Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = cross-polarization converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 12359 KB  
Article
Forked-Crossing Metasurface for Multi-Band Polarization Conversion with Distinct Bandwidths
by Pengpeng Zhang, Yifei Zhang, Ziang Li and Rui Yang
Micromachines 2025, 16(10), 1100; https://doi.org/10.3390/mi16101100 - 28 Sep 2025
Viewed by 359
Abstract
This study presents a reflective and highly efficient multi-band metasurface polarization converter based on a forked-crossing patch array. Both simulation and experimental results reveal that such a metasurface achieves polarization conversion ratio (PCR) exceeding 90% over five frequency bands of 4.71–5.44 GHz, 7.26–9.55 [...] Read more.
This study presents a reflective and highly efficient multi-band metasurface polarization converter based on a forked-crossing patch array. Both simulation and experimental results reveal that such a metasurface achieves polarization conversion ratio (PCR) exceeding 90% over five frequency bands of 4.71–5.44 GHz, 7.26–9.55 GHz, 11.62–12.6 GHz, 13.33–13.46 GHz, and 15.61–15.62 GHz with high conversion efficiency realized at five distinct resonances. The quality-factor (Q-factor) analysis of each band reveals a hybrid behavior. More specifically, the first and second bands exhibit relatively low Q factors of approximately 6.95 and 3.67, indicating wideband polarization conversion capability. The third band has a moderate Q factor of 12.35, while the fourth and fifth bands show high-Q resonances with Q factors of 103.04 and 1561.5, respectively, indicating sharp and selective frequency responses. This combination of wideband and high-Q narrowband responses makes the proposed design especially suitable for complex electromagnetic scenarios, such as multifunctional radar, communication, and sensing systems, where both broad frequency coverage and precise spectral control are simultaneously required. Full article
Show Figures

Figure 1

28 pages, 6410 KB  
Article
Two-Step Forward Modeling for GPR Data of Metal Pipes Based on Image Translation and Style Transfer
by Zhishun Guo, Yesheng Gao, Zicheng Huang, Mengyang Shi and Xingzhao Liu
Remote Sens. 2025, 17(18), 3215; https://doi.org/10.3390/rs17183215 - 17 Sep 2025
Viewed by 425
Abstract
Ground-penetrating radar (GPR) is an important geophysical technique in subsurface detection. However, traditional numerical simulation methods such as finite-difference time-domain (FDTD) face challenges in accurately simulating complex heterogeneous mediums in real-world scenarios due to the difficulty of obtaining precise medium distribution information and [...] Read more.
Ground-penetrating radar (GPR) is an important geophysical technique in subsurface detection. However, traditional numerical simulation methods such as finite-difference time-domain (FDTD) face challenges in accurately simulating complex heterogeneous mediums in real-world scenarios due to the difficulty of obtaining precise medium distribution information and high computational costs. Meanwhile, deep learning methods require excessive prior information, which limits their application. To address these issues, this paper proposes a novel two-step forward modeling strategy for GPR data of metal pipes. The first step employs the proposed Polarization Self-Attention Image Translation network (PSA-ITnet) for image translation, which is inspired by the process where a neural network model “understands” image content and “rewrites” it according to specified rules. It converts scene layout images (cross-sectional schematics depicting geometric details such as the size and spatial distribution of underground buried metal pipes and their surrounding medium) into simulated clutter-free GPR B-scan images. By integrating the polarized self-attention (PSA) mechanism into the Unet generator, PSA-ITnet can capture long-range dependencies, enhancing its understanding of the longitudinal time-delay property in GPR B-scan images. which is crucial for accurately generating hyperbolic signatures of metal pipes in simulated data. The second step uses the Polarization Self-Attention Style Transfer network (PSA-STnet) for style transfer, which transforms the simulated clutter-free images into data matching the distribution and characteristics of a real-world underground heterogeneous medium under unsupervised conditions while retaining target information. This step bridges the gap between ideal simulations and actual GPR data. Simulation experiments confirm that PSA-ITnet outperforms traditional methods in image translation, and PSA-STnet shows superiority in style transfer. Real-world experiments in a complex bridge support structure scenario further verify the method’s practicability and robustness. Compared to FDTD, the proposed strategy is capable of generating GPR data matching real-world subsurface heterogeneous medium distributions from scene layout models, significantly reducing time costs and providing an efficient solution for GPR data simulation and analysis. Full article
Show Figures

