothesis
The Rationale for Sulforaphane Favourably Influencing Gut Homeostasis and Gut–Organ Dysfunction: A Clinician’s Hypothesis
by Christine A. Houghton
Int. J. Mol. Sci. 2023, 24(17), 13448; https://doi.org/10.3390/ijms241713448 - 30 Aug 2023
Cited by 5 | Viewed by 5021
Abstract
Given the increasing scientific, clinical and consumer interest in highly prevalent functional gastrointestinal disorders, appropriate therapeutic strategies are needed to address the many aspects of digestive dysfunction. Accumulating evidence for the crucifer-derived bioactive molecule sulforaphane in upstream cellular defence mechanisms highlights its potential [...] Read more.
Given the increasing scientific, clinical and consumer interest in highly prevalent functional gastrointestinal disorders, appropriate therapeutic strategies are needed to address the many aspects of digestive dysfunction. Accumulating evidence for the crucifer-derived bioactive molecule sulforaphane in upstream cellular defence mechanisms highlights its potential as a therapeutic candidate in targeting functional gastrointestinal conditions, as well as systemic disorders. This article catalogues the evolution of and rationale for a hypothesis that multifunctional sulforaphane can be utilised as the initial step in restoring the ecology of the gut ecosystem; it can do this primarily by targeting the functions of intestinal epithelial cells. A growing body of work has identified the colonocyte as the driver of dysbiosis, such that targeting gut epithelial function could provide an alternative to targeting the microbes themselves for the remediation of microbial dysbiosis. The hypothesis discussed herein has evolved over several years and is supported by case studies showing the application of sulforaphane in gastrointestinal disorders, related food intolerance, and several systemic conditions. To the best of our knowledge, this is the first time the effects of sulforaphane have been reported in a clinical environment, with several of its key properties within the gut ecosystem appearing to be related to its nutrigenomic effects on gene expression. Full article
(This article belongs to the Special Issue Advances in Bioactive Glucosinolates and Derivatives)
Show Figures

Figure 1

19 pages, 7176 KiB  
Article
Cantharidin-Based Verbenone Derivatives as a Novel Insecticide against Plutella xylostella: Design, Synthesis, Insecticidal Activity Evaluation, and 3D QSAR Study
by Kwanshik Lee, Hossam Nada, Minkyoung Kim, Hyejun Park, Kiho Lee, Dongho Seo, Kyeong Lee and Yongseok Choi
Biomolecules 2023, 13(8), 1272; https://doi.org/10.3390/biom13081272 - 21 Aug 2023
Cited by 4 | Viewed by 2218
Abstract
The diamondback moth is a detrimental insect pest of brassicaceous crops which was among the first crop insects to be reported as DDT resistant. It has since proven to be significantly resistant to nearly every synthetic insecticide used in the field in many [...] Read more.
The diamondback moth is a detrimental insect pest of brassicaceous crops which was among the first crop insects to be reported as DDT resistant. It has since proven to be significantly resistant to nearly every synthetic insecticide used in the field in many crucifer-producing regions. Due to insecticide control failures in some parts of the world, economically viable crucifer production is now all but impossible. As a result, there has been an increasing effort to identify new compounds with strong pesticidal activity. Cantharidin is one such compound that has been shown to be highly effective against a variety of insect pests. However, its chemical synthesis and potential toxicity to non-target organisms have been a major source of concern. Herein, using rational design approaches, a new series of cantharidin-based verbenone derivatives were synthesized and evaluated for their insecticidal activities against the diamondback moth. Among different compounds screened, compounds 6a, 6h, 6i, and 6q emerged as the most potent compounds exhibiting 100% mortality at a concentration of 100 mg/L after four days. These compounds demonstrated a good anti-feeding effect against the diamondback moth on cabbage leaves. Subsequently, a 3D QSAR study was carried out to identify the key structural features of the synthesized compounds and their correlation with insecticidal activity. Full article
Show Figures

Figure 1

23 pages, 7105 KiB  
Article
Impact of Susceptibility on Plant Hormonal Composition during Clubroot Disease Development in Canola (Brassica napus)
by Charitha P. A. Jayasinghege, Jocelyn A. Ozga, Victor P. Manolii, Sheau-Fang Hwang and Stephen E. Strelkov
Plants 2023, 12(16), 2899; https://doi.org/10.3390/plants12162899 - 9 Aug 2023
Cited by 6 | Viewed by 2201
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a soilborne disease of crucifers associated with the formation of large root galls. This root enlargement suggests modulation of plant hormonal networks by the pathogen, stimulating cell division and elongation and influencing host defense. We studied [...] Read more.
Clubroot, caused by Plasmodiophora brassicae, is a soilborne disease of crucifers associated with the formation of large root galls. This root enlargement suggests modulation of plant hormonal networks by the pathogen, stimulating cell division and elongation and influencing host defense. We studied physiological changes in two Brassica napus cultivars, including plant hormone profiles—salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), the auxin indole-3-acetic acid (IAA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)—along with their selected derivatives following inoculation with virulent and avirulent P. brassicae pathotypes. In susceptible plants, water uptake declined from the initial appearance of root galls by 21 days after inoculation, but did not have a significant effect on photosynthetic rate, stomatal conductance, or leaf chlorophyll levels. Nonetheless, a strong increase in ABA levels indicated that hormonal mechanisms were triggered to cope with water stress due to the declining water uptake. The free SA level in the roots increased strongly in resistant interactions, compared with a relatively minor increase during susceptible interactions. The ratio of conjugated SA to free SA was higher in susceptible interactions, indicating that resistant interactions are linked to the plant’s ability to maintain higher levels of bioactive free SA. In contrast, JA and its biologically active form JA-Ile declined up to 7-fold in susceptible interactions, while they were maintained during resistant interactions. The ACC level increased in the roots of inoculated plants by 21 days, irrespective of clubroot susceptibility, indicating a role of ethylene in response to pathogen interactions that is independent of disease severity. IAA levels at early and later infection stages were lower only in susceptible plants, suggesting a modulation of auxin homeostasis by the pathogen relative to the host defense system. Full article
(This article belongs to the Special Issue New Horizons in Plant–Microbe Interactions)
Show Figures

Figure 1

Back to TopTop