Figure 1

20 pages, 6107 KB  
Article
A Fast Open-Circuit Fault Diagnosis Method of Parallel Wind-Turbine Converters via Zero-Sequence Circulating Current Informed Residual Analysis
by Huimin Huang, Zhen Li, Sijia Huang and Zhenbin Zhang
Energies 2025, 18(18), 4801; https://doi.org/10.3390/en18184801 - 9 Sep 2025
Viewed by 478
Abstract
The parallel operation of converters is increasingly being adopted to meet higher power demands and improve reliability. However, open-circuit faults in semiconductor switches must be located quickly to prevent unnecessary derating and costly offshore interventions. In parallel topologies, zero-sequence circulating current (ZSCC) distorts [...] Read more.
The parallel operation of converters is increasingly being adopted to meet higher power demands and improve reliability. However, open-circuit faults in semiconductor switches must be located quickly to prevent unnecessary derating and costly offshore interventions. In parallel topologies, zero-sequence circulating current (ZSCC) distorts phase current residuals at fault inception, making conventional residual-based fault diagnosis methods unreliable. This paper proposes a fast fault diagnosis method that integrates phase current residual analysis with real-time ZSCC polarity. The method monitors which residuals exceed a fixed threshold and compares the polarity of the dominant residual with that of the ZSCC. In this way, it can distinguish and locate single-switch, same-converter dual-switch, and cross-converter dual-switch faults. A three-stage timing window mechanism captures residual and ZSCC signatures within only a few sampling periods, enabling precise fault location without additional sensors. Experimental and simulation results verify the accuracy and robustness of the proposed method, demonstrating its potential for practical deployment in offshore wind turbines. Full article
(This article belongs to the Special Issue Advances in Wind Turbine Optimization and Control)
Show Figures

Figure 1

11 pages, 3730 KB  
Communication
Chiral Grayscale Imaging Based on a Versatile Metasurface of Spin-Selective Manipulation
by Yue Cao, Yi-Fei Sun, Zi-Yang Zhu, Qian-Wen Luo, Bo-Xiong Zhang, Xiao-Wei Sun and Ting Song
Materials 2025, 18(13), 3190; https://doi.org/10.3390/ma18133190 - 5 Jul 2025
Viewed by 628
Abstract
Metasurface display, a kind of unique imaging technique with subwavelength scale, plays a key role in data storage, information processing, and optical imaging due to the superior performance of high resolution, miniaturization, and integration. Recent works about grayscale imaging as a typical metasurface [...] Read more.
Metasurface display, a kind of unique imaging technique with subwavelength scale, plays a key role in data storage, information processing, and optical imaging due to the superior performance of high resolution, miniaturization, and integration. Recent works about grayscale imaging as a typical metasurface display have showcased an excellent performance for optical integrated devices in the near field. However, chiral grayscale imaging has been rarely elucidated, especially using a single structure. Here, a novel method is proposed to display a continuously chiral grayscale imaging that is adjusted by a metasurface consisting of a single chiral structure with optimized geometric parameters. The simulation results show that the incident light can be nearly converted into its cross-polarized reflection when the chiral structural variable parameters are α = 80° and β = 45°. The versatile metasurface can arbitrarily and independently realize the spin-selective manipulation of wavelength and amplitude of circularly polarized light. Due to the excellent manipulation ability of the versatile metasurface, a kind of circularly polarized light detection and a two-channel encoded display with different operating wavelengths are presented. More importantly, this versatile metasurface can also be used to show high-resolution chiral grayscale imaging, which distinguishes it from the results of previous grayscale imaging studies about linearly polarized incident illumination. The proposed versatile metasurface of spin-selective manipulation, with the advantages of high resolution, large capacity, and monolithic integration, provides a novel way for polarization detection, optical display, information storage, and other relevant fields. Full article
Show Figures

Figure 1

27 pages, 92544 KB  
Article
Analysis of Gearbox Bearing Fault Diagnosis Method Based on 2D Image Transformation and 2D-RoPE Encoding
by Xudong Luo, Minghui Wang and Zhijie Zhang
Appl. Sci. 2025, 15(13), 7260; https://doi.org/10.3390/app15137260 - 27 Jun 2025
Viewed by 736
Abstract
The stability of gearbox bearings is crucial to the operational efficiency and safety of industrial equipment, as their faults can lead to downtime, economic losses, and safety risks. Traditional models face difficulties in handling complex industrial time-series data due to insufficient feature extraction [...] Read more.
The stability of gearbox bearings is crucial to the operational efficiency and safety of industrial equipment, as their faults can lead to downtime, economic losses, and safety risks. Traditional models face difficulties in handling complex industrial time-series data due to insufficient feature extraction capabilities and poor training stability. Although transformers show advantages in fault diagnosis, their ability to model local dependencies is limited. To improve feature extraction from time-series data and enhance model robustness, this paper proposes an innovative method based on the ViT. Time-series data were converted into two-dimensional images using polar coordinate transformation and Gramian matrices to enhance classification stability. A lightweight front-end encoder and depthwise feature extractor, combined with multi-scale depthwise separable convolution modules, were designed to enhance fine-grained features, while two-dimensional rotary position encoding preserved temporal information and captured temporal dependencies. The constructed RoPE-DWTrans model implemented a unified feature extraction process, significantly improving cross-dataset adaptability and model performance. Experimental results demonstrated that the RoPE-DWTrans model achieved excellent classification performance on the combined MCC5 and HUST gearbox datasets. In the fault category diagnosis task, classification accuracy reached 0.953, with precision at 0.959, recall at 0.973, and an F1 score of 0.961; in the fault category and severity diagnosis task, classification accuracy reached 0.923, with precision at 0.932, recall at 0.928, and an F1 score of 0.928. Compared with existing methods, the proposed model showed significant advantages in robustness and generalization ability, validating its effectiveness and application potential in industrial fault diagnosis. Full article
Show Figures

Figure 1

18 pages, 27161 KB  
Article
A Novel Frequency-Selective Polarization Converter and Application in RCS Reduction
by Tong Xiao, Qingqing Liao, Guangpu Tang, Lifeng Huang, Hongguang Wang, Chengguo Liu and Fajun Lin
Electronics 2025, 14(7), 1280; https://doi.org/10.3390/electronics14071280 - 24 Mar 2025
Viewed by 591
Abstract
A novel frequency-selective polarization converter (FSPC) is proposed based on the new method of combining a polarization conversion metasurface (PCM) with a bandpass frequency-selective surface (FSS), which provides an efficient transmission band and broadband radar cross-section (RCS) reduction. The upper and lower layers [...] Read more.
A novel frequency-selective polarization converter (FSPC) is proposed based on the new method of combining a polarization conversion metasurface (PCM) with a bandpass frequency-selective surface (FSS), which provides an efficient transmission band and broadband radar cross-section (RCS) reduction. The upper and lower layers are combined to form the proposed FSPC. In the upper layer design, the bowtie-shaped structure is used to achieve polarization conversion on both sides of the transmission band. Regarding the lower layer design, the second-order bandpass FSS is employed, which acts as an equivalent ground for the polarization conversion layer outside the passband and provides a highly efficient transmission window within the passband. Ultimately, the magnitude of the co-polarized reflection of the FSPC that is below −10 dB ranges from 5.1 GHz to 16.1 GHz, with a relative bandwidth of 104%, and the co-polarized transmission window with an insertion loss of less than 1 dB is presented ranging from 8.7 GHz to 12.6 GHz, with a relative bandwidth of 36%. Furthermore, by arranging the upper bowtie-shaped PCM in a checkerboard pattern, the monostatic RCS can be effectively reduced in a broad frequency range. Samples of the proposed design are fabricated for the measurement verification of performance. The results show that the measurement results match well with the simulation results. Compared with other designs, the proposed FSPC exhibits efficient co-polarized transmission, with insertion loss as low as 0.34 dB and the passband flatness being good. Full article
Show Figures

Figure 1

20 pages, 9378 KB  
Article
Ultra-Wideband Passive Polarization Conversion Metasurface for Radar Cross-Section Reduction Across C-, X-, Ku-, and K-Bands
by Xiaole Ren, Yunqing Liu, Zhonghang Ji, Qiong Zhang and Wei Cao
Micromachines 2025, 16(3), 292; https://doi.org/10.3390/mi16030292 - 28 Feb 2025
Cited by 1 | Viewed by 1851
Abstract
In this study, we present a novel ultra-wideband passive polarization conversion metasurface (PCM) that integrates double V-shaped patterns with circular split-ring resonators. Operating without any external power supply or active components, this design effectively manipulates the polarization state of incident electromagnetic waves. Numerical [...] Read more.
In this study, we present a novel ultra-wideband passive polarization conversion metasurface (PCM) that integrates double V-shaped patterns with circular split-ring resonators. Operating without any external power supply or active components, this design effectively manipulates the polarization state of incident electromagnetic waves. Numerical and experimental results demonstrate that the proposed PCM can convert incident linear polarization into orthogonal states across a wide frequency range of 7.1–22.3 GHz, encompassing the C-, X-, Ku-, and K-bands. A fabricated prototype confirms that the polarization conversion ratio (PCR) exceeds 90% throughout the specified band. Furthermore, we explore an additional application of this passive metasurface for electromagnetic stealth, wherein it achieves over 10 dB of monostatic radar cross-section (RCS) reduction from 7.6 to 21.5 GHz. This broad effectiveness is attributed to strong electromagnetic resonances between the top and bottom layers, as well as the Fabry–Pérot cavity effect, as evidenced by detailed analyses of the underlying physical mechanisms and induced surface currents. These findings confirm the effectiveness of the proposed design and highlight its potential for future technological applications, including 6G communications, radar imaging, anti-interference measures, and electromagnetic stealth. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

9 pages, 1632 KB  
Communication
Bifunctional Electromagnetic Manipulation of Surface Waves Using Metasurfaces Under One Circularly Polarized Incidence
by Min Kang, Lixing Chen, Shuaipeng Qin, Liang Ma, Aoxiang Rui and Shiqing Li
Photonics 2025, 12(1), 91; https://doi.org/10.3390/photonics12010091 - 20 Jan 2025
Cited by 1 | Viewed by 1251
Abstract
The ability to freely manipulate the wavefronts of surface plasmon polaritons (SPPs) or surface waves (SWs), particularly with multifunctional integration, is of great importance in near-field photonics. However, conventional SPP control devices typically suffer from low efficiency and single-function limitations. Although recent works [...] Read more.
The ability to freely manipulate the wavefronts of surface plasmon polaritons (SPPs) or surface waves (SWs), particularly with multifunctional integration, is of great importance in near-field photonics. However, conventional SPP control devices typically suffer from low efficiency and single-function limitations. Although recent works have proposed metasurfaces that achieve bifunctional SPP manipulation, their implementation relies on the excitations of circularly polarized (CP) light with different helicities. Here, we propose a generic approach to designing bifunctional SPP meta-devices under single-helicity circularly polarized incidence. Constructed using carefully selected and arranged meta-atoms that possess both structural resonance and a geometric phase, this kind of meta-device can exhibit two distinct SPP manipulation functionalities in both co- and cross-polarized output channels under one CP incidence. As proof of this concept, we designed a bifunctional meta-device in the microwave regime and numerically demonstrated that it can convert a normally incident left circularly polarized (LCP) beam into SWs, exhibiting both a focused wavefront in the co-polarized output channel and a deflected wavefront in the cross-polarized output channel. Our findings substantially enrich the capabilities of metasurfaces to manipulate near-field electromagnetic waves, which can find many applications in practice. Full article
(This article belongs to the Special Issue New Perspectives in Optical Design)
Show Figures

Figure 1

11 pages, 5467 KB  
Communication
Ultra-Wideband Cross-Polarization Converter Using Metasurface Operating in the X- and K-Band
by Muhammad Basir Abbas, Faizan Raza, Muhammad Abuzar Baqir, Olcay Altintas, Musarat Abbas, Muharrem KaraaSlan and Qaisar Abbas Naqvi
Photonics 2024, 11(9), 863; https://doi.org/10.3390/photonics11090863 - 12 Sep 2024
Cited by 4 | Viewed by 1894
Abstract
The ultra-wideband polarization converters have been of interest to researcher due to their demand in satellite communication and navigation systems. This paper presents an ultra-wideband reflective cross-polarization converter comprising a stair-shaped metasurface. By observation, the alleged structure allows the conversion of linearly polarized [...] Read more.
The ultra-wideband polarization converters have been of interest to researcher due to their demand in satellite communication and navigation systems. This paper presents an ultra-wideband reflective cross-polarization converter comprising a stair-shaped metasurface. By observation, the alleged structure allows the conversion of linearly polarized waves to orthogonal components, having a polarization conversion ratio of greater than 90% spread across the large frequency range of 12.94 to 16.54 GHz and 17.54 to 26 GHz. A highly efficient, ultra-high frequency polarization conversion is achieved by the utilization of strong electromagnetic resonance coupling between the upper and lower layers of the metasurface. Further, it is depicted that the polarization converter has a wide obliquity of incidence wave. Moreover, the simulation and measured results show a good match. The linear polarization converter is simple in design but is of high performance, and therefore, might be useful in satellite communication, imaging systems, and navigation systems. Full article
(This article belongs to the Special Issue Nonlinear Optical Phenomena in Rare Earth Doped Crystals)
Show Figures

Figure 1

13 pages, 3109 KB  
Article
Development of Polarization-Insensitive THz-to-IR Converters for Low-IR-Signature Target Detection and Imaging
by Berat Aytaç, Asaf Behzat Şahin and Hakan Altan
Sensors 2024, 24(17), 5614; https://doi.org/10.3390/s24175614 - 29 Aug 2024
Cited by 1 | Viewed by 1139
Abstract
A THz-to-IR converter can be an effective solution for the detection of low-IR-signature targets by combining the advantages of mature IR detection mechanisms with high atmospheric transmittance in the THz region. A metallic metasurface (MS)-based absorber with linear polarization dependence based on a [...] Read more.
A THz-to-IR converter can be an effective solution for the detection of low-IR-signature targets by combining the advantages of mature IR detection mechanisms with high atmospheric transmittance in the THz region. A metallic metasurface (MS)-based absorber with linear polarization dependence based on a split-ring resonator (SRR) unit cell has been previously studied as a preliminary example of a THz-to-IR converter structure in the literature. In this simulation-based study, a new cross-shaped unit cell-based metallic MS absorber structure sensitive to dual polarization is designed to eliminate linear polarization dependency, thereby allowing for incoherent detection of THz radiation. A model is developed to calculate the temperature difference and the response time for this new cross-shaped absorber structure, and its performance is compared to the SRR structure for both coherent and incoherent illumination. This model allows for understanding the efficiency of these structures by considering all loss mechanisms which previously had not been considered. It is found that both structures show similar performance under linearly polarized coherent illumination. However, under incoherent illumination, the IR emittance efficiency as gauged by the temperature difference for the cross-shaped structure is found to be twice as high as compared to the SRR structure. The results also imply that calculated temperature differences for both structures under coherent and incoherent illumination are well above the limit of the minimum resolvable temperature difference of the state-of-the-art IR cameras. Therefore, dual-polarized or multi-polarization-sensitive MS absorber structures can be crucial for developing cost-effective THz-to-IR converters and be implemented in THz imaging solutions. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

12 pages, 7622 KB  
Article
A Highly Efficient Plasmonic Polarization Conversion Metasurface Supporting a Large Angle of Incidence
by Bo Cheng, Zengxuan Jiang, Yuxiao Zou and Guofeng Song
Crystals 2024, 14(8), 694; https://doi.org/10.3390/cryst14080694 - 29 Jul 2024
Cited by 1 | Viewed by 2121
Abstract
The angle of incidence of the compact polarization conversion device is crucial for practical use in integrated miniaturized optical systems. However, this index is often ignored in the design of quarter-wave plate based on metasurface. Herein, it is shown that a thick metallic [...] Read more.
The angle of incidence of the compact polarization conversion device is crucial for practical use in integrated miniaturized optical systems. However, this index is often ignored in the design of quarter-wave plate based on metasurface. Herein, it is shown that a thick metallic cross-shaped hole array supports extraordinary optical transmission peaks controlled by a Fabry–Pérot (FP) resonator mode. The positions of these peaks have been proven to be independent over a large range of incidence angles. We numerically design a miniatured quarter-wave plate (QWP) with an 80 nm bandwidth (840~920 nm) and approximately 80% average efficiency capable of effectively functioning as a linear-to-circular (LTC) polarization converter at an incidence inclination angle of less than 30°. This angle-insensitive compact polarization conversion device may be significant in a new generation of integrated metasurface-based photonics devices. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

13 pages, 4556 KB  
Article
Switchable Vanadium Dioxide Metasurface for Terahertz Ultra-Broadband Absorption and Reflective Polarization Conversion
by Wei Zou, Changqing Zhong, Lujun Hong, Jiangtao Lei, Yun Shen, Xiaohua Deng, Jing Chen and Tianjing Guo
Micromachines 2024, 15(8), 967; https://doi.org/10.3390/mi15080967 - 28 Jul 2024
Cited by 4 | Viewed by 3404
Abstract
Based on the unique insulator-metal phase transition property of vanadium dioxide (VO2), we propose an integrated metasurface with a switchable mechanism between ultra-broadband absorption and polarization conversion, operating in the terahertz (THz) frequency range. The designed metasurface device is constructed using [...] Read more.
Based on the unique insulator-metal phase transition property of vanadium dioxide (VO2), we propose an integrated metasurface with a switchable mechanism between ultra-broadband absorption and polarization conversion, operating in the terahertz (THz) frequency range. The designed metasurface device is constructed using a stacked structure composed of VO2 quadruple rings, a dielectric layer, copper stripes, VO2 film, a dielectric layer, and a copper reflection layer. Our numerical simulations demonstrate that our proposed design, at high temperatures (above 358 K), exhibits an ultra-broadband absorption ranging from 4.95 to 18.39 THz, maintaining an absorptivity greater than 90%, and achieves a relative absorption bandwidth of up to 115%, significantly exceeding previous research records. At room temperature (298 K), leveraging VO2’s insulating state, our proposed structure transitions into an effective polarization converter, without any alteration to its geometry. It enables efficient conversion between orthogonal linear polarizations across 3.51 to 10.26 THz, with cross-polarized reflection exceeding 90% and a polarization conversion ratio over 97%. More importantly, its relative bandwidth reaches up to 98%. These features highlight its wide-angle, extensive bandwidth, and high-efficiency advantages for both switching functionalities. Such an ultra-broadband convertible design offers potential applications in optical switching, temperature dependent optical sensors, and other tunable THz devices in various fields. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz Devices and Applications)
Show Figures

Figure 1

15 pages, 10765 KB  
Article
Dual-Polarization Conversion and Coding Metasurface for Wideband Radar Cross-Section Reduction
by Saima Hafeez, Jianguo Yu, Fahim Aziz Umrani, Yibo Huang, Wang Yun and Muhammad Ishfaq
Photonics 2024, 11(5), 454; https://doi.org/10.3390/photonics11050454 - 11 May 2024
Cited by 5 | Viewed by 2422
Abstract
Modern stealth application systems require integrated meta-devices to operate effectively and have gained significant attention recently. This research paper proposes a 1-bit coding metasurface (CM) design. The fundamental component of the proposed CM is integrated to convert linearly polarized incoming electromagnetic waves into [...] Read more.
Modern stealth application systems require integrated meta-devices to operate effectively and have gained significant attention recently. This research paper proposes a 1-bit coding metasurface (CM) design. The fundamental component of the proposed CM is integrated to convert linearly polarized incoming electromagnetic waves into their orthogonal counterpart within frequency bands of 12.37–13.03 GHz and 18.96–32.37 GHz, achieving a polarization conversion ratio exceeding 99%. Furthermore, it enables linear-to-circular polarization conversion from 11.80 to 12.29, 13.17 to 18.44, and 33.33 to 40.35 GHz. A second element is produced by rotating a fundamental component by 90°, introducing a phase difference of π (pi) between them. Both elements are arranged in an array using a random aperiodic coding sequence to create a 1-bit CM for reducing the radar cross-section (RCS). The planar structure achieved over 10 dB RCS reduction for polarized waves in the frequency bands of 13.1–13.8 GHz and 20.4–30.9 GHz. A prototype was fabricated and tested, with the experimental results showing a good agreement with the simulated outcomes. The proposed design holds potential applications in radar systems, reflector antennas, stealth technologies, and satellite communication. Full article
Show Figures

Figure 1

7 pages, 2272 KB  
Comment
Comment on Lu et al. Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator. Symmetry 2018, 10, 293
by Tariq Ullah and Aamir Rashid
Symmetry 2024, 16(4), 445; https://doi.org/10.3390/sym16040445 - 7 Apr 2024
Viewed by 999
Abstract
In this study, the design of a dual-band terahertz absorber, previously published by Lu et al. (Symmetry 2018, 10, 293), was re-simulated. Our findings showed significantly different absorption results from those published in the article. A detailed analysis was conducted to [...] Read more.
In this study, the design of a dual-band terahertz absorber, previously published by Lu et al. (Symmetry 2018, 10, 293), was re-simulated. Our findings showed significantly different absorption results from those published in the article. A detailed analysis was conducted to explain this discrepancy, which was attributed to the reflection of an unaccounted orthogonal component of the waves from the design, rather than absorption. The metasurface design has two resonances at 4.48 THz and 4.76 THz, respectively. It was reported that at these frequencies, the structure achieved absorption of 98.6% and 98.5%, respectively. However, in our results, it was found that at the second resonance (4.76 THz), the structure acted as a strong cross-polarization converter, reflecting a significant amount of incident energy in the cross-polarization component of the reflected wave. When this component is considered in the reflection coefficient calculations, the absorption reduces to 41% (from 98.5%), which is not an acceptable level for an absorber. In addition, the structure was simulated for both lossy and lossless (FR4) substrate cases to understand the effect of substrate losses. The results showed that the absorption response significantly deteriorates at the first resonance (4.48 THz) in the case of a lossy FR4 substrate. Full article
Show Figures

Figure 1

14 pages, 8482 KB  
Article
A Multiband and Multifunctional Metasurface for Linear and Circular Polarization Conversion in Reflection Modes
by Saima Hafeez, Jianguo Yu, Fahim Aziz Umrani, Wang Yun and Muhammad Ishfaq
Crystals 2024, 14(3), 266; https://doi.org/10.3390/cryst14030266 - 8 Mar 2024
Cited by 5 | Viewed by 2375
Abstract
Multifunctional integrated meta-devices are the demand of modern communication systems and are given a lot of attention nowadays. Most of the research has focused on either cross-polarization conversion (CPC) or linear-to-circular (LP–CP) conversion. However, simultaneously realizing multiple bands with good conversion efficiency remains [...] Read more.
Multifunctional integrated meta-devices are the demand of modern communication systems and are given a lot of attention nowadays. Most of the research has focused on either cross-polarization conversion (CPC) or linear-to-circular (LP–CP) conversion. However, simultaneously realizing multiple bands with good conversion efficiency remains crucial. This paper proposes a multiband and multifunctional dual reflective polarization converter surface capable of converting a linearly polarized (LP) wave into a circularly polarized (CP) wave, in frequency bands of 12.29–12.63 GHz, 16.08–24.16 GHz, 27.82–32.21 GHz, 33.75–38.74 GHz, and 39.70–39.79 GHz, with 3 dB axial ratio bandwidths of 2.7%, 40.15%, 14.6%, 13.76%, and 0.2%, respectively. Moreover, the converter is capable of achieving CPC with a polarization conversion ratio (PCR) that exceeds 95%, within the frequency ranges of 13.10–14.72 GHz, 25.43–26.00, 32.46–32.56 GHz, and 39.14–39.59 GHz. In addition, to identify the fundamental cause of the CPC and LP–CP conversion, a comprehensive theoretical investigation is provided. Furthermore, the surface current distribution patterns at different frequencies are investigated to analyze the conversion phenomena. A sample prototype consisting of 20 × 20 unit cells was fabricated and measured, verifying our design and the simulated results. The proposed structure has potential applications in satellite communications, radar, stealth technologies, and reflector antennas. Full article
(This article belongs to the Special Issue Anisotropic Acoustic Metamaterials)
Show Figures

Figure 1

Back to TopTop